The group of linear isometries of the Gurarij space is extremely amenable

Brice Rodrigue Mbombo

IME-USP Joint work with D. Bartošová and J. López-Abad This work is support by a FAPESP grant Processo: 2012/20084-1

March 4, 2015

Definitions and Notations

- U is the Urysohn space (1925): the unique (up to isometry) Polish space that is both universal and ultrahomogeneous.
- G is The Gurarij space (1965): the unique (up to isometry (Lusky, 1976, Kubis and Solecki, 2011)) separable Banach space with the following property: Given finite-dimensional normed spaces E ⊆ F, given ε > 0, and given an isometric linear embedding γ : E → G there exists an injective linear operator ψ : F → G extending γ and satisfying that:

$$(1-\varepsilon)\|x\| \le \|\psi(x)\| \le (1+\varepsilon)\|x\|$$

 The Gurarij space G is in some way the analogue of the Urysohn space U in the category of Banach spaces

- A compact convex subset K of some locally convex space is called a (Choquet) *simplex* when every point x ∈ K is the barycenter of a unique probability measure μ_x such that μ_x(∂_e(K)) = 1
- The Poulsen simplex ℙ (1961) is the unique (up to affine homeomorphism) metrizable simplex whose extreme points ∂_eℙ are dense on it.

Groups	Universal for Polish groups	Universal minimal flow
$\operatorname{Iso}(\mathbb{U})$	Uspenkij, 1990	{*} : Pestov, 2002
$\operatorname{Iso}_L(\mathbb{G})$	Ben Yaacov, 2012	$\{*\}$: This talk, 2015
$\operatorname{Homeo}(Q)$	Uspenkij, 1986	?
$\operatorname{Aut}(\mathbb{P})$?	$\mathbb P$: This talk, 2015
NI . TI		

Note: The universal minimal flow of Homeo(Q) is not Q (Uspenkij, 2000)

→ < Ξ > <</p>

글▶ 글

Universal minimal flow

Definition

Let G be a Hausdorff topological group.

- A G-flow is a continuous action of G on a compact Hausdorff space X. Notation: G
 ∧ X.
- G へ X is minimal if it contains no proper subflows, i.e., there is no (non-∅) compact G-invariant set other than X

remark

• $G \curvearrowright X$ is minimal iff every orbit is dense in X:

$$\forall x \in X \ \overline{G.x} = X$$

② Every G-flow X contains a minimal subflow Y ⊆ X.(Zorn's Lemma)

Universal minimal flow

Definition

 $G \cap X$ is universal when:

```
\forall G \curvearrowright Y \text{ minimal } \exists \pi : X \longrightarrow Y
```

continuous, onto, and so that

$$\forall g \in G \ \forall x \in X, \ \pi(g.x) = g.\pi(x)$$

"Every minimal G-flow is a continuous image of $G \curvearrowright X$ "

Folklore

Let G be a Hausdorff topological group. Then there is a unique G-flow that is both minimal and universal.

Notation: $G \curvearrowright M(G)$

General question

Describe $G \curvearrowright M(G)$ explicitly when G is a "concrete" group.

Example: Pestov, 98

 $Homeo_+(\mathbb{S}^1) \curvearrowright M(Homeo_+(\mathbb{S}^1))$ is the natural action $Homeo_+(\mathbb{S}^1) \curvearrowright \mathbb{S}^1.$

A I > A I > A

Definition

A topological group G is extremely amenable if every continuous action of G on a compact set K has a fixed point. i.e there is $\xi \in K$ such that $g.\xi = \xi$ for every $g \in G$.

Remark

G is extremely amenable iff M(G) is a singleton.

Veech, 1977

No locally compact group is extremely amenable

Always a good news to have a new example of such a group.

Examples

- Aut(X, μ): the group of all measure-preserving transformations of the standard Lebesgue measure space (X, μ), with the weak topology: the weakest topology making continuous every fonction
 Aut(X, μ) ∋ τ → μ(A ∩ τ(A)) ∈ ℝ(Giordano and Pestov, 2002)
- Aut^{*}(X, μ): the group of all non-singular measure class preserving transformations of the standard Lebesgue measure space (X, μ), with the weak topology (Giordano and Pestov, 2007)
- Aut(X, μ) with the uniform topology:
 d(σ, τ) = μ{x ∈ X : σ(x) ≠ τ(x)} is non-amenable.
 (Giordano and Pestov, 2002)

伺 と く ヨ と く ヨ と

Is the group $Aut^*(X, \mu)$ equipped with the uniform topology extremely amenable, or even amenable?

- Iso(U) (Pestov, 2002)
- In general:

Kechris, Pestov and Todorcevic, 2005

Suppose that \mathbb{M} is a countable ultra homogeneous ordered structure. Then the automorphism group of \mathbb{M} is extremely amenable if and only if $Age(\mathbb{M}) :=$ Finitely generated substructures of \mathbb{M} has the Ramsey property.

For the structures we are interested in, e.g. Gurarij space and Poulsen simplex, the *exact* Ramsey property is not the right notion to study the corresponding universal minimal flows. Instead, we need to deal with colourings of embeddings and *approximate*, not necessarily exact, Ramsey properties. Similarly, there will not be ultra homogeneity but *approximate* ultra homogeneity.

Definition

- Given two Banach spaces X and Y, by an *embedding* from X into Y we mean a linear operator T : X → Y such that ||T(x)||_Y = ||x||_X for all x ∈ X.
- