Discrete group actions preserving a proper metric. Amenability and property (T)

Claire Anantharaman-Delaroche Université d'Orléans

Workshop on Functional Analysis and Dynamical Systems February 23–27, 2015 von Neumann (1929) : Given a group G acting on a set X, when is there an invariant mean?

Let G be a group acting on a set X. An **invariant mean** is a map μ from the collection of subsets of X to [0, 1] such that

(i)
$$\mu(A \cup B) = \mu(A) + \mu(B)$$
 when $A \cap B = \emptyset$;

(ii)
$$\mu(X) = 1;$$

(iii)
$$\mu(gA) = \mu(A)$$
 for all $g \in G$ and $A \subset X$.

If such a mean exists, we say that the action is amenable.

Hausdorff (1914) : There is no SO(3)-invariant mean on X = SO(3)/SO(2).

Tarski (1929) : There exists a G-invariant mean iff the action is not paradoxical.

von Neumann : Every action of an amenable group is amenable. If a **free** action is amenable, then the group is amenable.

Let $G \curvearrowright X$. We have the equivalence (*Greenleaf* (1969), *Eymard* (1972)) :

- there exists an invariant mean;
- there exists an invariant state on $\ell^\infty(X)$;
- the trivial representation of G is weakly contained in the Koopman representation λ_X of G on $\ell^2(X)$;
- for every ε > 0 and every finite subset F ⊂ G, there exists a finite subset E of X such that

$$|E\Delta sE| < \varepsilon |E|, \quad \forall s \in F.$$

Assume that G acts by left translations on X = G/H, where H is a subgroup of G. Then the above conditions are equivalent to :

• every affine continuous action of G on a compact convex subset of a separated locally convex topological vector space having an *H*-fixed point has also a *G*-fixed point.

Warning : this is not the amenability in the sense of Zimmer which can be defined by the existence of a map $m : x \mapsto m_x$ from X into the set of states on $\ell^{\infty}(G)$ such that $m_{gx}(f) = m_x(gf)$ for $x \in X$, $g \in G$ and $f \in \ell^{\infty}(G)$.

When *H* is a subgroup of *G* and *G* acts on G/H by translations, this latter notion is equivalent to the amenability of *H*, whereas, when *H* is a normal subgroup of *G*, the amenability of $G \curvearrowright G/H$ in the sense of von Neumann is equivalent to the amenability of the group quotient G/H.

In the sequel, amenability will always mean "in the sense of von Neumann". When $G \curvearrowright G/H$ is amenable, one also says that H is **co-amenable** in G.

Q1 (von Neumann (1929), Greenleaf (1969)) : If G acts faithfully, transitively and amenably on X, does this imply that G is amenable?

Q2 (*Eymard* (1972)) : Let *G* act transitively and amenably on *X*, let *G*₁ be a subgroup of *G*. Then $G_1 \curvearrowright X$ is amenable, but is the action of G_1 on each orbit $G_1 x_0$ amenable?

Q3 : Is the amenability of a transitive action of G on X equivalent to the injectivity of $\lambda_X(G)''$, where λ_X is the Koopman representation?

Answers to **Q2** and **Q3** are positive when X = G/H and H is a normal subgroup of G, since the amenability of $G \curvearrowright G/H$ is then equivalent to the amenability of the group G/H.

Answers to all three questions are negative in general.

Q1 (von Neumann (1929), Greenleaf (1969)) : If G acts faithfully, transitively and amenably on X, does this imply that G is amenable?

Denote by ${\mathcal A}$ the class of countable groups that admit a faithful, transitive, amenable action.

van Douwen (1990) : finitely generated free groups are in A. There are even examples with almost free actions, that is, every non trivial element has only a finite number of fixed points.

Glasner-Monod (2006) and *Grigorchuk-Nekrashevych* (2007) have provided other constructions of faithful, transitive, amenable actions of free groups.

Glasner-Monod : the class A is stable under free products. Every countable group embeds in a group in A. More examples obtained by *S. Moon* (2010-2011) and *Fima* (2012).

Obstruction : groups with Kazhdan property (T) are not in \mathcal{A} .

Q2 (*Eymard* (1972)) : Let G act transitively and amenably on X, let G_1 be a subgroup of G and $x_0 \in X$. Is the action of G_1 on G_1x_0 amenable?

Counterexamples given by *Monod-Popa* and *Pestov* (2003).

 $\begin{array}{l} \textit{Monod-Popa}: \text{Let } Q \text{ be a discrete group,} \\ \textit{H} = \oplus_{n \geq 0} Q, \quad \textit{G}_1 = \oplus_{n \in \mathbb{Z}} Q, \quad \textit{G} = \textit{G}_1 \rtimes \mathbb{Z} = Q \wr \mathbb{Z}. \end{array}$

 \frown $G \curvearrowright X = G/H$ is amenable (whatever Q, but $G_1 \curvearrowright G_1/H$ is amenable only if Q is amenable) :

Claim : there exists of a G-invariant mean on $\ell^{\infty}(G/H)$.

- Enough to show the existence of a G_1 -invariant mean since the group G/G_1 is amenable.
- Set $m_k = \delta_{t^{-k}H} \in \ell^{\infty}(G/H)^*_+$ where $t = 1 \in \mathbb{Z} < G$. This mean is invariant by the subgroup $t^{-k}Ht^k$. Since $G_1 = \bigcup_k t^{-k}Ht^k$, every limit point of the sequence (m_k) gives a G_1 -invariant mean.

In this example, H is "very non-normal" in G, when Q is non trivial.

• The commensurator of H in G is the set of $g \in G$ such that

$$[H:H\cap gHg^{-1}]<+\infty$$
 and $[gHg^{-1}:H\cap gHg^{-1}]<+\infty$

It is a subgroup $Com_{\mathbf{G}}(\mathbf{H})$, which contains the normalizer $\mathcal{N}_{G}(H)$.

Observation : g ∈ Com_G(H) iff the H-orbits of gH and g⁻¹H in G/H are finite.

In the previous example of Monod-Popa

$$H = \oplus_{n \ge 0} Q, \quad G_1 = \oplus_{n \in \mathbb{Z}} Q, \quad G = G_1 \rtimes \mathbb{Z}$$

we have

$$\mathsf{Com}_{\mathsf{G}}(\mathsf{H}) = \mathsf{G}_1 \subsetneqq \mathsf{G}$$

Q3 : Is the amenability of a transitive action of G on X equivalent to the injectivity of $\lambda_X(G)''$, where λ_X is the Koopman representation?

In the example :

$$H = \oplus_{n \geq 0} Q, \quad G_1 = \oplus_{n \in \mathbb{Z}} Q, \quad G = G_1 \rtimes \mathbb{Z}$$

 $G \curvearrowright G/H$ is always amenable but :

the commutant $\lambda_{G/H}(G)'$ of $\lambda_{G/H}(G)''$ is isomorphic to $\mathcal{L}(Q)^{\otimes \infty}$, where $\mathcal{L}(Q)$ is the group von Neumann algebra of Q. It is injective only when Q is an amenable group.

So, amenability of $G \curvearrowright G/H \neq$ injectivity of $\lambda_{G/H}(G)''$. The injectivity of $\lambda_{G/H}(G)'' \neq$ amenability of $G \curvearrowright G/H$ (see later). Let H be a subgroup of G. A notion weaker than normality is almost normality.

We say that *H* is **almost normal** in *G* if its commensurator $Com_G(H)$ is equal to *G*, that is, for all $g \in G$ the *H*-orbit of gH in G/H is finite. One also says that (G, H) is a **Hecke pair** and write $H \triangleleft G$.

Digression on the existence of *G*-invariant proper metrics.

Let $G \curvearrowright X$ be given. We say that a metric d on X is **proper**, or **locally finite** if the balls have a finite number of elements.

▶ For $G \curvearrowright G$ by left translations, there is a *G*-invariant proper metric when *G* is countable.

▶ Let $G = \mathbb{Q} \rtimes \mathbb{Q}^+_*$, $H = \mathbb{Q}^+_*$. On $X = G/H \sim \mathbb{Q}$, there does not exist a proper *G*-invariant metric.

► Let X be the set of vertices of a connected locally finite graph $\Gamma = (X, E)$ (i.e. each vertex has a finite degree) and let G be a subgroup of the automorphism group of Γ . Then the geodesic metric on X is proper and G-invariant.

Denote by Map(X) the set of maps from X to X endowed with the topology of pointwise convergence and by Bij(X) its subset of bijections. Bij(X) is a topological group acting continuously on X, not locally compact if X is infinite.

A-D (2012) : Let G be a group acting on a countable set X. Let ρ be the corresponding homomorphism from G into $\operatorname{Bij}(X)$ and denote by G' the closure of $\rho(G)$ in $\operatorname{Map}(X)$. The following conditions are equivalent :

(i) there exists a G-invariant locally finite metric d on X;

(ii) the orbits of all the stabilizers of the *G*-action are finite;

(iii) G' is a subgroup of Bij(X) acting properly on the discrete space X.

