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Partial action

Definition

G grp., X set.

A partial action θ of G on X consists of subsets

Xg ⊆ X , (g ∈ G ), bijec.-s θg : Xg−1 3 x 7→ g · x ∈ Xg ,

s. that

(i) ∃g · (h · x) =⇒ ∃(gh) · x and g · (h · x) = (gh) · x ,

(ii) θ1G (x) = x , ∀x .

Exercise: θg (Xg−1 ∩ Xh) = Xg ∩ Xgh.

Example

(F. Abadie, 2003). A flow of a smooth vector field is a partial
action of R+ on a manifold.

Remark: A flow is called total if this par. action is global.
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Examples

Example

(J. Kellendonk, M. Lawson, 2004).
GL(2,C) and PGL(2,C) = GL(2,C)/Z

act partially on C via
the Möbius transformations:

g =

(
a b
c d

)
∈ GL(2,C), θg : z 7→ az + b

cz + d
.

Example

The R. Thompson’s group V is a finitely presented infinite simple
group which contains all finite groups. Introduced by R. Thompson
in 1960s (together with other groups, in particular, F ⊆ V ) as
permutation groups of certain sets of infinite words over {0, 1}.

Group V is defined by partial actions on finite binary words by
J. C. Birget (2004) (following E. A. Scott (1984)) to study
complexity (word problem etc.).
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the Möbius transformations:

g =

(
a b
c d

)
∈ GL(2,C), θg : z 7→ az + b

cz + d
.

Example

The R. Thompson’s group V is a finitely presented infinite simple
group which contains all finite groups. Introduced by R. Thompson
in 1960s (together with other groups, in particular, F ⊆ V ) as
permutation groups of certain sets of infinite words over {0, 1}.

Group V is defined by partial actions on finite binary words by
J. C. Birget (2004) (following E. A. Scott (1984)) to study
complexity (word problem etc.).



Examples

Example

(J. Kellendonk, M. Lawson, 2004).
GL(2,C) and PGL(2,C) = GL(2,C)/Z act partially on C via
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Partial skew group ring

Let θ = {θg : Ag−1 → Ag} par. action of G on algebra A.

We
require:

Ag /A, Ag−1 → Ag iso-s.

Recall: θg (Ag−1 ∩ Ah) = Ag ∩ Agh.

Skew gr. ring by par. action:

A ∗ G =
⊕

g∈G Agug , aug · buh = θg (θ−1
g (a)b)ugh.

(in usual case: Ag = A, aug · buh = a θg (b)ugh.)

θg (θg−1(a)b) ∈ θg (Ag−1 ∩ Ah) = Ag ∩ Agh.

Partial crossed product:

aug · buh = θg (θ−1
g (a)b)f (g , h)ugh,

(see f (g , h) below)

Say θ is unital if ∀ Ag = 1gA, 1g central idemp. ( 12
g = 1g ).
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Twisted par. actions

Definition

A unital twisted par. action of G on A is a triple

Θ = ({Ag}g∈G , {θg}g∈G , {f (g , h)}(g ,h)∈G×G ),

where ∀Ag /A, Ag = 1gA, 12
g = 1g , 1g ∈ Z(A),

∀θg : Ag−1 → Ag , iso. of k-alg.,

∀f (g , h) ∈ U(Ag ∩ Agh), s. th. ∀g , h, t ∈ G :

(i) A1 = A, θ1 = 1A;

(ii) θg (Ag−1 ∩ Ah) = Ag ∩ Agh;

(iii) θg ◦ θh(a) = f (g , h)θgh(a)f (g , h)−1, ∀a ∈ dom (θg ◦ θh);

(iv) f (1, g) = f (g , 1) = 1g ;

(v) θg (1g−1 f (h, t)) f (g , ht) = f (g , h) f (gh, t).
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(v) θg (1g−1 f (h, t)) f (g , ht) = f (g , h) f (gh, t).
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Par. co-chains

M. D. + M. Khrypchenko 2015.

Definition

A (unital) par. G-module is a commut. monoid A with unital par.
action θ of G on A.

Denote pMod(G ) category of unital par. G -modules.

Let (A, θ) ∈ pMod(G ). Write

A(x1,...,xn) = Ax1Ax1x2 . . .Ax1...xn .

n-cochains: f : Gn → A, s. that f (x1, . . . , xn) ∈ U(A(x1,...,xn)).

Denote Cn(G ,A) = {n-cochains}, C 0(G ,A) = U(A).

Cn(G ,A) is abel. grp with pointwise mult-n:

identity : en(x1, . . . , xn) = 1x11x1x2 . . . 1x1...xn ,

inverse: f −1(x1, . . . , xn) = f (x1, . . . , xn)−1 ∈ U(A(x1,...,xn)).
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Partial gr. cohomolgy

Definition

Let (A, θ) ∈ pMod(G ), f ∈ Cn(G ,A), x1, . . . , xn+1 ∈ G .

Define

(δnf )(x1, . . . , xn+1) = θx1(1x−1
1
f (x2, . . . , xn+1))·

n∏
i=1

f (x1, . . . , xixi+1, . . . , xn+1)(−1)i f (x1, . . . , xn)(−1)n+1

(inverse elements in corresp. ideals). If n = 0, a ∈ U(A), set

(δ0a)(x) = θx(1x−1a)a−1

.

Have: δn ◦ δn−1 = en+1.

