On the concept of n-diversity and the Banach spaces $C(K^n)$

Leandro Candido

IME-USP

The author was supported by FAPESP grant 2012/15957-6

lc@ime.usp.br

Workshop on Functional Analysis and Dynamical Systems, Florianópolis, February 23–27, 2015

The concept of n-diversity and Banach spaces $C(K^n)$

A joint work with professor Piotr Koszmider from the Polish Academy of Sciences

The concept of n-diversity and Banach spaces $C(K^n)$

A joint work with professor Piotr Koszmider from the Polish Academy of Sciences

L. Candido, P. Koszmider

On complemented copies of $c_0(\omega_1)$ in $C(K^n)$ spaces, arxiv.org/abs/1501.01785.

On the concept of *n*-diversity and the Banach spaces $C(K^n)$

Outline of the talk

- Exposition
- Ø First approach

- Exposition
- Ø First approach
- On some results of A. Dow, H. Junilla and J. Pelant

On the concept of *n*-diversity and the Banach spaces $C(K^n)$

- Exposition
- Ø First approach
- On some results of A. Dow, H. Junilla and J. Pelant
- Our main results

- Exposition
- Ø First approach
- On some results of A. Dow, H. Junilla and J. Pelant
- Our main results
- An open question

$C(K^n) = C(K \times ... \times K)$

On the concept of *n*-diversity and the Banach spaces $C(K^n)$

$C(K^n) = C(K \times .!. \times K)$ $C(K \times K) \sim C(K) \widehat{\otimes}_{\varepsilon} C(K) \sim C(K, C(K))$

$$C(K^n) = C(K \times ... \times K)$$

$$C(K \times K) \sim C(K) \widehat{\otimes}_{\varepsilon} C(K) \sim C(K, C(K))$$

Theorem (P. Cembranos 84; F. Freniche 84)

If K is compact infinite, then $c_0 \stackrel{c}{\hookrightarrow} C(K \times K)$

$$C(K^n) = C(K \times ... \times K)$$

$$C(K \times K) \sim C(K) \widehat{\otimes}_{\varepsilon} C(K) \sim C(K, C(K))$$

Theorem (P. Cembranos 84; F. Freniche 84)

If K is compact infinite, then $c_0 \stackrel{c}{\hookrightarrow} C(K \times K)$

Theorem (Josefson-Nissenzweig)

If X is inf. dim. Banach space, there is a sequence $(x_n^*)_{n\in\mathbb{N}}\subseteq X^*$ with $||x_n^*|| = 1$ such that $x_n^* \stackrel{w^*}{\to} 0$.

$$C(K^n) = C(K \times ..^n .. \times K)$$

$$C(K \times K) \sim C(K) \widehat{\otimes}_{\varepsilon} C(K) \sim C(K, C(K))$$

Theorem (P. Cembranos 84; F. Freniche 84)

If K is compact infinite, then $c_0 \stackrel{c}{\hookrightarrow} C(K \times K)$

Theorem (Josefson-Nissenzweig)

If X is inf. dim. Banach space, there is a sequence $(x_n^*)_{n \in \mathbb{N}} \subseteq X^*$ with $||x_n^*|| = 1$ such that $x_n^* \stackrel{w^*}{\to} 0$.

Theorem (E. M. Galego & J. Hagler 2012)

If $c_0(\omega_1) \hookrightarrow C(K)$ and there is a sequence $(x_{\alpha}^*)_{\alpha < \omega_1} \subseteq C(K)^*$ with $||x_{\alpha}^*|| = 1$ such that such that $(x_{\alpha}^*(x))_{\alpha < \omega_1} \in c_0(\omega_1)$ for each $x \in C(K)$, then $c_0(\omega_1) \stackrel{c}{\hookrightarrow} C(K \times K)$.

Theorem (S. Todorcevic 2006)

(MM) For every Banach space X of density ω_1 there is $(x^*_{\alpha})_{\alpha < \omega_1} \subseteq X^*$ with $||x^*_{\alpha}|| = 1$ such that such that $(x^*_{\alpha}(x))_{\alpha < \omega_1} \in c_0(\omega_1)$ for each $x \in X$.

On the concept of *n*-diversity and the Banach spaces $C(K^n)$

Theorem (S. Todorcevic 2006)

(MM) For every Banach space X of density ω_1 there is $(x^*_{\alpha})_{\alpha < \omega_1} \subseteq X^*$ with $||x^*_{\alpha}|| = 1$ such that such that $(x^*_{\alpha}(x))_{\alpha < \omega_1} \in c_0(\omega_1)$ for each $x \in X$.

