Partial Galois cohomology, Picard semigroups and the relative Brauer group

M. Dokuchaev

Universidade de São Paulo

In collaboration with

A. Paques and H. Pinedo

FADYS

Florianópolis, February 23 - 27, 2015

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Partial action

Definition

G grp., X set.

G grp., X set. A partial action θ of G on X consists of subsets $X_g \subseteq X, (g \in G),$

G grp., X set. A <u>partial action</u> θ of G on X consists of subsets $X_g \subseteq X, (g \in G), \quad bijec.-s \quad \theta_g : X_{g^{-1}} \ni x \mapsto g \cdot x \in X_g,$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\begin{array}{l} G \ grp., X \ set. \ A \ \underline{partial \ action}} \ \theta \ of \ G \ on \ X \ consists \ of \ subsets \\ X_g \subseteq X, (g \in G), \quad bijec.-s \quad \theta_g : X_{g^{-1}} \ni x \mapsto g \cdot x \in X_g, \\ s. \ that \\ (i) \quad \exists g \cdot (h \cdot x) \Longrightarrow \exists (gh) \cdot x \ and \ g \cdot (h \cdot x) = (gh) \cdot x, \end{array}$

 $\begin{array}{l} G \ grp., X \ set. \ A \ \underline{partial \ action}} \ \theta \ of \ G \ on \ X \ consists \ of \ subsets \\ X_g \subseteq X, (g \in G), \quad bijec.-s \quad \theta_g : X_{g^{-1}} \ni x \mapsto g \cdot x \in X_g, \\ s. \ that \\ (i) \quad \exists g \cdot (h \cdot x) \Longrightarrow \exists (gh) \cdot x \ and \ g \cdot (h \cdot x) = (gh) \cdot x, \\ (ii) \quad \theta_{1_G}(x) = x, \qquad \forall x. \end{array}$

 $\begin{array}{ll} G \ grp., X \ set. \ A \ \underline{partial \ action}} \ \theta \ of \ G \ on \ X \ consists \ of \ subsets \\ X_g \subseteq X, (g \in G), \quad bijec.-s \quad \theta_g : X_{g^{-1}} \ni x \mapsto g \cdot x \in X_g, \\ s. \ that \\ (i) \quad \exists g \cdot (h \cdot x) \Longrightarrow \exists (gh) \cdot x \ and \ g \cdot (h \cdot x) = (gh) \cdot x, \\ (ii) \quad \theta_{1_G}(x) = x, \qquad \forall x. \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exercise: $\theta_g(X_{g^{-1}} \cap X_h) = X_g \cap X_{gh}.$

 $\begin{array}{l} G \ grp., X \ set. \ A \ \underline{partial \ action}} \ \theta \ of \ G \ on \ X \ consists \ of \ subsets \\ X_g \subseteq X, (g \in G), \quad bijec.-s \quad \theta_g : X_{g^{-1}} \ni x \mapsto g \cdot x \in X_g, \\ s. \ that \\ (i) \quad \exists g \cdot (h \cdot x) \Longrightarrow \exists (gh) \cdot x \ and \ g \cdot (h \cdot x) = (gh) \cdot x, \\ (ii) \quad \theta_{1_G}(x) = x, \qquad \forall x. \end{array}$

Exercise: $\theta_g(X_{g^{-1}} \cap X_h) = X_g \cap X_{gh}.$

Example

(F. Abadie, 2003). A flow of a smooth vector field is a partial action of \mathbb{R}^+ on a manifold.

 $\begin{array}{l} G \ grp., X \ set. \ A \ \underline{partial \ action}} \ \theta \ of \ G \ on \ X \ consists \ of \ subsets \\ X_g \subseteq X, (g \in G), \quad bijec.-s \quad \theta_g : X_{g^{-1}} \ni x \mapsto g \cdot x \in X_g, \\ s. \ that \\ (i) \quad \exists g \cdot (h \cdot x) \Longrightarrow \exists (gh) \cdot x \ and \ g \cdot (h \cdot x) = (gh) \cdot x, \\ (ii) \quad \theta_{1_G}(x) = x, \qquad \forall x. \end{array}$

Exercise:
$$\theta_g(X_{g^{-1}} \cap X_h) = X_g \cap X_{gh}$$

Example

(F. Abadie, 2003). A flow of a smooth vector field is a partial action of \mathbb{R}^+ on a manifold.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: A flow is called total if this par. action is global.

Example

(J. Kellendonk, M. Lawson, 2004). $GL(2,\mathbb{C})$ and $PGL(2,\mathbb{C}) = GL(2,\mathbb{C})/\mathfrak{Z}$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Example

(J. Kellendonk, M. Lawson, 2004). $\operatorname{GL}(2,\mathbb{C})$ and $\operatorname{PGL}(2,\mathbb{C}) = \operatorname{GL}(2,\mathbb{C})/\mathfrak{Z}$ act partially on \mathbb{C} via the Möbius transformations:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example

(J. Kellendonk, M. Lawson, 2004). $\operatorname{GL}(2,\mathbb{C})$ and $\operatorname{PGL}(2,\mathbb{C}) = \operatorname{GL}(2,\mathbb{C})/\mathfrak{Z}$ act partially on \mathbb{C} via the Möbius transformations:

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}(2, \mathbb{C}), \qquad heta_g : z \mapsto rac{az+b}{cz+d}$$

Example

(J. Kellendonk, M. Lawson, 2004). $\operatorname{GL}(2,\mathbb{C})$ and $\operatorname{PGL}(2,\mathbb{C}) = \operatorname{GL}(2,\mathbb{C})/\mathfrak{Z}$ act partially on \mathbb{C} via the Möbius transformations:

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2,\mathbb{C}), \qquad heta_g : z \mapsto rac{az+b}{cz+d}$$

Example

The **R**. Thompson's group V is a finitely presented infinite simple group which contains all finite groups.

