Random walks on random graphs

Bergfinnur Durhus
University of Copenhagen

Florianópolis, 27 February 2015

Metric spaces of graphs
\mathcal{G} denotes the set of locally finite, connected, rooted graphs G; $V(G)$ vertex set, $E(G)$ edge set, root vertex r.
d_{G} graph distance on G, i.e. $d_{G}(v, w)$ equals smallest number of edges in a path (in G) connecting v and w.

The ball $B_{G}(v ; R)$ of radius R centred at $v \in V(G)$ is the subgraph of G spanned by vertices at graph distance at most R from v. Denote $B_{G}(r ; R)=B_{G}(R)$.
(Ultra)metric d on \mathcal{G} defined by

$$
d\left(G, G^{\prime}\right)=\inf \left\{\left.\frac{1}{R+1} \right\rvert\, B_{G}(R)=B_{G^{\prime}}(R)\right\}
$$

(\mathcal{G}, d) is a complete separable metric space.

- The set \mathcal{T} of rooted locally finite trees is a closed subset of \mathcal{G}.
- Similar notions, if \mathcal{G} is replaced by the set $\overline{\mathcal{G}}$ of planar graphs.

Random graphs
A random (planar) graph is a probability measure μ on \mathcal{G} (resp. $\overline{\mathcal{G}})$.

Random planar trees

Let \mathcal{T}_{N} be the set of planar rooted trees of size N, i.e. with N edges, and with root of degree 1 , and let $p_{0}, p_{1}, p_{2}, \ldots$ be branching probabilities fulfilling

$$
\sum_{n=0}^{\infty} p_{n}=1 \quad \text { and } \quad \sum_{n=0}^{\infty} n p_{n}=1
$$

Define the probability measure μ_{N} on \mathcal{T} supported on \mathcal{T}_{N} by

$$
\mu_{N}(\tau)=\frac{1}{Z_{N}} \prod_{v \in V(\tau) \backslash\{r\}} p_{\sigma_{v}-1}, \quad \tau \in \mathcal{T}_{N}
$$

where σ_{v} denotes the degree of v in τ and

$$
Z_{N}=\sum_{\tau \in \mathcal{T}_{N}} \prod_{v \in V(\tau) \backslash\{r\}} p_{\sigma_{v}-1}
$$

Theorem $\mathbf{1}$ (Generic random trees) If the radius of convergence ρ of the generating function $\sum_{n=0}^{\infty} p_{n} \zeta^{n}$ satisfies $\rho>1$ then the weak limit

$$
\mu=\lim _{N \rightarrow \infty} \mu_{N}
$$

exists and is supported on the set \mathcal{S} of infinite rooted trees with a single spine (infinite linear path $v_{0}, v_{1}, v_{2}, \ldots$ starting at the root $r=v_{0}$).

D, Jonsson, Wheater 2007
More general results including non-generic trees by Jansson 2012.

A tree with a single spine

Characterization of μ :

A tree in \mathcal{S} is determined by a sequence $L_{1}, \ldots, L_{l_{i}}$ of left branches and a sequence $R_{1}, \ldots, R_{k_{i}}$ of right branches rooted at v_{i} for each $i=1,2,3, \ldots$ These are finite rooted trees which are independently and identically distributed for given $\left(I_{i}, r_{i}\right), i=1,2,3, \ldots$ with distribution

$$
\nu(\tau)=\prod_{v \in V(\tau) \backslash\{r\}} p_{\sigma_{v}-1} .
$$

Moreover the pairs $\left(l_{i}, k_{i}\right)$ are independent and identically distributed according to

$$
\mu\left\{\left(l_{i}, k_{i}\right)=(I, k)\right\}=p_{I+k+1}, \quad k, I=0,1,2,3 \ldots
$$

Special cases:

a) The uniform infinite planar rooted tree (UIPT) is obtained for $p_{n}=2^{-n-1}$, in which case

$$
\prod_{v \in V(\tau) \backslash\{r\}} p_{\sigma_{v}-1}=2 \cdot 4^{-|\tau|} .
$$

b) The incipient infinite percolation cluster on a regular m-ary tree is obtained for

$$
p_{n}=\binom{m-1}{n} q^{n}(1-q)^{m-1-n}, \quad n=0,1, \ldots, m-1 .
$$

The uniform infinite planar triangulation (UIPTri)
Let $\mathcal{P}_{N} \subset \overline{\mathcal{G}}$ denote the set of triangulations of S^{2} with N vertices and a root edge ($r r^{\prime}$). Let ν_{N}^{t} be the uniform measure supported on \mathcal{P}_{N}, i.e.

$$
\nu_{N}^{t}(T)=\frac{1}{\left|\mathcal{P}_{N}\right|}=\frac{1}{2} \frac{(N-2)!(3 N-5)!}{(4 N-9)!}, \quad T \in \mathcal{P}_{N}
$$

$$
\text { Tutte } 1962
$$

Theorem 2(Angel \& Schramm, 2002) The weak limit $\nu^{t}=\lim _{N \rightarrow \infty} \nu_{N}^{t}$ exists as a probability measure on $\overline{\mathcal{G}}$ supported on the set on infinite triangulations of the plane with one end.