In this case the group G' is locally compact and totally disconnected.

For a transitive action $G \curvearrowright G/H$, we get the equivalence of the following conditions :

- (i) there exists a G-invariant locally finite metric d on G/H;
- (ii) H is almost normal in G;
- (iii) the closure G' of the image of G in Map(G/H) is a subgroup of Bij(G/H) which acts properly on the discrete space G/H.

 \frown (G, H) is a Hecke pair iff G acts by isometries on a locally finite metric space and H is the stabilizer of some point.

Let H' be the closure of H in G'. Then G' is a is locally compact and totally disconnected group and H' is a compact open subgroup of G'. The pair (G', H') is called the *Schlichting* completion of (G, H). (*Schlichting* (1980))

Examples of almost normal subgroups :

Trivial examples : H < G with H normal subgroup, or finite subgroup, or finite index subgroup.</p>

►
$$H = SL_n(\mathbb{Z}) < G = SL_n(\mathbb{Z}[1/p])$$
. Then $H' = SL_n(\mathbb{Z}_p)$,
 $G' = SL(n, \mathbb{Q}_p)$, p prime number.

- ▶ $H = SL_n(\mathbb{Z}) < G = SL_n(\mathbb{Q})$. Then $H' = SL_n(\mathcal{R})$ and $G' = SL_n(\mathcal{A}_f)$ where \mathcal{A}_f is the ring of finite adèles and \mathcal{R} the subring of integers.
- ► $H = \mathbb{Z} \rtimes \{1\} < G = \mathbb{Q} \rtimes \mathbb{Q}_+^*$. Then $H' = \mathcal{R} \rtimes \{1\}$ and $G' = \mathcal{A}_f \rtimes \mathbb{Q}_+^*$.
- $\bullet \ H = \langle x \rangle < BS(m,n) = \langle t, x : t^{-1}x^m t = x^n \rangle.$
- SL_n(ℤ), n ≥ 3 only has finite, or finite index, almost normal subgroups (Margulis (1979) Venkataramana (1987)).

Tzanev (2000) : Let H be an almost normal subgroup of G. The action of G on G/H is amenable iff the group G' of Schlichting is amenable.

A-D (2012) : Let $G \curvearrowright X$ be an amenable transitive action by isometries on a locally finite metric space and let G_1 be a subgroup of G. The action of G_1 on each G_1 -orbit is amenable.

In particular, the answer of Eymard's question

Q2 : Let G act amenably on X = G/H, and let G_1 be a subgroup of G containing H. Is the action of G_1 on G_1/H amenable?

is positive when H is almost normal.

Q'1: If G acts faithfully, transitively and amenably by isometries on a locally finite metric space X, does this imply that G is amenable?

We are looking for an example of a group G acting faithfully, transitively and by isometries on a locally finite metric space X such that G', the closure of G in Map(X), is an amenable group, but G is not amenable, and we will take for H the stabilizer of any point.

The simplest examples of spaces X carrying a locally finite metric are the sets of vertices of locally finite connected graphs $\Gamma = (X, E)$ with the geodesic length. Necessary and sufficient conditions for a closed subgroup G' of the group Aut(Γ) of automorphisms of Γ to be amenable have been studied by several authors.

Let $\Gamma = (X, E)$ be a connected graph. A ray (or half-line) is a sequence $[x_0, x_1, ...]$ of successively adjacent vertices without repetitions. Two rays R_1 and R_2 are said to be in the same **end** if there is a ray R_3 which contains infinitely many vertices in R_1 and in R_2 . In particular, when Γ is a tree, two rays are in the same end if and only if their intersection is a ray.

Nebbia (1988), *Woess* (1989), *Soardi-Woess* (1990) : Let $\Gamma = (X, E)$ be a locally finite graph and let G' be a **closed** subgroup of Aut(Γ).

- (i) If G' is amenable then G' fixes a finite subset of X, or an end of Γ, or a pair of ends of Γ.
- (ii) Assume that Γ is a tree. Then G' is amenable iff it fixes a vertex, an edge, an end, or a pair of ends.
- (iii) Assume that Γ has infinitely many ends and that G' acts transitively on X. Then G' is amenable iff if fixes an end.

We would like to exhibit a non amenable group G of automorphisms of a locally finite graph, acting transitively on the graph, whose closure is amenable. Does there exist such a group G, containing a free group?

Nebbia : a closed group of automorphisms of a locally finite tree is amenable if and only if it does not contain a discrete free subgroup.

