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Topological dynamics

G-flow
G × X // X - a continuous action

↑ ↑
topological compact
group Hausdorff space

ex = x

g(hx) = (gh)x

X is a minimal G-flow ←→ X has no proper closed invariant
subset.
The universal minimal flow M(G) is a minimal flow which has
every other minimal flow as its factor.
G is extremely amenable ←→ its universal minimal flow is a
singleton (←→ every G-flow has a fixed point).

Dana Bartošová Ramsey theory and the Lelek fan



Topological dynamics

G-flow
G × X // X - a continuous action
↑ ↑
topological compact
group Hausdorff space

ex = x

g(hx) = (gh)x

X is a minimal G-flow ←→ X has no proper closed invariant
subset.
The universal minimal flow M(G) is a minimal flow which has
every other minimal flow as its factor.
G is extremely amenable ←→ its universal minimal flow is a
singleton (←→ every G-flow has a fixed point).
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Structural Ramsey property

Theorem (Ramsey)

For every k ≤ m and r ≥ 2, there exists n such that for every
colouring of k-element subsets of n with r-many colours there is
a subset X of n of size m such that all k-element subsets of X
have the same colour.

A class K of finite structures satisfies the Ramsey property if
for every A ≤ B ∈ K and r ≥ 2 a natural number there exists
C ∈ K such that
for every colouring of copies of A in C by r colours, there is a
copy B′ of B in C, such that all copies of A in B′ have the same
colour.
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Dana Bartošová Ramsey theory and the Lelek fan



Structural Ramsey property

Theorem (Ramsey)

For every k ≤ m and r ≥ 2, there exists n such that for every
colouring of k-element subsets of n with r-many colours there is
a subset X of n of size m such that all k-element subsets of X
have the same colour.

A class K of finite structures satisfies the Ramsey property if
for every A ≤ B ∈ K and r ≥ 2 a natural number there exists
C ∈ K such that
for every colouring of copies of A in C by r colours, there is a
copy B′ of B in C, such that all copies of A in B′ have the same
colour.
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Ramsey classes and extremely amenable groups

Ramsey classes

finite linear orders (Ramsey)

finite linearly ordered graphs (Nešetřil and Rödl)

finite linearly ordered metric spaces (Nešetřil)

finite Boolean algebras (Graham and Rothschild)

Extremely amenable groups

Aut(Q, <) (Pestov)

Aut(OR) – OR the random ordered graph (Kechris,
Pestov & Todorčević)

Iso(U, d) (Pestov)

Homeo(C, C) – (C, C) the Cantor space with a generic
maximal chain of closed subsets (KPT; Glasner & Weiss)
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What allows us to use the Ramsey property?

A - a first order structures

A is ultrahomogeneous ←→ every partial finite isomorphism
can be extended to an automorphism of A.
G = Aut(A) with topology of pointwise convergence

A - a finitely-generated substructure of A

GA = {g ∈ G : ga = a ∀a ∈ A}

form a basis of neighbourhoods of the identity.

Theorem (KPT; NvT)

Aut(A) is extremely amenable ←→ finitely-generated
substructures of A satisfy the Ramsey property and are rigid.
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Dana Bartošová Ramsey theory and the Lelek fan



What allows us to use the Ramsey property?

A - a first order structures
A is ultrahomogeneous ←→ every partial finite isomorphism
can be extended to an automorphism of A.
G = Aut(A) with topology of pointwise convergence

A - a finitely-generated substructure of A

GA = {g ∈ G : ga = a ∀a ∈ A}

form a basis of neighbourhoods of the identity.

Theorem (KPT; NvT)

Aut(A) is extremely amenable ←→ finitely-generated
substructures of A satisfy the Ramsey property and are rigid.
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Universal minimal flows

G = Aut(A) – A ultrahomogeneous

G∗ = Aut(A∗) – A∗ ultrahomogeneous expansion of A
Finite substructures of A∗ satisfy the Ramsey property and are
rigid.

OFTEN M(G) ∼= Ĝ/G∗

Structure A M(Aut(A)) authors

N linear orders on N Glasner and Weiss

random graph R linear orders on R KPT

Cantor space C maximal chains of
closed subsets of C

Glasner and Weiss
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Structure A M(Aut(A)) authors

N linear orders on N Glasner and Weiss

random graph R linear orders on R KPT

Cantor space C maximal chains of
closed subsets of C

Glasner and Weiss
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Other settings

ultrahomogeneous

projectively ultrahomogeneous

approximately ultrahomogeneous

approximately projectively
ultrahomogeneous

Ramsey property

dual Ramsey property

approximate Ramsey property

approximate dual Ramsey
property

Structure... ...homogeneous w.r.t.