Example

(J. Kellendonk, M. Lawson, 2004). $\operatorname{GL}(2,\mathbb{C})$ and $\operatorname{PGL}(2,\mathbb{C}) = \operatorname{GL}(2,\mathbb{C})/\mathfrak{Z}$ act partially on \mathbb{C} via the Möbius transformations:

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2,\mathbb{C}), \qquad heta_g : z \mapsto rac{az+b}{cz+d}$$

Example

The **R. Thompson's group** V is a finitely presented infinite simple group which contains all finite groups. Introduced by R. Thompson in 1960s (together with other groups, in particular, $F \subseteq V$)

Example

(J. Kellendonk, M. Lawson, 2004). $\operatorname{GL}(2,\mathbb{C})$ and $\operatorname{PGL}(2,\mathbb{C}) = \operatorname{GL}(2,\mathbb{C})/\mathfrak{Z}$ act partially on \mathbb{C} via the Möbius transformations:

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2,\mathbb{C}), \qquad heta_g : z \mapsto rac{az+b}{cz+d}$$

Example

The R. Thompson's group V is a finitely presented infinite simple group which contains all finite groups. Introduced by R. Thompson in 1960s (together with other groups, in particular, $F \subseteq V$) as permutation groups of certain sets of infinite words over $\{0, 1\}$.

Example

(J. Kellendonk, M. Lawson, 2004). $\operatorname{GL}(2,\mathbb{C})$ and $\operatorname{PGL}(2,\mathbb{C}) = \operatorname{GL}(2,\mathbb{C})/\mathfrak{Z}$ act partially on \mathbb{C} via the Möbius transformations:

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}(2, \mathbb{C}), \qquad heta_g : z \mapsto rac{az+b}{cz+d}$$

Example

The R. Thompson's group V is a finitely presented infinite simple group which contains all finite groups. Introduced by R. Thompson in 1960s (together with other groups, in particular, $F \subseteq V$) as permutation groups of certain sets of infinite words over $\{0, 1\}$.

Group V is defined by **partial actions** on **finite binary words** by J. C. Birget (2004) (following E. A. Scott (1984)) to study complexity (word problem etc.).

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}}
ightarrow \mathcal{A}_{g}$$
 iso-s.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}} \rightarrow \mathcal{A}_{g}$$
 iso-s.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall:
$$\theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$$

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}} \rightarrow \mathcal{A}_{g}$$
 iso-s.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall:
$$\theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$$

Skew gr. ring by par. action:

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}}
ightarrow \mathcal{A}_{g}$$
 iso-s.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

<u>Recall</u>: $\theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

Skew gr. ring by par. action:

$$\mathcal{A} * \mathcal{G} = \bigoplus_{g \in \mathcal{G}} \mathcal{A}_g u_g,$$

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}}
ightarrow \mathcal{A}_{g}$$
 iso-s.

<u>Recall</u>: $\theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

Skew gr. ring by par. action:

$$\mathcal{A} * \mathcal{G} = \bigoplus_{g \in \mathcal{G}} \mathcal{A}_g u_g, \ \mathsf{a} u_g \cdot \mathsf{b} u_h = \theta_g(\theta_g^{-1}(\mathsf{a})\mathsf{b}) u_{gh}.$$

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}}
ightarrow \mathcal{A}_{g}$$
 iso-s.

<u>Recall</u>: $\theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

Skew gr. ring by par. action:

$$\mathcal{A} * G = \bigoplus_{g \in G} \mathcal{A}_g u_g, \ au_g \cdot bu_h = \theta_g(\theta_g^{-1}(a)b)u_{gh}.$$

(in usual case: $\mathcal{A}_g = \mathcal{A}, \ au_g \cdot bu_h = a \ \theta_g(b)u_{gh}.$)

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}}
ightarrow \mathcal{A}_{g}$$
 iso-s.

<u>Recall</u>: $\theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

Skew gr. ring by par. action:

$$\mathcal{A} * G = \bigoplus_{g \in G} \mathcal{A}_g u_g, \ au_g \cdot bu_h = \theta_g(\theta_g^{-1}(a)b)u_{gh}.$$

(in usual case: $\mathcal{A}_g = \mathcal{A}, \ au_g \cdot bu_h = a \ \theta_g(b)u_{gh}.$)
 $\theta_g(\theta_{g^{-1}}(a)b) \in \theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}}
ightarrow \mathcal{A}_{g}$$
 iso-s.

<u>Recall</u>: $\theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

Skew gr. ring by par. action:

$$\mathcal{A} * G = \bigoplus_{g \in G} \mathcal{A}_g u_g, \ au_g \cdot bu_h = \theta_g(\theta_g^{-1}(a)b)u_{gh}.$$

(in usual case: $\mathcal{A}_g = \mathcal{A}, \ au_g \cdot bu_h = a \ \theta_g(b)u_{gh}.$)
 $\theta_g(\theta_{g^{-1}}(a)b) \in \theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Partial crossed product:

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}}
ightarrow \mathcal{A}_{g}$$
 iso-s.

Recall:
$$\theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$$

Skew gr. ring by par. action:

$$\mathcal{A} * \mathcal{G} = \bigoplus_{g \in \mathcal{G}} \mathcal{A}_g u_g, \ au_g \cdot bu_h = \theta_g(\theta_g^{-1}(a)b)u_{gh}.$$

(in usual case: $\mathcal{A}_g = \mathcal{A}, \ au_g \cdot bu_h = a \ \theta_g(b)u_{gh}.$)
 $\theta_g(\theta_{g^{-1}}(a)b) \in \theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Partial crossed product:

$$\begin{aligned} au_g \cdot bu_h &= \theta_g(\theta_g^{-1}(a)b)f(g,h)u_{gh}, \\ (\text{see } f(g,h) \text{ below}) \end{aligned}$$

Let $\theta = \{\theta_g : \mathcal{A}_{g^{-1}} \to \mathcal{A}_g\}$ par. action of G on algebra \mathcal{A} . We require:

$$\mathcal{A}_{g} \triangleleft \mathcal{A}, \ \mathcal{A}_{g^{-1}}
ightarrow \mathcal{A}_{g}$$
 iso-s.