Theorem (E. M. Galego & J. Hagler 2012)

(*MM*) Let K be a compact Hausdorff space such that C(K) has density ω_1 . Then,

$$c_0(\omega_1) \hookrightarrow C(K) \Longrightarrow c_0(\omega_1) \stackrel{c}{\hookrightarrow} C(K \times K).$$

Theorem (S. Todorcevic 2006)

(MM) For every Banach space X of density ω_1 there is $(x^*_{\alpha})_{\alpha < \omega_1} \subseteq X^*$ with $||x^*_{\alpha}|| = 1$ such that such that $(x^*_{\alpha}(x))_{\alpha < \omega_1} \in c_0(\omega_1)$ for each $x \in X$.

Theorem (E. M. Galego & J. Hagler 2012)

(*MM*) Let K be a compact Hausdorff space such that C(K) has density ω_1 . Then,

$$c_0(\omega_1) \hookrightarrow C(K) \Longrightarrow c_0(\omega_1) \stackrel{c}{\hookrightarrow} C(K \times K).$$

Problem (E. M. Galego & J. Hagler 2012)

Can MM be removed from the previous theorem?

First approach

Theorem (P. Koszmider & P. Zieliński 2011)

(*) There is a weakly Lindelöf C(K) space of density ω_1 such that $K^{(\omega_1)} = \emptyset, c_0(\omega_1) \hookrightarrow C(K)$, but $c_0(\omega_1) \stackrel{c}{\nleftrightarrow} C(K)$.

First approach

Theorem (P. Koszmider & P. Zieliński 2011)

(*) There is a weakly Lindelöf C(K) space of density ω_1 such that $K^{(\omega_1)} = \emptyset, c_0(\omega_1) \hookrightarrow C(K)$, but $c_0(\omega_1) \stackrel{c}{\nleftrightarrow} C(K)$.

Theorem (P.Koszmider & P. Zieliński 2011)

(*PID*) If C(K) is a weakly Lindelöf space such that $K^{(\omega_1)} = \emptyset$ and $c_0(\omega_1) \hookrightarrow C(K)$, then $c_0(\omega_1) \stackrel{c}{\hookrightarrow} C(K)$

Theorem (P. Koszmider & P. Zieliński 2011)

(*) There is a weakly Lindelöf C(K) space of density ω_1 such that $K^{(\omega_1)} = \emptyset, c_0(\omega_1) \hookrightarrow C(K)$, but $c_0(\omega_1) \stackrel{c}{\nleftrightarrow} C(K)$.

Theorem (P.Koszmider & P. Zieliński 2011)

(*PID*) If C(K) is a weakly Lindelöf space such that $K^{(\omega_1)} = \emptyset$ and $c_0(\omega_1) \hookrightarrow C(K)$, then $c_0(\omega_1) \stackrel{c}{\hookrightarrow} C(K)$

Theorem (L.C. & P. Koszmider)

Suppose that $K = \omega_1 \cup \{\omega_1\}$ is the one point compactification of a locally compact, Hausdorff space ω_1 which carries a a bigger topology than the order topology. Then $c_0(\omega_1) \stackrel{c}{\hookrightarrow} C(K \times K)$

Theorem (L.C. & P. Koszmider)

(*) There is a weakly Lindelöf C(K) space of density ω_1 such that $\mathcal{K}^{(\omega_1)} = \emptyset, c_0(\omega_1) \hookrightarrow C(K)$, and $c_0(\omega_1) \stackrel{c}{\nleftrightarrow} C(K \times K)$.

A. Dow, H. Junilla, J. Pelant, Chain condidition and weak topologies, Topology Appl. 156 (2009), 1327–1344.

A topological space is p.c.c. if every point-finite family of open subsets of the space is countable

A. Dow, H. Junilla, J. Pelant, Chain condidition and weak topologies, Topology Appl. 156 (2009), 1327–1344.

- A topological space is p.c.c. if every point-finite family of open subsets of the space is countable
- X is weakly p.c.c. if every point finite family of weakly open sets in X is countable.

A. Dow, H. Junilla, J. Pelant, Chain condidition and weak topologies, Topology Appl. 156 (2009), 1327–1344.

- A topological space is p.c.c. if every point-finite family of open subsets of the space is countable
- X is weakly p.c.c. if every point finite family of weakly open sets in X is countable.
- X is half-p.c.c. if every point finite family of half spaces ({x : φ(x) > a} for some φ ∈ X* and a ∈ ℝ) in X is countable.

