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Metric spaces of graphs

G denotes the set of locally finite, connected, rooted graphs G ;
V (G) vertex set, E (G) edge set, root vertex r .

dG graph distance on G, i.e. dG(v ,w) equals smallest number
of edges in a path (in G) connecting v and w .

The ball BG(v ; R) of radius R centred at v ∈ V (G) is the
subgraph of G spanned by vertices at graph distance at most R
from v . Denote BG(r ; R) = BG(R).

(Ultra)metric d on G defined by

d(G ,G ′) = inf{ 1
R+1 | BG(R) = BG ′(R)}

(G, d) is a complete separable metric space.
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• The set T of rooted locally finite trees is a closed subset of
G.

• Similar notions, if G is replaced by the set Ḡ of planar
graphs.

Random graphs
A random (planar) graph is a probability measure µ on G (resp.
Ḡ).
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Random planar trees
Let TN be the set of planar rooted trees of size N, i.e. with N
edges, and with root of degree 1, and
let p0, p1, p2, ... be branching probabilities fulfilling

∞∑
n=0

pn = 1 and
∞∑

n=0
npn = 1

.
Define the probability measure µN on T supported on TN by

µN(τ) = 1
ZN

∏
v∈V (τ)\{r}

pσv−1 , τ ∈ TN ,

where σv denotes the degree of v in τ and

ZN =
∑
τ∈TN

∏
v∈V (τ)\{r}

pσv−1 .
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Theorem 1(Generic random trees) If the radius of convergence
ρ of the generating function

∑∞
n=0 pnζ

n satisfies ρ > 1 then the
weak limit

µ = lim
N→∞

µN

exists and is supported on the set S of infinite rooted trees
with a single spine (infinite linear path v0, v1, v2, ... starting at
the root r = v0).

D, Jonsson, Wheater 2007
More general results including non-generic trees by Jansson
2012.

 

 

                    A tree with a single spine 

Figure: A tree with one spine

A tree with a single spine.
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Characterization of µ:

A tree in S is determined by a sequence L1, . . . , Lli of left
branches and a sequence R1, . . . ,Rki of right branches rooted
at vi for each i = 1, 2, 3, ... These are finite rooted trees which
are independently and identically distributed for given
(li , ri ), i = 1, 2, 3, ... with distribution

ν(τ) =
∏

v∈V (τ)\{r}
pσv−1 .

Moreover the pairs (li , ki ) are independent and identically
distributed according to

µ{(li , ki ) = (l , k)} = pl+k+1 , k, l = 0, 1, 2, 3...
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Special cases:

a) The uniform infinite planar rooted tree (UIPT) is obtained
for pn = 2−n−1, in which case∏

v∈V (τ)\{r}
pσv−1 = 2 · 4−|τ | .

b) The incipient infinite percolation cluster on a regular m-ary
tree is obtained for

pn =
(

m − 1
n

)
qn(1− q)m−1−n , n = 0, 1, . . . ,m − 1 .
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The uniform infinite planar triangulation (UIPTri)

Let PN ⊂ Ḡ denote the set of triangulations of S2 with N
vertices and a root edge (rr ′). Let νt

N be the uniform measure
supported on PN , i.e.

νt
N(T ) = 1

|PN |
= 1

2
(N − 2)!(3N − 5)!

(4N − 9)! , T ∈ PN .

Tutte 1962

Theorem 2(Angel & Schramm, 2002) The weak limit
νt = limN→∞ ν

t
N exists as a probability measure on Ḡ supported

on the set on infinite triangulations of the plane with one end.
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The uniform infinite planar quadrangulation (UIPQ)
Let QN ⊂ Ḡ denote the set of quadrangulations of S2 with N
vertices and a root edge (rr ′). Let νq

N be the uniform measure
supported on QN , i.e.

νq
N(T ) = 1

|QN |
= 1

2
N!(N + 2)!

(2N)! 3−N , Q ∈ QN .

Theorem 3(Chassaing & D, 2003) The weak limit
νq = limN→∞ ν

q
N exists as a probability measure on Ḡ

supported on the set on infinite quadrangulations of the plane
with one end.

Is obtained from a bijective correspondence between QN and
well-labelled trees of size N + 2. (G. Schaeffer 1998)

Further work by Krikun 2008 and Ménard 2010.
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The uniform infinite causal triangulation (UICT)
Let CT N ⊂ Ḡ denote the set of causal triangulations with 2N
triangles and a root edge (rr ′). Let νc

N be the uniform measure
supported on CT N , i.e.

νc
N(T ) = 1

|CT N |
, T ∈ CT N .

Theorem 4 The weak limit νc = limN→∞ ν
c
N exists as a

probability measure on Ḡ supported on the set on infinite
causal triangulations of the plane.

(D, Jonsson, Wheater, 2010)

      A causal triangulation 
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Structure of random graphs

Definition The Hausdorff dimension dh of a connected
(infinite) graph G is defined by

dh = lim
R→∞

ln |E (BG(v ; R))|
R , (3.1)

provided the limit exists (independent of v).

Spectral dimension
Simple random walk on G : Define pG on finite walks
ω = (ω0, ω1, . . . , ωm) on G by

pG(ω) =
m−1∏
i=0

σ−1
ωi .

pG defines a probability distribution pm
G on walks of fixed length

m and fixed initial vertex v .



Metric spaces
of graphs

Random
graphs

Structure of
random
graphs

Further
developments

The probability for a walk (of length m) starting at v to end at
w is

qG(m; v ,w) =
∑

ω:v→w ,|ω|=m
pG(ω) .

Define the corresponding cumulated probability

QG(n; v ,w) =
n∑

m=0
qG(m; v ,w) , n = 0, 1, 2, . . .

G is recurrent if QG(n; v , v)→∞ as n→∞. Otherwise G is
transient.

Definition The spectral dimension of a recurrent (connected)
graph G is

ds = 2− 2 lim
n→∞

ln QG(n; v , v)
ln n .
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Some results
Theorem 5 For any generic random tree it holds that

dh = 2 and ds = 4
3 .

DJW 2007
Barlow & Kumagai 2006 for percolation case.

Theorem 6 For the UIPTri and UIPQ it holds that dh = 4
almost surely and in average.

Angel & Schramm 2002 for UIPTri
Chassaing & D 2003 for UIPQ

Theorem 7 The UICT is almost surely recurrent.
DJW 2010

Theorem 8 The UIPTri and UIPQ are almost surely recurrent.
Gurel-Gurevich & Nachmias 2012
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Further developments
• Statistical systems on planar random graphs.

Examples:
1) The Ising model on a random tree.

(D & Napolitano 2014)
2) The Ising model on a planar quadrangulation. Matrix model
techniques in grand canonical ensemble.

(V. Kazakov 1986)

• Higher dimensional random triangulations or random
complexes.

• Scaling limits of random graphs.
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