<u>Recall</u>: $\theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

Skew gr. ring by par. action:

$$\mathcal{A} * \mathcal{G} = \bigoplus_{g \in \mathcal{G}} \mathcal{A}_g u_g, \ au_g \cdot bu_h = \theta_g(\theta_g^{-1}(a)b)u_{gh}.$$

(in usual case: $\mathcal{A}_g = \mathcal{A}, \ au_g \cdot bu_h = a \ \theta_g(b)u_{gh}.$)
 $\theta_g(\theta_{g^{-1}}(a)b) \in \theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}.$

Partial crossed product:

$$\begin{aligned} au_g \cdot bu_h &= \theta_g(\theta_g^{-1}(a)b)f(g,h)u_{gh}, \\ & (\text{see } f(g,h) \text{ below}) \end{aligned}$$

Say θ is unital if $\forall \ \mathcal{A}_g = 1_g \mathcal{A}, \ 1_g \text{ central idemp. } (\ 1_g^2 = 1_g). \end{aligned}$

Definition

A unital twisted par. action of G on \mathcal{A} is a triple

$$\Theta = (\{\mathcal{A}_g\}_{g \in G}, \{\theta_g\}_{g \in G}, \{f(g, h)\}_{(g, h) \in G \times G})$$

Definition

where

A unital twisted par. action of G on \mathcal{A} is a triple

$$egin{aligned} \Theta &= (\{\mathcal{A}_g\}_{g\in G}, \{ heta_g\}_{g\in G}, \{f(g,h)\}_{(g,h)\in G imes G}), \ &orall \mathcal{A}_g \triangleleft \mathcal{A}, \qquad \mathcal{A}_g = 1_g \mathcal{A}, \quad 1_g^2 = 1_g, \quad 1_g \in \mathfrak{Z}(\mathcal{A}), \end{aligned}$$

▲日 → ▲圖 → ▲ 画 → ▲ 画 →

Definition

where

A unital twisted par. action of G on \mathcal{A} is a triple

$$\Theta = (\{\mathcal{A}_g\}_{g \in G}, \{\theta_g\}_{g \in G}, \{f(g, h)\}_{(g,h) \in G \times G}),$$

$$\forall \mathcal{A}_g \triangleleft \mathcal{A}, \qquad \mathcal{A}_g = 1_g \mathcal{A}, \quad 1_g^2 = 1_g, \quad 1_g \in \mathfrak{Z}(\mathcal{A}),$$

$$\forall \theta_g : \mathcal{A}_{g^{-1}} \rightarrow \mathcal{A}_g, \text{ iso. of } k\text{-alg.},$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Definition

where

A unital twisted par. action of G on \mathcal{A} is a triple

$$\begin{split} \Theta &= (\{\mathcal{A}_g\}_{g \in G}, \{\theta_g\}_{g \in G}, \{f(g, h)\}_{(g,h) \in G \times G}), \\ \forall \mathcal{A}_g \triangleleft \mathcal{A}, \quad \mathcal{A}_g &= 1_g \mathcal{A}, \quad 1_g^2 = 1_g, \quad 1_g \in \mathfrak{Z}(\mathcal{A}), \\ \forall \theta_g : \mathcal{A}_{g^{-1}} \rightarrow \mathcal{A}_g, \text{ iso. of } k\text{-alg.}, \\ \forall f(g, h) \in \mathcal{U}(\mathcal{A}_g \cap \mathcal{A}_{gh}), \quad s. th. \ \forall g, h, t \in G \end{split}$$

Definition

A unital twisted par. action of G on \mathcal{A} is a triple

$$\begin{split} \Theta &= (\{\mathcal{A}_g\}_{g \in G}, \{\theta_g\}_{g \in G}, \{f(g, h)\}_{(g, h) \in G \times G}), \\ \text{where} \qquad \forall \mathcal{A}_g \triangleleft \mathcal{A}, \qquad \mathcal{A}_g = \mathbf{1}_g \mathcal{A}, \quad \mathbf{1}_g^2 = \mathbf{1}_g, \quad \mathbf{1}_g \in \mathfrak{Z}(\mathcal{A}), \\ \forall \theta_g : \mathcal{A}_{g^{-1}} \rightarrow \mathcal{A}_g, \text{ iso. of } k\text{-alg.}, \\ \forall f(g, h) \in \mathcal{U}(\mathcal{A}_g \cap \mathcal{A}_{gh}), \quad s. th. \ \forall g, h, t \in G : \\ \mathcal{A}_1 = \mathcal{A}, \ \theta_1 = \mathbf{1}_{\mathcal{A}}; \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Definition

A unital twisted par. action of G on \mathcal{A} is a triple

$$\begin{split} \Theta &= (\{\mathcal{A}_g\}_{g \in G}, \{\theta_g\}_{g \in G}, \{f(g, h)\}_{(g, h) \in G \times G}), \\ \text{where} \qquad \forall \mathcal{A}_g \lhd \mathcal{A}, \qquad \mathcal{A}_g = \mathbf{1}_g \mathcal{A}, \quad \mathbf{1}_g^2 = \mathbf{1}_g, \quad \mathbf{1}_g \in \mathfrak{Z}(\mathcal{A}), \\ \forall \theta_g : \mathcal{A}_{g^{-1}} \rightarrow \mathcal{A}_g, \text{ iso. of } k\text{-alg.}, \\ \forall f(g, h) \in \mathcal{U}(\mathcal{A}_g \cap \mathcal{A}_{gh}), \quad s. th. \ \forall g, h, t \in G : \\ (i) \qquad \qquad \mathcal{A}_1 = \mathcal{A}, \ \theta_1 = \mathbf{1}_{\mathcal{A}}; \\ (ii) \qquad \qquad \theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}; \end{split}$$

Definition

A unital twisted par. action of G on A is a triple

$$\begin{split} \Theta &= (\{\mathcal{A}_g\}_{g \in G}, \{\theta_g\}_{g \in G}, \{f(g, h)\}_{(g, h) \in G \times G}), \\ \text{where} \qquad \forall \mathcal{A}_g \triangleleft \mathcal{A}, \qquad \mathcal{A}_g = \mathbf{1}_g \mathcal{A}, \quad \mathbf{1}_g^2 = \mathbf{1}_g, \quad \mathbf{1}_g \in \mathfrak{Z}(\mathcal{A}), \\ \forall \theta_g : \mathcal{A}_{g^{-1}} \rightarrow \mathcal{A}_g, \text{ iso. of } k\text{-alg.}, \\ \forall f(g, h) \in \mathcal{U}(\mathcal{A}_g \cap \mathcal{A}_{gh}), \quad s. th. \forall g, h, t \in G: \\ (i) \qquad \qquad \mathcal{A}_1 = \mathcal{A}, \ \theta_1 = \mathbf{1}_{\mathcal{A}}; \\ (ii) \qquad \qquad \theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}; \end{split}$$