A. Dow, H. Junilla, J. Pelant, Chain condidition and weak topologies, Topology Appl. 156 (2009), 1327–1344.

- A topological space is p.c.c. if every point-finite family of open subsets of the space is countable
- X is weakly p.c.c. if every point finite family of weakly open sets in X is countable.
- X is half-p.c.c. if every point finite family of half spaces
 ({x : φ(x) > a} for some φ ∈ X* and a ∈ ℝ) in X is
 countable.
- **③** X is half-p.c.c. iff every $T : X \to c_0(\omega_1)$ has separable range

Theorem (A. Dow, H. Junilla, J. Pelant 2009)

(\diamond) There exists a compact Hausdorff space K such that K admits a finite-to-one continuous mapping onto the ordinal space $[0, \omega_1]$ and C(K) is weakly pcc.

Theorem (A. Dow, H. Junilla, J. Pelant 2009)

(\diamond) There exists a compact Hausdorff space K such that K admits a finite-to-one continuous mapping onto the ordinal space $[0, \omega_1]$ and C(K) is weakly pcc.

Proposition (L.C & P. Koszmider)

If C(K) is weakly pcc then $C(K^n)$ is weakly pcc for all $n \in \mathbb{N}$.

Theorem (A. Dow, H. Junilla, J. Pelant 2009)

(\diamond) There exists a compact Hausdorff space K such that K admits a finite-to-one continuous mapping onto the ordinal space $[0, \omega_1]$ and C(K) is weakly pcc.

Proposition (L.C & P. Koszmider)

If C(K) is weakly pcc then $C(K^n)$ is weakly pcc for all $n \in \mathbb{N}$.

Theorem (Implicitely in Dow, Junilla, Pelant, 2009)

 (\diamondsuit) There is a scattered compact K which maps onto $[0, \omega_1]$ such that $c_0(\omega_1) \hookrightarrow C(K)$ but for all $n \in \mathbb{N}$, $c_0(\omega_1) \stackrel{c}{\nleftrightarrow} C(K^n)$.

Theorem (L.C & P. Koszmider)

(\clubsuit) There is a scattered compact K such that C(K) is half-p.c.c. but is not weakly p.c.c.

On the concept of *n*-diversity and the Banach spaces $C(K^n)$

C(K) is pointwise-p.c.c. if $C_p(K)$ is p.c.c.

$$C(K)$$
 is pointwise-p.c.c. if $C_p(K)$ is p.c.c.
 $\Delta_n = \{(x_1, \ldots, x_n) \in K^n : x_i = x_j \text{ for some } i = j\}.$

$$C(K)$$
 is pointwise-p.c.c. if $C_p(K)$ is p.c.c.
 $\Delta_n = \{(x_1, \ldots, x_n) \in K^n : x_i = x_j \text{ for some } i = j\}.$

Theorem (Arhangelskii & Tkachuk 86)

C(K) is pointwise p.c.c. iff for every $n \in \mathbb{N}$ every uncountable set in $K^n \setminus \Delta_n$ has an accumulation point in $K^n \setminus \Delta_n$.

$$C(K)$$
 is pointwise-p.c.c. if $C_p(K)$ is p.c.c.
 $\Delta_n = \{(x_1, \dots, x_n) \in K^n : x_i = x_j \text{ for some } i = j\}.$

Theorem (Arhangelskii & Tkachuk 86)

C(K) is pointwise p.c.c. iff for every $n \in \mathbb{N}$ every uncountable set in $K^n \setminus \Delta_n$ has an accumulation point in $K^n \setminus \Delta_n$.

Theorem (A. Dow, H. Junilla, J. Pelant 2009)

If K scattered then C(K) is weakly p.c.c. iff C(K) is pointwise p.c.c.

Our main results

Definition

Let K be a compact space, $m \in \mathbb{N}$ and let F_1, \ldots, F_k a partition of $\{1, \ldots, m\}$. A point $(x_1, \ldots, x_m) \in K^m$ is said to be (F_1, \ldots, F_k) -diverse if $\{x_j : j \in F_i\} \cap \{x_j : j \notin F_i\} = \emptyset$ for all $1 \le i \le k$.

Our main results

Definition

Let K be a compact space, $m \in \mathbb{N}$ and let F_1, \ldots, F_k a partition of $\{1, \ldots, m\}$. A point $(x_1, \ldots, x_m) \in K^m$ is said to be (F_1, \ldots, F_k) -diverse if $\{x_j : j \in F_i\} \cap \{x_j : j \notin F_i\} = \emptyset$ for all $1 \le i \le k$.

Definition (n-diversity)

Let K be a Hausdorff compact and $n \in \mathbb{N}$. We say that K is *n*-diverse if for any given $m \in \mathbb{N}$ and for any partition F_1, \ldots, F_k of $\{1, \ldots, m\}$ with $k \leq n$, any sequence $\{(x_1^{\alpha}, \ldots, x_m^{\alpha})\}_{\alpha < \omega_1} \subseteq K^m$ of (F_1, \ldots, F_k) -diverse points admits a cluster point which is (F_1, \ldots, F_k) -diverse.

Our main results

Definition

Let K be a compact space, $m \in \mathbb{N}$ and let F_1, \ldots, F_k a partition of $\{1, \ldots, m\}$. A point $(x_1, \ldots, x_m) \in K^m$ is said to be (F_1, \ldots, F_k) -diverse if $\{x_j : j \in F_i\} \cap \{x_j : j \notin F_i\} = \emptyset$ for all $1 \le i \le k$.

Definition (n-diversity)

Let K be a Hausdorff compact and $n \in \mathbb{N}$. We say that K is *n*-diverse if for any given $m \in \mathbb{N}$ and for any partition F_1, \ldots, F_k of $\{1, \ldots, m\}$ with $k \leq n$, any sequence $\{(x_1^{\alpha}, \ldots, x_m^{\alpha})\}_{\alpha < \omega_1} \subseteq K^m$ of (F_1, \ldots, F_k) -diverse points admits a cluster point which is (F_1, \ldots, F_k) -diverse.

Theorem

If K is a scattered compact space then C(K) is weakly pcc iff K is *n*-diverse for each $n \in \mathbb{N}$.

Theorem (L.C. & P. Koszmider)

If a compact scattered Hausdorff K is (n + 1)-diverse for some $n \in \mathbb{N}$, then $C(K^n)$ is half-pcc.

Theorem (L.C. & P. Koszmider)

If a compact scattered Hausdorff K is (n + 1)-diverse for some $n \in \mathbb{N}$, then $C(K^n)$ is half-pcc.

Theorem (L.C. & P. Koszmider)

Let K be compact totally disconnected space and $\infty \in K$. If there exists a continous surjective map $\phi : K \setminus \{\infty\} \to [0, \omega_1)$ such that $|\phi^{-1}[\{\alpha\}]| \leq n$ for all $\alpha < \omega_1$ and some $n \in \mathbb{N}$, where $[0, \omega_1)$ is endowed with the order topology, then $c_0(\omega_1) \stackrel{c}{\to} C(K^{n+1})$. In particular $C(K^{n+1})$ is not half-pcc.

Let K be a scattered compact Hausdorff space and $n \in \mathbb{N}$. Each of the following conditions implies the next.

• K is
$$(n+1)$$
-diverse,

Let K be a scattered compact Hausdorff space and $n \in \mathbb{N}$. Each of the following conditions implies the next.

Let K be a scattered compact Hausdorff space and $n \in \mathbb{N}$. Each of the following conditions implies the next.

• K is
$$(n+1)$$
-diverse,

2 $C(K^n)$ is half-pcc,

$${ig 3}$$
 $c_0(\omega_1) \stackrel{c}{\not
ightarrow} C(K^n)$,

Let K be a scattered compact Hausdorff space and $n \in \mathbb{N}$. Each of the following conditions implies the next.

•
$$K$$
 is $(n+1)$ -diverse,

- 2 $C(K^n)$ is half-pcc,
- 3 $c_0(\omega_1) \stackrel{c}{\not\hookrightarrow} C(K^n)$,
- There is no point ∞ ∈ K such that $K \setminus \{\infty\}$ can be mapped onto $[0, \omega_1)$ by an (n - 1)-to-1 continuous map.

Theorem (L.C. & P. Koszmider)

(*) For each $n \in \mathbb{N}$ there is a scattered compact Hausdorff space K_n such that $C(K_n)$ is weakly Lindelöf, K_n is (n + 1)-diverse and there is a point $\infty \in K_n$ such that $K_n \setminus \{\infty\}$ can be mapped onto $[0, \omega_1)$ by an *n*-to-1 continuous map.

Theorem (L.C. & P. Koszmider)

It is consistent that there are compact Hausdorff spaces K_n for all $1 \leq n < \omega$ such that $c_0(\omega_1) \hookrightarrow C(K_n)$ and $c_0(\omega_1) \stackrel{c}{\hookrightarrow} C(K_n^m)$ if and only if $n < m < \omega$.

Question

There exist in ZFC a compact Hausdorff 2-diverse space K such that C(K) is not weakly p.c.c.?

Question

There exist in ZFC a compact Hausdorff 2-diverse space K such that C(K) is not weakly p.c.c.?

Theorem

Suppose that K is compact scattered space which contains a point ∞ such that $K \setminus \{\infty\}$ maps injectively and continuously onto a subset of R. If K is 2-diverse, then C(K) is weakly p.c.c.

On complemented copies of $c_0(\omega_1)$ in $C(K^n)$ spaces

Thank you for your attention!

On the concept of *n*-diversity and the Banach spaces *C*(*K*"