Pays-Valette (1991) : Let $\Gamma = (X, E)$ be a locally finite tree and let G be a subgroup of Aut(Γ). The following properties are equivalent :

(i) the closure G' of G is amenable;

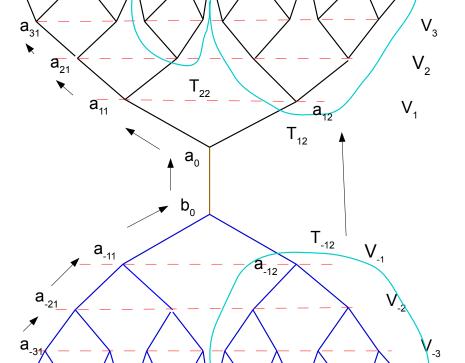
- (ii) G does not contain a free group discrete in $Aut(\Gamma)$;
- (iii) G does not contain a free group acting freely on X.

Let C be a class of group. We say that a group G is **residually** C if for every $g \neq e$ in G, there exists a normal subgroup N of G such that $g \notin N$ and $G/N \in C$.

Denote by A_{Iso} the class of countable groups that admit a faithful, transitive and amenable action by isometries on a locally finite metric space X.

A-D (2013) (after a discussion with *N. Monod*) : Let *p* be a prime number. Any residually finite *p*-group *P* can be embedded into a countable group *G* that belongs to the class A_{Iso} .

More precisely, we may construct G as a subgroup of the automorphism group of the regular tree T_p of degree p + 1, generated by P and an infinite cyclic element φ , in such a way that G acts transitively on T_p and its closure G' is amenable. We use the fact that a residually finite *p*-group is isomorphic to a subgroup of the automorphism group of a spherically homogeneous regular rooted tree of index *p* (the root has degree *p* and the other vertices have degree p + 1).



Non-amenable residually finite *p*-groups are abundant :

▶ for every prime number p and every integer $k \ge 2$, the free group \mathbb{F}_k is a residually finite p-group;

► for $n \ge 3$, the congruence subgroup $\Gamma_n(k) = \ker \theta : SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/k\mathbb{Z})$ is residually *p*-finite when *p* divides *k*.

There are some obstructions for a group G to belong to A_{Iso} . For instance, if $G \in A_{Iso}$, every subgroup of G with the Kazhdan property is residually finite.

On the contrary, Glasner-Monod proved that every countable group embeds in a group in $\mathcal{A}.$ So

 $\{\text{amenable groups}\} \underset{\neq}{\subseteq} \mathcal{A}_{\text{lso}} \underset{\neq}{\subseteq} \mathcal{A}.$

Do the non abelian free groups belong to A_{Iso} ?

Q3 : Is the amenability of a $G \curvearrowright G/H$ equivalent to the injectivity of $\lambda_{G/H}(G)''$, where $\lambda_{G/H}$ is the quasi-regular representation of G?

Let $\xi \in \ell^2(G/H)$ and $f_g = \mathbf{1}_{HgH}$ where $g \in \mathcal{C}om_G(H)$. Then

$$(R(f_g)\xi)(\dot{y}) = \sum_{k \in \langle G/H \rangle} \xi(\dot{k})f_g(k^{-1}y).$$

is a bounded operator in $\lambda_{G/H}(G)'$.

Mackey (1951), *Kleppner* (1961), *Binder* (1993) : the von Neumann algebra $\lambda_{G/H}(G)'$ is generated by the operators $R(f_g)$, where g runs into $Com_G(H)$.

In particular, $\lambda_{G/H}$ is irreducible iff $Com_G(H) = H$.

A-D (2012) : Let H be an almost normal subgroup of G. Then $G \sim G/H$ is amenable iff there exists a net (φ_i) of H-bi-invariant positive type functions on G, which converges to 1 pointwise, and is such that φ_i is supported in a finite union of double H-cosets for every i.

Let φ be such a function. Then

$$\Phi: \mathbf{1}_{HgH} \mapsto \varphi(g) \mathbf{1}_{HgH}$$

extends to a normal finite rank, completely positive map from $\lambda_{G/H}(G)'$ into itself. It follows that

Let H < G such that H is co-amenable in its commensurator $\mathcal{C}_{om_G}(H)$. Then $\lambda_{G/H}(G)''$ is an injective von Neumann algebra.