(iii) $\theta_g \circ \theta_h(a) = f(g, h)\theta_{gh}(a)f(g, h)^{-1}, \ \forall a \in \text{dom} \ (\theta_g \circ \theta_h);$

Definition

A unital twisted par. action of G on \mathcal{A} is a triple

$$\begin{split} \Theta &= (\{\mathcal{A}_g\}_{g \in G}, \{\theta_g\}_{g \in G}, \{f(g, h)\}_{(g,h) \in G \times G}), \\ \text{where} \qquad \forall \mathcal{A}_g \triangleleft \mathcal{A}, \qquad \mathcal{A}_g = \mathbf{1}_g \mathcal{A}, \quad \mathbf{1}_g^2 = \mathbf{1}_g, \quad \mathbf{1}_g \in \mathfrak{Z}(\mathcal{A}), \\ \forall \theta_g : \mathcal{A}_{g^{-1}} \rightarrow \mathcal{A}_g, \text{ iso. of } k\text{-alg.}, \\ \forall f(g, h) \in \mathcal{U}(\mathcal{A}_g \cap \mathcal{A}_{gh}), \quad s. th. \forall g, h, t \in G : \\ (i) \qquad \mathcal{A}_1 = \mathcal{A}, \theta_1 = \mathbf{1}_\mathcal{A}; \\ (ii) \qquad \theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}; \\ (iii) \qquad \theta_g \circ \theta_h(a) = f(g, h)\theta_{gh}(a)f(g, h)^{-1}, \ \forall a \in \mathrm{dom} \ (\theta_g \circ \theta_h); \\ (iv) \qquad f(1, g) = f(g, 1) = \mathbf{1}_g; \end{split}$$

Definition

A unital twisted par. action of G on \mathcal{A} is a triple

$$\begin{split} \Theta &= (\{\mathcal{A}_g\}_{g\in G}, \{\theta_g\}_{g\in G}, \{f(g,h)\}_{(g,h)\in G\times G}), \\ \text{where} \qquad \forall \mathcal{A}_g \lhd \mathcal{A}, \qquad \mathcal{A}_g = \mathbf{1}_g \mathcal{A}, \quad \mathbf{1}_g^2 = \mathbf{1}_g, \quad \mathbf{1}_g \in \mathfrak{Z}(\mathcal{A}), \\ \forall \theta_g : \mathcal{A}_{g^{-1}} \rightarrow \mathcal{A}_g, \text{ iso. of } k\text{-alg.}, \\ \forall f(g,h) \in \mathcal{U}(\mathcal{A}_g \cap \mathcal{A}_{gh}), \quad s. th. \ \forall g,h,t \in G: \\ (i) \qquad \mathcal{A}_1 = \mathcal{A}, \ \theta_1 = \mathbf{1}_{\mathcal{A}}; \\ (ii) \qquad \theta_g(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) = \mathcal{A}_g \cap \mathcal{A}_{gh}; \\ (iii) \qquad \theta_g \circ \theta_h(a) = f(g,h)\theta_{gh}(a)f(g,h)^{-1}, \ \forall a \in \mathrm{dom} \ (\theta_g \circ \theta_h); \\ (iv) \qquad f(\mathbf{1},g) = f(g,1) = \mathbf{1}_g; \\ (v) \qquad \theta_g(\mathbf{1}_{g^{-1}} f(h,t)) \ f(g,ht) = f(g,h) \ f(gh,t). \end{split}$$

<ロ> < 四> < 四> < 三> < 三> < 三> のQC
M. D. + M. Khrypchenko 2015.

Definition

A (unital) par. G-module is a commut. monoid A with unital par. action θ of G on A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

M. D. + M. Khrypchenko 2015.

Definition

A (unital) par. G-module is a commut. monoid A with unital par. action θ of G on A.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Denote pMod(G) category of unital par. *G*-modules.

M. D. + M. Khrypchenko 2015.

Definition

A (unital) par. G-module is a commut. monoid A with unital par. action θ of G on A.

Denote pMod(G) category of unital par. *G*-modules.

Let $(A, \theta) \in pMod(G)$. Write $A_{(x_1,...,x_n)} = A_{x_1}A_{x_1x_2} \dots A_{x_1...x_n}.$

n-cochains: $f : G^n \to A$, s. that $f(x_1, \ldots, x_n) \in \mathcal{U}(A_{(x_1, \ldots, x_n)})$.

M. D. + M. Khrypchenko 2015.

Definition

A (unital) par. G-module is a commut. monoid A with unital par. action θ of G on A.

Denote pMod(G) category of unital par. *G*-modules.

Let $(A, \theta) \in pMod(G)$. Write

$$A_{(x_1,\ldots,x_n)}=A_{x_1}A_{x_1x_2}\ldots A_{x_1\ldots x_n}.$$

n-cochains: $f : G^n \to A$, s. that $f(x_1, \ldots, x_n) \in \mathcal{U}(A_{(x_1, \ldots, x_n)})$.

Denote $C^n(G, A) = \{n \text{-cochains}\}, C^0(G, A) = U(A).$

M. D. + M. Khrypchenko 2015.

Definition

A (unital) par. G-module is a commut. monoid A with unital par. action θ of G on A.

Denote pMod(G) category of unital par. *G*-modules.

Let $(A, \theta) \in pMod(G)$. Write

 $A_{(x_1,\ldots,x_n)}=A_{x_1}A_{x_1x_2}\ldots A_{x_1\ldots x_n}.$

n-cochains: $f : G^n \to A$, s. that $f(x_1, \ldots, x_n) \in \mathcal{U}(A_{(x_1, \ldots, x_n)})$. Denote $C^n(G, A) = \{n$ -cochains $\}, C^0(G, A) = \mathcal{U}(A)$.

 $C^{n}(G, A)$ is abel. grp with pointwise mult-n:

identity : $e_n(x_1, ..., x_n) = 1_{x_1} 1_{x_1 x_2} ... 1_{x_1 ... x_n},$

inverse: $f^{-1}(x_1, ..., x_n) = f(x_1, ..., x_n)^{-1} \in \mathcal{U}(A_{(x_1, ..., x_n)}).$

Definition

Let $(A, \theta) \in pMod(G)$, $f \in C^n(G, A)$, $x_1, \ldots, x_{n+1} \in G$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Definition

Let
$$(A, \theta) \in pMod(G)$$
, $f \in C^{n}(G, A)$, $x_{1}, \dots, x_{n+1} \in G$. Define
 $(\delta^{n}f)(x_{1}, \dots, x_{n+1}) = \theta_{x_{1}}(1_{x_{1}^{-1}}f(x_{2}, \dots, x_{n+1}))$.

$$\prod_{i=1}^{n} f(x_1,\ldots,x_i x_{i+1},\ldots,x_{n+1})^{(-1)^i} f(x_1,\ldots,x_n)^{(-1)^{n+1}}$$

(inverse elements in corresp. ideals). If $n = 0, a \in U(A)$, set

$$(\delta^0 a)(x) = \theta_x(1_{x^{-1}}a)a^{-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

Let
$$(A, \theta) \in pMod(G)$$
, $f \in C^n(G, A)$, $x_1, \ldots, x_{n+1} \in G$. Define

$$(\delta^{n} f)(x_{1}, \dots, x_{n+1}) = \theta_{x_{1}}(1_{x_{1}^{-1}}f(x_{2}, \dots, x_{n+1})) \cdot \prod_{i=1}^{n} f(x_{1}, \dots, x_{i}x_{i+1}, \dots, x_{n+1})^{(-1)^{i}} f(x_{1}, \dots, x_{n})^{(-1)^{n+1}}$$

(inverse elements in corresp. ideals). If $n = 0, a \in \mathcal{U}(A)$, set

$$(\delta^0 a)(x) = \theta_x(1_{x^{-1}}a)a^{-1}$$

Have:

$$\delta^n \circ \delta^{n-1} = e_{n+1}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Definition

Let
$$(A, \theta) \in pMod(G)$$
, $f \in C^n(G, A)$, $x_1, \ldots, x_{n+1} \in G$. Define

$$(\delta^{n} f)(x_{1}, \dots, x_{n+1}) = \theta_{x_{1}}(1_{x_{1}^{-1}}f(x_{2}, \dots, x_{n+1})) \cdot \prod_{i=1}^{n} f(x_{1}, \dots, x_{i}x_{i+1}, \dots, x_{n+1})^{(-1)^{i}} f(x_{1}, \dots, x_{n})^{(-1)^{n+1}}$$

(inverse elements in corresp. ideals). If $n = 0, a \in \mathcal{U}(A)$, set

$$(\delta^0 a)(x) = \theta_x(1_{x^{-1}}a)a^{-1}$$

Have:

$$\delta^n \circ \delta^{n-1} = e_{n+1}.$$

Write:

$$Z^n(G,A) = \operatorname{Ker}(\delta^n), B^n(G,A) = \operatorname{Im}(\delta^{n-1})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Definition

Let
$$(A, \theta) \in pMod(G)$$
, $f \in C^n(G, A)$, $x_1, \ldots, x_{n+1} \in G$. Define

$$(\delta^{n} f)(x_{1}, \dots, x_{n+1}) = \theta_{x_{1}}(1_{x_{1}^{-1}}f(x_{2}, \dots, x_{n+1})) \cdot \prod_{i=1}^{n} f(x_{1}, \dots, x_{i}x_{i+1}, \dots, x_{n+1})^{(-1)^{i}} f(x_{1}, \dots, x_{n})^{(-1)^{n+1}}$$

(inverse elements in corresp. ideals). If $n = 0, a \in \mathcal{U}(A)$, set

$$(\delta^0 a)(x) = \theta_x(1_{x^{-1}}a)a^{-1}$$

Have:

$$\delta^n \circ \delta^{n-1} = e_{n+1}.$$

Write: $Z^n(G,A) = \operatorname{Ker}(\delta^n), B^n(G,A) = \operatorname{Im}(\delta^{n-1})$

Define: par. coh. grp.: $H^n(G, A) = \frac{Z^n}{B^n}$, $H^0(G, A) = Z^0$.

Galois Theory of commutative rings in:

M. Auslander, O. Goldman, The Brauer group of a commutative ring, *Trans. Amer. Math. Soc.* **52** (1960), 367-409.

S. U. Chase, D. K. Harrison and A. Rosenberg, *Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc. **52** (1965), 15–33.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Galois Theory of commutative rings in:

M. Auslander, O. Goldman, The Brauer group of a commutative ring, *Trans. Amer. Math. Soc.* **52** (1960), 367-409.

S. U. Chase, D. K. Harrison and A. Rosenberg, *Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc. **52** (1965), 15–33.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall: Let *R* be com. ring and assume a finite grp *G* acts (globally) on *S*. Say $R^G \subseteq R$ is Galois ext. if $\exists x_i, y_i \in R$, $1 \leq i \leq n$, s. that

$$\sum_{1\leq i\leq n} x_i g(y_i) = \delta_{1,g}, \forall g \in G.$$

Galois Theory of commutative rings in:

M. Auslander, O. Goldman, The Brauer group of a commutative ring, *Trans. Amer. Math. Soc.* **52** (1960), 367-409.

S. U. Chase, D. K. Harrison and A. Rosenberg, *Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc. **52** (1965), 15–33.

Recall: Let *R* be com. ring and assume a finite grp *G* acts (globally) on *S*. Say $R^G \subseteq R$ is Galois ext. if $\exists x_i, y_i \in R$, $1 \leq i \leq n$, s. that

$$\sum_{1\leq i\leq n} x_i g(y_i) = \delta_{1,g}, \forall g \in G.$$

Partial Galois theory in

M. Dokuchaev, M. Ferrero, A. Paques, Partial Actions and Galois Theory, *J. Pure Appl. Algebra*, **208** (2007), (1), 77–87.

Let θ unital par. action of finite G on R. Write

$$R^{\theta} = \{r \in R \mid \theta_g(r1_{g^{-1}}) = r1_g \ \forall g \in G\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let θ unital par. action of finite G on R. Write

$$R^{ heta} = \{r \in R \,|\, heta_g(r \mathbb{1}_{g^{-1}}) = r \mathbb{1}_g \,\, orall g \in G\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Say $R^{\theta} \subseteq R$ is Galois ext. if $\exists x_i, y_i \in R, 1 \leq i \leq n$, s. that

$$\sum_{1\leq i\leq n} x_i \theta_g(y_i \mathbb{1}_{g^{-1}}) = \delta_{1,g}, \forall g \in G.$$

Let θ unital par. action of finite G on R. Write

$$R^{\theta} = \{r \in R \mid \theta_g(r1_{g^{-1}}) = r1_g \ \forall g \in G\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Say $R^{\theta} \subseteq R$ is Galois ext. if $\exists x_i, y_i \in R, 1 \leq i \leq n$, s. that

$$\sum_{1\leq i\leq n} x_i \theta_g(y_i 1_{g^{-1}}) = \delta_{1,g}, \forall g \in G.$$

Several equivalent definitions were given and a Galois correspondence established.

Let θ unital par. action of finite G on R. Write

$$R^{ heta} = \{r \in R \mid heta_g(r1_{g^{-1}}) = r1_g \ \forall g \in G\}.$$

Say $R^{\theta} \subseteq R$ is Galois ext. if $\exists x_i, y_i \in R, 1 \leq i \leq n$, s. that

$$\sum_{1\leq i\leq n} x_i \theta_g(y_i \mathbb{1}_{g^{-1}}) = \delta_{1,g}, \forall g \in G.$$

Several equivalent definitions were given and a Galois correspondence established.

Given k-algebra A write $A^e = A \otimes_k A^{op}$, where A^{op} is the opposite alg. Then A is a left A^e -module via $(a \otimes b)a' = aa'b$.

Definition

Let A be an algebra over comm. ring k. Say that A is separable over k if A is projective as a left A^e -module.

Recall that a module over a ring A is called projective if it is a direct summand of a free A-module.

R commut. ring. *R*-alg. *A* called Azumaya if $R = \mathcal{Z}(A)$ and *A* is separable over *R*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

R commut. ring. *R*-alg. *A* called Azumaya if $R = \mathcal{Z}(A)$ and *A* is separable over *R*.

 \Leftrightarrow A faith. f.g. proj. *R*-mod and $A \otimes A^{\mathrm{op}} \simeq \operatorname{End}_R(A)$ as *R*-alg-s.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

R commut. ring. *R*-alg. *A* called Azumaya if $R = \mathcal{Z}(A)$ and *A* is separable over *R*.

 \Leftrightarrow A faith. f.g. proj. *R*-mod and $A \otimes A^{\mathrm{op}} \simeq \operatorname{End}_R(A)$ as *R*-alg-s.

Denote [A] the Morita equiv. class of A. (Recall that $A \sim_{\text{Morita}} B \Leftrightarrow_A \text{Mod} \sim_B \text{Mod.}$)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

R commut. ring. *R*-alg. *A* called Azumaya if $R = \mathcal{Z}(A)$ and *A* is separable over *R*.

 \Leftrightarrow A faith. f.g. proj. *R*-mod and $A \otimes A^{\mathrm{op}} \simeq \operatorname{End}_R(A)$ as *R*-alg-s.

Denote [A] the Morita equiv. class of A. (Recall that $A \sim_{\text{Morita}} B \Leftrightarrow_A \text{Mod} \sim_B \text{Mod.}$)

The classes [A] form the Brauer gr. B(R) with $[A][B] = [A \otimes B]$, identity el-t [R] and $[A]^{-1} = [A^{op}]$.

R commut. ring. *R*-alg. *A* called Azumaya if $R = \mathcal{Z}(A)$ and *A* is separable over *R*.

 \Leftrightarrow A faith. f.g. proj. *R*-mod and $A \otimes A^{\mathrm{op}} \simeq \operatorname{End}_R(A)$ as *R*-alg-s.

Denote [A] the Morita equiv. class of A. (Recall that $A \sim_{\text{Morita}} B \Leftrightarrow_A \text{Mod} \sim_B \text{Mod.}$)

The classes [A] form the Brauer gr. B(R) with $[A][B] = [A \otimes B]$, identity el-t [R] and $[A]^{-1} = [A^{op}]$.

Let S comm. R-alg. Then

$$B(R) \ni [A] \mapsto [A \otimes S] \in B(S)$$

given by $[A] \mapsto [A \otimes S]$, is gr. hom. whose kernel is the relative Brauer gr. B(S/R).

R commut. ring. *R*-alg. *A* called Azumaya if $R = \mathcal{Z}(A)$ and *A* is separable over *R*.

 \Leftrightarrow A faith. f.g. proj. *R*-mod and $A \otimes A^{\mathrm{op}} \simeq \operatorname{End}_R(A)$ as *R*-alg-s.

Denote [A] the Morita equiv. class of A. (Recall that $A \sim_{\text{Morita}} B \Leftrightarrow_A \text{Mod} \sim_B \text{Mod.}$)

The classes [A] form the Brauer gr. B(R) with $[A][B] = [A \otimes B]$, identity el-t [R] and $[A]^{-1} = [A^{op}]$.

Let S comm. R-alg. Then

$$B(R) \ni [A] \mapsto [A \otimes S] \in B(S)$$

given by $[A] \mapsto [A \otimes S]$, is gr. hom. whose kernel is the relative Brauer gr. B(S/R). Crossed Prod. Theorem:

Theorem

Let $K \subseteq F$ finite Galois ext. fields with Galois gr. G. Then $H^2(G, F^*) \ni \operatorname{cls}(f) \mapsto [R *_f G] \in B(F/K)$ is gr. iso.

Let $R^{\theta} \subseteq R$ par. Galois ext. of comm. rings with Galois gr. G.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $R^{\theta} \subseteq R$ par. Galois ext. of comm. rings with Galois gr. *G*. Paques+Sant'Ana 2010 $\Rightarrow R *_{\theta,f} G$ is R^{θ} -Azumaya and $R *_{\theta,f} G \in B(R/R^{\theta}) \ \forall f \in Z^2(G, R).$

Let $R^{\theta} \subseteq R$ par. Galois ext. of comm. rings with Galois gr. *G*. Paques+Sant'Ana 2010 $\Rightarrow R *_{\theta,f} G$ is R^{θ} -Azumaya and $R *_{\theta,f} G \in B(R/R^{\theta}) \ \forall f \in Z^2(G, R).$

Theorem

 $\varphi \colon H^2(G, R) \ni \operatorname{cls}(f) \mapsto [R \star_{\theta, f} G] \in B(R/R^{\theta})$ is gr. hom.

Let $R^{\theta} \subseteq R$ par. Galois ext. of comm. rings with Galois gr. *G*. Paques+Sant'Ana 2010 $\Rightarrow R *_{\theta,f} G$ is R^{θ} -Azumaya and $R *_{\theta,f} G \in B(R/R^{\theta}) \ \forall f \in Z^2(G, R).$

Theorem

$$\varphi \colon H^2(G, R) \ni \operatorname{cls}(f) \mapsto [R \star_{\theta, f} G] \in B(R/R^{\theta})$$
 is gr. hom.

Definition

We say that a f.g.p. R-module P has rank ≤ 1 if $\forall \mathfrak{p} \in \operatorname{Spec}(R)$ one has $P_{\mathfrak{p}} = 0$ or $P_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ as $R_{\mathfrak{p}}$ -modules.

Let $R^{\theta} \subseteq R$ par. Galois ext. of comm. rings with Galois gr. *G*. Paques+Sant'Ana 2010 $\Rightarrow R *_{\theta,f} G$ is R^{θ} -Azumaya and $R *_{\theta,f} G \in B(R/R^{\theta}) \ \forall f \in Z^2(G, R).$

Theorem

$$\varphi \colon H^2(G, R) \ni \operatorname{cls}(f) \mapsto [R \star_{\theta, f} G] \in B(R/R^{\theta})$$
 is gr. hom.

Definition

We say that a f.g.p. R-module P has rank ≤ 1 if $\forall \mathfrak{p} \in \operatorname{Spec}(R)$ one has $P_{\mathfrak{p}} = 0$ or $P_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ as $R_{\mathfrak{p}}$ -modules.

Consider $\operatorname{PicS}(R) = \{[E] | E \text{ is a f.g.p. } R\text{-module and } \operatorname{rk}(E) \leq 1\}.$

Let $R^{\theta} \subseteq R$ par. Galois ext. of comm. rings with Galois gr. *G*. Paques+Sant'Ana 2010 $\Rightarrow R *_{\theta,f} G$ is R^{θ} -Azumaya and $R *_{\theta,f} G \in B(R/R^{\theta}) \ \forall f \in Z^2(G, R).$

Theorem

$$\varphi \colon H^2(G, R) \ni \operatorname{cls}(f) \mapsto [R \star_{\theta, f} G] \in B(R/R^{\theta})$$
 is gr. hom.

Definition

We say that a f.g.p. R-module P has rank ≤ 1 if $\forall \mathfrak{p} \in \operatorname{Spec}(R)$ one has $P_{\mathfrak{p}} = 0$ or $P_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ as $R_{\mathfrak{p}}$ -modules.

Consider $\operatorname{PicS}(R) = \{[E] | E \text{ is a f.g.p. } R\text{-module and } \operatorname{rk}(E) \leq 1\}.$

Then $\operatorname{PicS}(R)$ with respect to \otimes_R is com. inv. monoid with 0 and

$$\operatorname{PicS}(R) \cong \bigcup_{e \in R, e^2 = e} \operatorname{Pic}(eR).$$

Seven terms exact sequence

For (usual) Galois ext $R^G \subseteq R$ of com rings with Galois gr G S. U. Chase+ D. K. Harrison + A. Rosenberg (1965):

$$0 \to H^1(G, \mathcal{U}(R)) {\rightarrow} \mathrm{Pic}(R^G) {\rightarrow} \mathrm{Pic}(R)^G {\rightarrow}$$

 $H^2(G, \mathcal{U}(R)) \rightarrow B(R/R^G) \rightarrow H^1(G, \operatorname{Pic}(R)) \rightarrow H^3(G, \mathcal{U}(R)).$

$$0 \to H^1(G, \mathcal{U}(R)) {\rightarrow} \mathrm{Pic}(R^G) {\rightarrow} \mathrm{Pic}(R)^G {\rightarrow}$$

 $H^{2}(G, \mathcal{U}(R)) \rightarrow B(R/R^{G}) \rightarrow H^{1}(G, \operatorname{Pic}(R)) \rightarrow H^{3}(G, \mathcal{U}(R)).$

In partial case have the exact sequence:

 $0 \to H^{1}(G, R) \to \operatorname{Pic}(R^{\theta}) \to \operatorname{PicS}(R)^{\theta^{*}} \cap \operatorname{Pic}(R) \to$ $H^{2}(G, R) \xrightarrow{\varphi} B(R/R^{\theta}) \to H^{1}(G, \operatorname{PicS}(R)) \to H^{3}(G, R),$

$$0 \to H^1(G, \mathcal{U}(R)) {\rightarrow} \mathrm{Pic}(R^G) {\rightarrow} \mathrm{Pic}(R)^G {\rightarrow}$$

 $H^{2}(G, \mathcal{U}(R)) \rightarrow B(R/R^{G}) \rightarrow H^{1}(G, \operatorname{Pic}(R)) \rightarrow H^{3}(G, \mathcal{U}(R)).$

In partial case have the exact sequence:

 $0 \to H^{1}(G, R) \to \operatorname{Pic}(R^{\theta}) \to \operatorname{PicS}(R)^{\theta^{*}} \cap \operatorname{Pic}(R) \to$ $H^{2}(G, R) \xrightarrow{\varphi} B(R/R^{\theta}) \to H^{1}(G, \operatorname{PicS}(R)) \to H^{3}(G, R),$ where θ^{*} is par. ac. of G on $\operatorname{PicS}(R)$ given as follows:

$$0 \to H^1(G, \mathcal{U}(R)) {\rightarrow} \mathrm{Pic}(R^G) {\rightarrow} \mathrm{Pic}(R)^G {\rightarrow}$$

 $H^{2}(G, \mathcal{U}(R)) \rightarrow B(R/R^{G}) \rightarrow H^{1}(G, \operatorname{Pic}(R)) \rightarrow H^{3}(G, \mathcal{U}(R)).$

In partial case have the exact sequence:

$$0 \to H^{1}(G, R) \to \operatorname{Pic}(R^{\theta}) \to \operatorname{PicS}(R)^{\theta^{*}} \cap \operatorname{Pic}(R) \to$$
$$H^{2}(G, R) \xrightarrow{\varphi} B(R/R^{\theta}) \to H^{1}(G, \operatorname{PicS}(R)) \to H^{3}(G, R),$$
where θ^{*} is par. ac. of G on $\operatorname{PicS}(R)$ given as follows:
 $\theta_{g}^{*}: X_{g^{-1}} \to X_{g}, \quad X_{g} = [D_{g}]\operatorname{PicS}(R), \quad X_{g^{-1}} \ni [E] \mapsto [E_{g}] \in X_{g},$

$$0 \to H^1(G, \mathcal{U}(R)) {\rightarrow} \mathrm{Pic}(R^G) {\rightarrow} \mathrm{Pic}(R)^G {\rightarrow}$$

 $H^2(G, \mathcal{U}(R)) {\rightarrow} B(R/R^G) {\rightarrow} H^1(G, \operatorname{Pic}(R)) {\rightarrow} H^3(G, \mathcal{U}(R)).$

In partial case have the exact sequence:

$$0 \to H^{1}(G, R) \to \operatorname{Pic}(R^{\theta}) \to \operatorname{PicS}(R)^{\theta^{*}} \cap \operatorname{Pic}(R) \to$$
$$H^{2}(G, R) \xrightarrow{\varphi} B(R/R^{\theta}) \to H^{1}(G, \operatorname{PicS}(R)) \to H^{3}(G, R),$$
where θ^{*} is par. ac. of G on $\operatorname{PicS}(R)$ given as follows:
 $\theta_{g}^{*}: X_{g^{-1}} \to X_{g}, \quad X_{g} = [D_{g}]\operatorname{PicS}(R), \quad X_{g^{-1}} \ni [E] \mapsto [E_{g}] \in X_{g},$
$$E_{g} = E \text{ as sets, and the } R \text{-action is given by}$$
 $r \bullet x_{g} = \alpha_{g^{-1}}(r1_{g})x, \ r \in R, \ x_{g} \in E_{g}.$

Seven terms exact sequence

Hilbert's 90th **Theorem for partial actions:** Let $R \supseteq R^{\theta}$ be a partial Galois extension. If $Pic(R^{\theta}) = 0$, then $H^1(G, R) = 0$.
Seven terms exact sequence

Hilbert's 90th **Theorem for partial actions:** Let $R \supseteq R^{\theta}$ be a partial Galois extension. If $Pic(R^{\theta}) = 0$, then $H^1(G, R) = 0$.

Crossed product Theorem for partial actions: Let $R \supseteq R^{\theta}$ be a partial Galois extension. If Pic(R) = 0, then there is a group isomorphism $H^2(G, R) \cong B(R/R^{\theta})$ given by $cls(f) \mapsto [R \star_{\theta, f} G]$.

Seven terms exact sequence

Hilbert's 90th **Theorem for partial actions:** Let $R \supseteq R^{\theta}$ be a partial Galois extension. If $Pic(R^{\theta}) = 0$, then $H^1(G, R) = 0$.

Crossed product Theorem for partial actions: Let $R \supseteq R^{\theta}$ be a partial Galois extension. If Pic(R) = 0, then there is a group isomorphism $H^2(G, R) \cong B(R/R^{\theta})$ given by $cls(f) \mapsto [R \star_{\theta, f} G]$.

Suppose a free action of a finite gr. G on a compact space X. Then $C(G \setminus X) \subseteq C(X)$ is a Galois ext. and the Chase-Harrison-Rosenberg sequence applies. In this case $\operatorname{Pic}(C(X)) \cong \check{H}^2(X; \mathbb{Z}),$

Seven terms exact sequence

Hilbert's 90th **Theorem for partial actions:** Let $R \supseteq R^{\theta}$ be a partial Galois extension. If $Pic(R^{\theta}) = 0$, then $H^1(G, R) = 0$.

Crossed product Theorem for partial actions: Let $R \supseteq R^{\theta}$ be a partial Galois extension. If Pic(R) = 0, then there is a group isomorphism $H^2(G, R) \cong B(R/R^{\theta})$ given by $cls(f) \mapsto [R \star_{\theta, f} G]$.

Suppose a free action of a finite gr. G on a compact space X. Then $C(G \setminus X) \subseteq C(X)$ is a Galois ext. and the Chase-Harrison-Rosenberg sequence applies. In this case

$$\operatorname{Pic}(\mathcal{C}(X)) \cong \check{H}^2(X;\mathbb{Z}),$$

 $B(C(X)) = \{$ homog. C*-algebras with spectrum X under $\otimes \}$

Hilbert's 90th **Theorem for partial actions:** Let $R \supseteq R^{\theta}$ be a partial Galois extension. If $Pic(R^{\theta}) = 0$, then $H^1(G, R) = 0$.

Crossed product Theorem for partial actions: Let $R \supseteq R^{\theta}$ be a partial Galois extension. If Pic(R) = 0, then there is a group isomorphism $H^2(G, R) \cong B(R/R^{\theta})$ given by $cls(f) \mapsto [R \star_{\theta, f} G]$.

Suppose a free action of a finite gr. G on a compact space X. Then $C(G \setminus X) \subseteq C(X)$ is a Galois ext. and the Chase-Harrison-Rosenberg sequence applies. In this case

$$\operatorname{Pic}(\mathcal{C}(X)) \cong \check{H}^2(X;\mathbb{Z}),$$

 $B(C(X)) = \{\text{homog. C*-algebras with spectrum } X \text{ under } \otimes \}$

For a a second count. loc. compact transf. gr. (G, X), D. Crocker, I. Raeburn and D. P. Williams (2007) gave an analogous sequence with equivariant Brauer and Picard groups.

Hilbert's 90th **Theorem for partial actions:** Let $R \supseteq R^{\theta}$ be a partial Galois extension. If $Pic(R^{\theta}) = 0$, then $H^1(G, R) = 0$.

Crossed product Theorem for partial actions: Let $R \supseteq R^{\theta}$ be a partial Galois extension. If Pic(R) = 0, then there is a group isomorphism $H^2(G, R) \cong B(R/R^{\theta})$ given by $cls(f) \mapsto [R \star_{\theta, f} G]$.

Suppose a free action of a finite gr. G on a compact space X. Then $C(G \setminus X) \subseteq C(X)$ is a Galois ext. and the Chase-Harrison-Rosenberg sequence applies. In this case

$$\operatorname{Pic}(\mathcal{C}(X)) \cong \check{H}^2(X;\mathbb{Z}),$$

 $B(C(X)) = \{$ homog. C*-algebras with spectrum X under $\otimes \}$

For a a second count. loc. compact transf. gr. (G, X), D. Crocker, I. Raeburn and D. P. Williams (2007) gave an analogous sequence with equivariant Brauer and Picard groups.

Partial action version?

Thank you!