Write: Zn(G ,A) = Ker(δn),Bn(G ,A) = Im(δn−1)

Define: par. coh. grp.: Hn(G ,A) = Zn

Bn , H0(G ,A) = Z 0.
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Galois Theory

Galois Theory of commutative rings in:

M. Auslander, O. Goldman, The Brauer group of a commutative
ring, Trans. Amer. Math. Soc. 52 (1960), 367-409.

S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and
Galois cohomology of commutative rings, Mem. Amer. Math. Soc.
52 (1965), 15–33.

Recall: Let R be com. ring and assume a finite grp G acts
(globally) on S . Say RG ⊆ R is Galois ext. if ∃ xi , yi ∈ R,
1 ≤ i ≤ n, s. that∑

1≤i≤n xig(yi ) = δ1,g ,∀g ∈ G .

Partial Galois theory in

M. Dokuchaev, M. Ferrero, A. Paques, Partial Actions and Galois
Theory, J. Pure Appl. Algebra, 208 (2007), (1), 77–87.
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Partial Galois Theory

Let θ unital par. action of finite G on R. Write

Rθ = {r ∈ R | θg (r1g−1) = r1g ∀g ∈ G}.

Say Rθ ⊆ R is Galois ext. if ∃ xi , yi ∈ R, 1 ≤ i ≤ n, s. that∑
1≤i≤n xiθg (yi1g−1) = δ1,g , ∀g ∈ G .

Several equivalent definitions were given and a Galois
correspondence established.

Given k-algebra A write Ae = A⊗k A
op, where Aop is the opposite

alg. Then A is a left Ae-module via (a⊗ b)a′ = aa′b.

Definition

Let A be an algebra over comm. ring k . Say that A is separable
over k if A is projective as a left Ae-module.

Recall that a module over a ring A is called projective if it is a
direct summand of a free A-module.
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Brauer Group

R commut. ring. R-alg. A called Azumaya if R = Z(A) and A is
separable over R.

⇔ A faith. f.g. proj. R-mod and A⊗ Aop ' EndR(A) as R-alg-s.

Denote [A] the Morita equiv. class of A. (Recall that A ∼Morita B
⇔ AMod ∼B Mod.)

The classes [A] form the Brauer gr. B(R) with [A][B] = [A⊗ B],
identity el-t [R] and [A]−1 = [Aop].

Let S comm. R-alg. Then

B(R) 3 [A] 7→ [A⊗ S ] ∈ B(S)

given by [A] 7→ [A⊗ S ], is gr. hom. whose kernel is the relative
Brauer gr. B(S/R). Crossed Prod. Theorem:

Theorem

Let K ⊆ F finite Galois ext. fields with Galois gr. G . Then
H2(G ,F ∗) 3 cls(f ) 7→ [R ∗f G ] ∈ B(F/K ) is gr. iso.
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Partial case

Let Rθ ⊆ R par. Galois ext. of comm. rings with Galois gr. G .

Paques+Sant’Ana 2010 ⇒ R ∗θ,f G is Rθ-Azumaya and
R ∗θ,f G ∈ B(R/Rθ) ∀f ∈ Z 2(G ,R).

Theorem

ϕ : H2(G ,R) 3 cls(f ) 7→ [R ?θ,f G ] ∈ B(R/Rθ) is gr. hom.

Definition

We say that a f.g.p. R-module P has rank ≤ 1 if ∀p ∈ Spec(R)
one has Pp = 0 or Pp

∼= Rp as Rp-modules.

Consider PicS(R) = {[E ] |E is a f.g.p. R-module and rk(E ) ≤ 1}.

Then PicS(R) with respect to ⊗R is com. inv. monoid with 0 and

PicS(R) ∼=
⋃

e∈R,e2=e

Pic(eR).
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Seven terms exact sequence

For (usual) Galois ext RG ⊆ R of com rings with Galois gr G S. U.
Chase+ D. K. Harrison + A. Rosenberg (1965):

0→ H1(G ,U(R))→Pic(RG )→Pic(R)G→

H2(G ,U(R))→B(R/RG )→H1(G ,Pic(R))→H3(G ,U(R)).

In partial case have the exact sequence:

0→ H1(G ,R)→Pic(Rθ)→PicS(R)θ
∗ ∩ Pic(R)→

H2(G ,R)
ϕ→ B(R/Rθ)→H1(G ,PicS(R))→H3(G ,R),

where θ∗ is par. ac. of G on PicS(R) given as follows:

θ∗g : Xg−1 → Xg , Xg = [Dg ]PicS(R), Xg−1 3 [E ] 7→ [Eg ] ∈ Xg ,

Eg = E as sets, and the R-action is given by

r • xg = αg−1(r1g )x , r ∈ R, xg ∈ Eg .
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Seven terms exact sequence

Hilbert’s 90th Theorem for partial actions: Let R ⊇ Rθ be a
partial Galois extension. If Pic(Rθ) = 0, then H1(G ,R) = 0.

Crossed product Theorem for partial actions: Let R ⊇ Rθ be a
partial Galois extension. If Pic(R) = 0, then there is a group
isomorphism H2(G ,R) ∼= B(R/Rθ) given by cls(f ) 7→ [R ?θ,f G ].

Suppose a free action of a finite gr. G on a compact space X .
Then C (G\X ) ⊆ C (X ) is a Galois ext. and the
Chase-Harrison-Rosenberg sequence applies. In this case

Pic(C (X )) ∼= Ȟ2(X ;Z),

B(C (X )) = {homog. C*-algebras with spectrum X under ⊗}

For a a second count. loc. compact transf. gr. (G ,X ), D. Crocker,
I. Raeburn and D. P. Williams (2007) gave an analogous sequence
with equivariant Brauer and Picard groups.

Partial action version?
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Thank you!