N, R embeddings

Lelek fan epimorphisms

Gurarij space linear isometric embeddings

Poulsen simplex affine epimorphisms
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Dana Bartošová Ramsey theory and the Lelek fan



Lelek fan L

= unique non-trivial subcontinuum of the Cantor fan with a
dense set of endpoints (Bula-Oversteegen, Charatonik)

continuum = connected compact metric Hausdorff space

fan.jpg
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Pre-Lelek fan

(L, RL
s ) - compact, 0-dim, RL

s ⊂ L2 closed with one or two
element equivalence classes

L/RL
s
∼= L

F = {finite fans} + surjective homomorphisms

(U) T ∈ F  ∃φ : (L, RL) // T - continuous surjective
homomorphism

(R) X finite, f : L //X continuous  ∃T ∈ F , φ : L // T and
g : T //X such that f = g ◦ φ

(PU) T ∈ F , φ1, φ2 : L // T  ∃g : L // L automorphism with
φ1 = φ2 ◦ g
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Dana Bartošová Ramsey theory and the Lelek fan



Aut // Homeo

Aut(L, RL
s ) and Homeo(L) + the compact-open topology

π : L // L/RL
s
∼= L

induces a continuous embedding Aut(L, RL
s ) ↪→ Homeo(L)

with a dense image

h 7→ h∗

π ◦ h = h∗ ◦ π.
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Ramsey property for L

F< - finite fans with a linear order extending the natural order
{C //A} := all epimorphisms from C onto A

Theorem

F< satisfies the Ramsey property.

For every A,B ∈ F< there exists C ∈ F< such that for every
colouring

c : {C //A} // {1, 2, . . . , r}

there exists f : C //B such that {B //A} ◦ f is
monochromatic.

Theorem (B-K)

Let L< be the limit of F<. Then Aut(L<) is extremely
amenable.
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Universal minimal flow of Homeo(L)

Theorem (B-K)

M(Aut(L)) ∼= ̂Aut(L)/Aut(L<)

M(Homeo(L)) ∼= ̂Homeo(L)/Homeo(L<)
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Poulsen simplex S

(1) metrizable

(2) contains every metrizable simplex as its face

(3) for every two faces E,F of S with the same finite
dimension, there is an affine autohomeomorphism of S
mapping E onto F

LINDENSTRAUSS-OLSEN-STERNFELD
Properties (1),(2) and (3) uniquely determine S up to an affine
homeomorphism.

POULSEN
The set of extreme points of S is dense in S.

FACT
T : {0, 1}Z // {0, 1}Z the shift ⇒ T -invariant probability
measures forn P
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measures forn P
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A projective characterization of P

Sn := positive part of the unit ball of ln1 – finite-dimensional
simplex with n+ 1 extreme points

Epi(Sn, Sm) := continuous affine surjections Sn // Sm

AH(P ) := group of affine homeomorphisms of P +
compact-open topology

(U) ∀n ∃φ : P // Sn – continuous affine surjection

(APU) ∀ε > 0 ∀n ∀φ1, φ2 : P // Sn ∃f ∈ AH(P ) with
d(φ1, φ2 ◦ f) < ε

Theorem (B-LA-M)

(U) + (APU) characterize P among non-trivial metrizable
simplexes up to affine homeomorphism.
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Approximate Ramsey property for P

Epi0(Sn, Sm) - continuous affine surjections preserving 0

Theorem (B-LA-M)

d ≤ m and r natural numbers and ε > 0 given // ∃n such that
for every colouring

c : Epi0(Sn, Sd) // {0, 1, . . . , r}

there is π ∈ Epi0(Sn, Sm) and α < r such that

Epi0(Sm, Sd) ◦ π ⊂ (c−1(α))ε

s - extreme point of S
AHs(S) = {f ∈ AH(S) : f(s) = s}

Theorem (B-LA-M)

AHs(P ) is extremely amenable.
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Universal minimal flow of AH(P )

Theorem (B-LA-M)

M(AH(P )) ∼= ̂AH(P )/AHs(P ) ∼= P
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FINk(n)

= {p : {1, . . . , n} // {0, 1, . . . , k} : ∃n (p(n) = k)}

supp(p) = {x : p(x) 6= 0}

ADDITION
supp(p) ∩ supp(q) = ∅ // (p+ q)(n) = max{p(n), q(n)}

TETRIS-LIKE OPERATIONS
Ti : FINk

// FINk−1

Ti(p)(n) =

{
p(n) if p(n) < i

p(n)− 1 if p(n) ≥ i.

~i ∈
∏k

j=1{0, 1, . . . , j}

T~i(p) = T~i(1) ◦ . . . ◦ T~i(k)(p).
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Exact Ramsey Theorem

suppk(p) = {x : p(x) = k}

FIN
(d)
k (n) = {(p1, . . . , pd) : supp(pi) ∩ supp(pj) = ∅ for i 6=

j & min(supp(pi))) < min(supp(pi+1)) & min(suppk(pi)) <
min(suppk(pi+1)) for i < d}
p̄ = (p1, . . . , pm) ∈ FIN

(m)
k (n)

〈p̄〉 =


m∑
i=1

T~ii(pi) :~ii ∈
k∏

j=1

{0, 1, . . . , j} & ∃i ~ii = ~0


For every d ≤ m and r there exists n such that for every

colouring c : FIN
(d)
k (n) // {0, 1, . . . , r − 1} there is

p̄ ∈ FIN
(m)
k (n) such that 〈p̄〉(d) ∩ FIN

(d)
k (n) is monochromatic.
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Dual Ramsey Theorem

Theorem (Graham and Rothschild)

For every k ≤ m and r ≥ 2, there exists n such that for every
colouring of the k-element partitions of n by r-many colours
there is an m-element partition X of n such that all k-element
coarsenings of X have the same colour.
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A mathematical question

Is there a non-trivial simplex with extremely amenable group of
affine homeomorphisms?
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A non-mathematical question

Does anyone want to share a cab to the ariport early tomorrow
morning?
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THANK YOU

OBRIGADA!
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