Random graphs

Structure of random graphs

Further developments

Random walks on random graphs

Bergfinnur Durhuus University of Copenhagen

Florianópolis, 27 February 2015

Random graphs

Structure of random graphs

Further developments

Metric spaces of graphs

G denotes the set of locally finite, connected, rooted graphs G; V(G) vertex set, E(G) edge set, root vertex r.

 d_G graph distance on G, i.e. $d_G(v, w)$ equals smallest number of edges in a path (in G) connecting v and w.

The ball $B_G(v; R)$ of radius R centred at $v \in V(G)$ is the subgraph of G spanned by vertices at graph distance at most R from v. Denote $B_G(r; R) = B_G(R)$.

(Ultra)metric d on \mathcal{G} defined by

$$d(G, G') = \inf\{\frac{1}{R+1} \mid B_G(R) = B_{G'}(R)\}$$

 (\mathcal{G}, d) is a complete separable metric space.

Random graphs

Structure of random graphs

Further developments - The set ${\mathcal T}$ of rooted locally finite trees is a closed subset of ${\mathcal G}.$

- Similar notions, if ${\cal G}$ is replaced by the set $\bar{{\cal G}}$ of planar graphs.

Random graphs

A random (planar) graph is a probability measure μ on ${\cal G}$ (resp. $\bar{{\cal G}}).$

Random planar trees

Let \mathcal{T}_N be the set of planar rooted trees of size N, i.e. with N edges, and with root of degree 1, and

let p_0, p_1, p_2, \dots be branching probabilities fulfilling

$$\sum_{n=0}^{\infty} p_n = 1$$
 and $\sum_{n=0}^{\infty} np_n = 1$

Define the probability measure μ_N on \mathcal{T} supported on \mathcal{T}_N by

$$\mu_N(\tau) = \frac{1}{Z_N} \prod_{v \in V(\tau) \setminus \{r\}} p_{\sigma_v - 1}, \quad \tau \in \mathcal{T}_N,$$

where σ_v denotes the degree of v in τ and

$$Z_N = \sum_{\tau \in \mathcal{T}_N} \prod_{v \in V(\tau) \setminus \{r\}} p_{\sigma_v - 1}.$$

Metric spaces of graphs

Random graphs

Structure of random graphs

Further developments

Random graphs

Structure of random graphs

Further developments

Theorem 1(Generic random trees) If the radius of convergence ρ of the generating function $\sum_{n=0}^{\infty} p_n \zeta^n$ satisfies $\rho > 1$ then the weak limit

$$\mu = \lim_{N \to \infty} \mu_N$$

exists and is supported on the set S of infinite rooted trees with a single spine (infinite linear path $v_0, v_1, v_2, ...$ starting at the root $r = v_0$).

More general results including non-generic trees by Jansson 2012.

D. Jonsson, Wheater 2007

A tree with a single spine

Random graphs

Structure of random graphs

Further developments

Characterization of μ :

A tree in S is determined by a sequence L_1, \ldots, L_{l_i} of left branches and a sequence R_1, \ldots, R_{k_i} of right branches rooted at v_i for each $i = 1, 2, 3, \ldots$ These are finite rooted trees which are independently and identically distributed for given $(l_i, r_i), i = 1, 2, 3, \ldots$ with distribution

$$u(au) = \prod_{v \in V(au) \setminus \{r\}} p_{\sigma_v - 1} \,.$$

Moreover the pairs (l_i, k_i) are independent and identically distributed according to

$$\mu\{(l_i, k_i) = (l, k)\} = p_{l+k+1}, \quad k, l = 0, 1, 2, 3...$$

Random graphs

Structure of random graphs

Further developments

Special cases:

a) The uniform infinite planar rooted tree (UIPT) is obtained for $p_n = 2^{-n-1}$, in which case

$$\prod_{v\in V(\tau)\setminus\{r\}}p_{\sigma_v-1}=2\cdot 4^{-|\tau|}.$$

b) The incipient infinite percolation cluster on a regular m-ary tree is obtained for

$$p_n = {\binom{m-1}{n}} q^n (1-q)^{m-1-n}, \quad n = 0, 1, \dots, m-1.$$

Random graphs

Structure of random graphs

Further developments

The uniform infinite planar triangulation (UIPTri)

Let $\mathcal{P}_N \subset \overline{\mathcal{G}}$ denote the set of triangulations of S^2 with N vertices and a root edge (rr'). Let ν_N^t be the uniform measure supported on \mathcal{P}_N , i.e.

$$\nu_N^t(T) = \frac{1}{|\mathcal{P}_N|} = \frac{1}{2} \frac{(N-2)!(3N-5)!}{(4N-9)!}, \quad T \in \mathcal{P}_N.$$

Tutte 1962

Theorem 2(Angel & Schramm, 2002) The weak limit $\nu^t = \lim_{N \to \infty} \nu_N^t$ exists as a probability measure on $\overline{\mathcal{G}}$ supported on the set on infinite triangulations of the plane with one end.

Random graphs

Structure of random graphs

Further developments

The uniform infinite planar quadrangulation (UIPQ) Let $\mathcal{Q}_{\mathcal{N}} \subset \overline{\mathcal{G}}$ denote the set of quadrangulations of S^2 with N vertices and a root edge (rr'). Let ν_N^q be the uniform measure supported on $\mathcal{Q}_{\mathcal{N}}$, i.e.

$$u_N^q(T) = rac{1}{|\mathcal{Q}_N|} = rac{1}{2} rac{N!(N+2)!}{(2N)!} 3^{-N}, \quad Q \in \mathcal{Q}_N.$$

Theorem 3(Chassaing & D, 2003) The weak limit $\nu^q = \lim_{N \to \infty} \nu_N^q$ exists as a probability measure on $\overline{\mathcal{G}}$ supported on the set on infinite quadrangulations of the plane with one end.

Is obtained from a bijective correspondence between Q_N and well-labelled trees of size N + 2. (G. Schaeffer 1998)

Further work by Krikun 2008 and Ménard 2010.

Random graphs

Structure of random graphs

Further developments

The uniform infinite causal triangulation (UICT) Let $CT_N \subset \overline{G}$ denote the set of causal triangulations with 2N triangles and a root edge (rr'). Let ν_N^c be the uniform measure supported on CT_N , i.e.

$$u_N^c(\mathcal{T}) = rac{1}{|\mathcal{CT}_N|}, \quad \mathcal{T} \in \mathcal{CT}_N.$$

Theorem 4 The weak limit $\nu^c = \lim_{N \to \infty} \nu_N^c$ exists as a probability measure on $\overline{\mathcal{G}}$ supported on the set on infinite causal triangulations of the plane.

(D, Jonsson, Wheater, 2010)

A causal triangulation

Random graphs

Structure of random graphs

Further developments

Structure of random graphs

Definition The Hausdorff dimension d_h of a connected (infinite) graph *G* is defined by

$$d_h = \lim_{R \to \infty} \frac{\ln |E(B_G(v; R))|}{R}, \qquad (3.1)$$

provided the limit exists (independent of v).

Spectral dimension

Simple random walk on G: Define p_G on finite walks $\omega = (\omega_0, \omega_1, \dots, \omega_m)$ on G by

$$p_{G}(\omega) = \prod_{i=0}^{m-1} \sigma_{\omega_{i}}^{-1} \, .$$

 p_G defines a probability distribution p_G^m on walks of fixed length m and fixed initial vertex v.

Random graphs

Structure of random graphs

Further developments The probability for a walk (of length m) starting at v to end at w is

$$q_G(m; v, w) = \sum_{\omega: v \to w, |\omega| = m} p_G(\omega).$$

Define the corresponding cumulated probability

$$Q_G(n; v, w) = \sum_{m=0}^n q_G(m; v, w), \quad n = 0, 1, 2, \dots$$

G is recurrent if $Q_G(n; v, v) \to \infty$ as $n \to \infty$. Otherwise G is transient.

Definition The spectral dimension of a recurrent (connected) graph G is

$$d_s = 2 - 2 \lim_{n \to \infty} \frac{\ln Q_G(n; v, v)}{\ln n}$$

Some results

Theorem 5 For any generic random tree it holds that

$$d_h = 2$$
 and $d_s = \frac{4}{3}$

DJW 2007

Barlow & Kumagai 2006 for percolation case.

Theorem 6 For the UIPTri and UIPQ it holds that $d_h = 4$ almost surely and in average.

Angel & Schramm 2002 for UIPTri Chassaing & D 2003 for UIPQ

Theorem 7 The UICT is almost surely recurrent.

DJW 2010

Theorem 8 The UIPTri and UIPQ are almost surely recurrent. Gurel-Gurevich & Nachmias 2012

Metric spaces of graphs

Random graphs

Structure of random graphs

Further developments

Random graphs

Structure of random graphs

Further developments

Further developments

• Statistical systems on planar random graphs.

Examples:

1) The Ising model on a random tree.

(D & Napolitano 2014)

2) The Ising model on a planar quadrangulation. Matrix model techniques in grand canonical ensemble.

(V. Kazakov 1986)

- Higher dimensional random triangulations or random complexes.
- Scaling limits of random graphs.