The uniform infinite planar quadrangulation (UIPQ) Let $\mathcal{Q}_{\mathcal{N}} \subset \overline{\mathcal{G}}$ denote the set of quadrangulations of S^{2} with N vertices and a root edge ($r r^{\prime}$). Let ν_{N}^{q} be the uniform measure supported on $\mathcal{Q}_{\mathcal{N}}$, i.e.

$$
\nu_{N}^{q}(T)=\frac{1}{\left|\mathcal{Q}_{\mathcal{N}}\right|}=\frac{1}{2} \frac{N!(N+2)!}{(2 N)!} 3^{-N}, \quad Q \in \mathcal{Q}_{\mathcal{N}} .
$$

Theorem 3(Chassaing \& D, 2003) The weak limit $\nu^{q}=\lim _{N \rightarrow \infty} \nu_{N}^{q}$ exists as a probability measure on $\overline{\mathcal{G}}$ supported on the set on infinite quadrangulations of the plane with one end.

Is obtained from a bijective correspondence between \mathcal{Q}_{N} and well-labelled trees of size $N+2$. (G. Schaeffer 1998)

Further work by Krikun 2008 and Ménard 2010.

The uniform infinite causal triangulation (UICT) Let $\mathcal{C} \mathcal{T}_{N} \subset \overline{\mathcal{G}}$ denote the set of causal triangulations with $2 N$ triangles and a root edge $\left(r r^{\prime}\right)$. Let ν_{N}^{c} be the uniform measure supported on $\mathcal{C} \mathcal{T}_{N}$, i.e.

$$
\nu_{N}^{c}(T)=\frac{1}{\left|\mathcal{C} \mathcal{T}_{N}\right|}, \quad T \in \mathcal{C} \mathcal{T}_{N}
$$

Theorem 4 The weak limit $\nu^{c}=\lim _{N \rightarrow \infty} \nu_{N}^{c}$ exists as a probability measure on $\overline{\mathcal{G}}$ supported on the set on infinite causal triangulations of the plane.
(D, Jonsson, Wheater, 2010)

A causal triangulation

Structure of random graphs

Definition The Hausdorff dimension d_{h} of a connected (infinite) graph G is defined by

$$
\begin{equation*}
d_{h}=\lim _{R \rightarrow \infty} \frac{\ln \left|E\left(B_{G}(v ; R)\right)\right|}{R}, \tag{3.1}
\end{equation*}
$$

provided the limit exists (independent of v).

Spectral dimension

Simple random walk on G : Define p_{G} on finite walks $\omega=\left(\omega_{0}, \omega_{1}, \ldots, \omega_{m}\right)$ on G by

$$
p_{G}(\omega)=\prod_{i=0}^{m-1} \sigma_{\omega_{i}}^{-1} .
$$

p_{G} defines a probability distribution p_{G}^{m} on walks of fixed length m and fixed initial vertex v.

The probability for a walk (of length m) starting at v to end at w is

$$
q_{G}(m ; v, w)=\sum_{\omega: v \rightarrow w,|\omega|=m} p_{G}(\omega) .
$$

Define the corresponding cumulated probability

$$
Q_{G}(n ; v, w)=\sum_{m=0}^{n} q_{G}(m ; v, w), \quad n=0,1,2, \ldots
$$

G is recurrent if $Q_{G}(n ; v, v) \rightarrow \infty$ as $n \rightarrow \infty$. Otherwise G is transient.

Definition The spectral dimension of a recurrent (connected) graph G is

$$
d_{s}=2-2 \lim _{n \rightarrow \infty} \frac{\ln Q_{G}(n ; v, v)}{\ln n}
$$

Some results
Theorem 5 For any generic random tree it holds that

$$
d_{h}=2 \quad \text { and } \quad d_{s}=\frac{4}{3} .
$$

Barlow \& Kumagai 2006 for percolation case.
Theorem 6 For the UIPTri and UIPQ it holds that $d_{h}=4$ almost surely and in average.

> Angel \& Schramm 2002 for UIPTri Chassaing \& D 2003 for UIPQ

Theorem 7 The UICT is almost surely recurrent.
DJW 2010
Theorem 8 The UIPTri and UIPQ are almost surely recurrent. Gurel-Gurevich \& Nachmias 2012

Further developments

- Statistical systems on planar random graphs.

Examples:

1) The Ising model on a random tree.
(D \& Napolitano 2014)
2) The Ising model on a planar quadrangulation. Matrix model techniques in grand canonical ensemble.
(V. Kazakov 1986)

- Higher dimensional random triangulations or random complexes.
- Scaling limits of random graphs.