Remark : Even when H is almost normal in G, the injectivity of $\lambda_{G/H}(G)'$ does not imply that H is co-amenable in G. See for example $H = SL_n(\mathbb{Z}) \underset{\sim}{\triangleleft} G = SL_n(\mathbb{Q})$: then $\lambda_{G/H}(G)'$ is abelian. About co-rigidity. This notion was considered by several authors : *Popa*, A-D (1986), *Tzanev* (2000), *Larsen-Palma* (2014).

Let *H* be a subgroup of *G*. We say that *H* is **co-rigid** in *G* if there exists a finite subset *F* of *G* and $\varepsilon > 0$ such that if π is a unitary representation of *G* on a Hilbert space \mathcal{H} with a unit vector $\xi \in \mathcal{H}$ such that $\pi(h)\xi = \xi$ for every $h \in H$ and $||\pi(g)\xi - \xi|| \le \varepsilon$ for $g \in F$, then \mathcal{H} contains a non-zero *G*-invariant vector.

This is equivalent to the following property :

every sequence $(\varphi_n)_n$ of *H*-bi-invariant positive definite functions on *G* that converges to 1 pointwise also converges to 1 uniformly on *G*.

▶ If G has the Kazhdan property (T), every subgroup of G is co-rigid.

▶If *H* is a normal subgroup of *G*, then *H* is co-rigid iff the group G/H has the Kazhdan property (T).

Let *H* be a subgroup of *G*. We say that *H* is **co-rigid** in *G* if there exists a finite subset *F* of *G* and $\varepsilon > 0$ such that if π is a unitary representation of *G* on a Hilbert space \mathcal{H} with a unit vector $\xi \in \mathcal{H}$ such that $\pi(h)\xi = \xi$ for every $h \in H$ and $||\pi(g)\xi - \xi|| \le \varepsilon$ for $g \in F$, then \mathcal{H} contains a non-zero *G*-invariant vector.

Kazhdan (1967), *Margulis* (1982), *Cornulier* (2005) Let X be a subset of G. We say that (G, X) has **relative Property** (**T**) if for every $\varepsilon > 0$ there exist a finite subset $F \subset G$ and $\delta > 0$ such that whenever π is a unitary representation of G on a Hilbert space \mathcal{H} with a unit vector $\xi \in \mathcal{H}$ such that $\max_{g \in F} ||\pi(g)\xi - \xi|| \le \delta$ then \mathcal{H} contains a X-invariant vector η with $||\xi - \eta|| \le \varepsilon$.

▶ If X is finite or if X is a subgroup of G with Property (T), then (G, X) has the relative property (T).

Let (G, X) with relative Property (T) and let H be a subgroup of G. We assume that there exists an integer n such that $G = (HX)(HX)\cdots HX$ *n*-times. Then H is co-rigid in G.

Example : Let $G = \mathbb{Q} \rtimes \mathbb{Q}^*$ and $H = \mathbb{Q}^*$. Then G acts faithfully on G/H and H is co-rigid in G.

Indeed take $X = \{(1,1), (-1,1)\}$. Then G = HXHX.

- \blacktriangleright In this example the group G is amenable.
- Every subgroup of finite index is co-rigid.

▶ In case *H* is an almost normal co-amenable subgroup of a group *G*, *H* is co-rigid in *G* if and only if it has a finite index in *G*.

Let N be a group with Property (T) and H a countable subgroup of Aut(N). Then H is co-rigid in $N \rtimes H$.

Example : $N = SL_n(\mathbb{Z}) \ltimes M_{n,m}(\mathbb{Z})$, $H = any subgroup of <math>GL_m(\mathbb{Z})$ acting by $g(s, x) = (s, xg^{-1})$.

Denote by \mathcal{T} (resp. \mathcal{T}_{alnor}) the class of countable groups that have a co-rigid subgroup (resp. almost normal co-rigid subgroup) H such that $G \curvearrowright G/H$ is faithful.Then

 $\{Kazhdan \ groups\} \subset \mathcal{T}_{alnor} \underset{\neq}{\subseteq} \mathcal{T}.$

Q : Is the first inclusion strict?

 $\{Kazhdan \ groups\} \subset \mathcal{T}_{alnor} \subsetneqq \mathcal{T}.$

Q : Is the first inclusion strict?

We have to look for a group G acting transitively and faithfully by isometries on a locally finite metric space X, such that G has not the property (T) but its closure G' in Map(X) has the property (T).

• We cannot take X to be a tree.

▶ If X is the set of vertices of a connected locally finite graph Γ , then Γ must be an expander, i.e. inf $\{|\partial U|/|U| : U \subset X, \text{ finite}\} > 0.$ (Soardi-Woess)