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Exposition

C (Kn) = C (K× n. . . ×K )

C (K × K ) ∼ C (K )⊗̂εC (K ) ∼ C (K ,C (K ))

Theorem (P. Cembranos 84; F. Freniche 84)

If K is compact infinite, then c0
c
↪→ C (K × K )

Theorem (Josefson-Nissenzweig)

If X is inf. dim. Banach space, there is a sequence (x∗n )n∈N ⊆ X ∗

with ‖x∗n‖ = 1 such that x∗n
w∗
→ 0.

Theorem (E. M. Galego & J. Hagler 2012)

If c0(ω1) ↪→ C (K ) and there is a sequence (x∗α)α<ω1 ⊆ C (K )∗ with
‖x∗α‖ = 1 such that such that (x∗α(x))α<ω1 ∈ c0(ω1) for each

x ∈ C (K ), then c0(ω1)
c
↪→ C (K × K ).
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Exposition

Theorem (S. Todorcevic 2006)

(MM) For every Banach space X of density ω1 there is
(x∗α)α<ω1 ⊆ X ∗ with ‖x∗α‖ = 1 such that such that
(x∗α(x))α<ω1 ∈ c0(ω1) for each x ∈ X .

Theorem (E. M. Galego & J. Hagler 2012)

(MM) Let K be a compact Hausdorff space such that C (K ) has
density ω1. Then,

c0(ω1) ↪→ C (K ) =⇒ c0(ω1)
c
↪→ C (K × K ).

Problem (E. M. Galego & J. Hagler 2012)

Can MM be removed from the previous theorem?
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First approach

Theorem (P. Koszmider & P. Zieliński 2011)

(♣) There is a weakly Lindelöf C (K ) space of density ω1 such that

K (ω1) = ∅, c0(ω1) ↪→ C (K ), but c0(ω1)
c
6↪→ C (K ).

Theorem (P.Koszmider & P. Zieliński 2011)

(PID) If C (K ) is a weakly Lindelöf space such that K (ω1) = ∅ and

c0(ω1) ↪→ C (K ), then c0(ω1)
c
↪→ C (K )

Theorem (L.C. & P. Koszmider)

Suppose that K = ω1 ∪ {ω1} is the one point compactification of a
locally compact, Hausdorff space ω1 which carries a a bigger

topology than the order topology. Then c0(ω1)
c
↪→ C (K × K )
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On some results of A. Dow, H. Junilla and J. Pelant

A. Dow, H. Junilla, J. Pelant, Chain condidition and weak
topologies, Topology Appl. 156 (2009), 1327–1344.

1 A topological space is p.c.c. if every point-finite family of
open subsets of the space is countable

2 X is weakly p.c.c. if every point finite family of weakly open
sets in X is countable.

3 X is half-p.c.c. if every point finite family of half spaces
({x : ϕ(x) > a} for some ϕ ∈ X ∗ and a ∈ R) in X is
countable.

4 X is half-p.c.c. iff every T : X → c0(ω1) has separable range
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On some results of A. Dow, H. Junilla and J. Pelant

Theorem (A. Dow, H. Junilla, J. Pelant 2009)

(♦) There exists a compact Hausdorff space K such that K admits
a finite-to-one continuous mapping onto the ordinal space [0, ω1]
and C (K ) is weakly pcc.

Proposition (L.C & P. Koszmider)

If C (K ) is weakly pcc then C (Kn) is weakly pcc for all n ∈ N.

Theorem (Implicitely in Dow, Junilla, Pelant, 2009)

(♦)There is a scattered compact K which maps onto [0, ω1] such

that c0(ω1) ↪→ C (K ) but for all n ∈ N, c0(ω1)
c
6↪→ C (Kn).
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On some results of A. Dow, H. Junilla and J. Pelant

Theorem (L.C & P. Koszmider)

(♣) There is a scattered compact K such that C (K ) is half-p.c.c.
but is not weakly p.c.c.
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On some results of A. Dow, H. Junilla and J. Pelant

C (K ) is pointwise-p.c.c. if Cp(K ) is p.c.c.

∆n = {(x1, . . . , xn) ∈ Kn : xi = xj for some i = j}.

Theorem (Arhangelskii & Tkachuk 86)

C (K ) is pointwise p.c.c. iff for every n ∈ N every uncountable set
in Kn \∆n has an accumulation point in Kn \∆n.

Theorem (A. Dow, H. Junilla, J. Pelant 2009)

If K scattered then C (K ) is weakly p.c.c. iff C (K ) is pointwise
p.c.c.
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Our main results

Definition

Let K be a compact space, m ∈ N and let F1, . . . ,Fk a partition of
{1, . . . ,m}. A point (x1, . . . , xm) ∈ Km is said to be
(F1, . . . ,Fk)-diverse if {xj : j ∈ Fi} ∩ {xj : j 6∈ Fi} = ∅ for all
1 ≤ i ≤ k.

Definition (n-diversity)

Let K be a Hausdorff compact and n ∈ N. We say that K is
n-diverse if for any given m ∈ N and for any partition F1, . . . ,Fk of
{1, . . . ,m} with k ≤ n, any sequence {(xα1 , . . . , x

α
m)}α<ω1 ⊆ Km of

(F1, . . . ,Fk)-diverse points admits a cluster point which is
(F1, . . . ,Fk)-diverse.

Theorem

If K is a scattered compact space then C (K ) is weakly pcc iff K is
n-diverse for each n ∈ N.
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Our main results

Theorem (L.C. & P. Koszmider)

If a compact scattered Hausdorff K is (n + 1)-diverse for some
n ∈ N, then C (Kn) is half-pcc.

Theorem (L.C. & P. Koszmider)

Let K be compact totally disconnected space and ∞ ∈ K . If there
exists a continous surjective map φ : K \ {∞} → [0, ω1) such that
|φ−1[{α}]| ≤ n for all α < ω1 and some n ∈ N, where [0, ω1) is

endowed with the order topology, then c0(ω1)
c
↪→ C (Kn+1). In

particular C (Kn+1) is not half-pcc.
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Our main results

Theorem

Let K be a scattered compact Hausdorff space and n ∈ N. Each of
the following conditions implies the next.

1 K is (n + 1)-diverse,

2 C (Kn) is half-pcc,

3 c0(ω1)
c
6↪→ C (Kn) ,

4 There is no point ∞ ∈ K such that K \ {∞} can be mapped
onto [0, ω1) by an (n − 1)-to-1 continuous map.
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Our main results

Theorem (L.C. & P. Koszmider)

(♣) For each n ∈ N there is a scattered compact Hausdorff space
Kn such that C (Kn) is weakly Lindelöf, Kn is (n + 1)-diverse and
there is a point ∞ ∈ Kn such that Kn \ {∞} can be mapped onto
[0, ω1) by an n-to-1 continuous map.
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Our main results

Theorem (L.C. & P. Koszmider)

It is consistent that there are compact Hausdorff spaces Kn for all

1 ≤ n < ω such that c0(ω1) ↪→ C (Kn) and c0(ω1)
c
↪→ C (Km

n ) if
and only if n < m < ω.

On the concept of n-diversity and the Banach spaces C(Kn)



An open question

Question

There exist in ZFC a compact Hausdorff 2-diverse space K such
that C (K ) is not weakly p.c.c.?

Theorem

Suppose that K is compact scattered space which contains a point
∞ such that K \ {∞} maps injectively and continuously onto a
subset of R. If K is 2-diverse, then C (K ) is weakly p.c.c.
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On complemented copies of c0(ω1) in C (K n) spaces

Thank you for your attention!
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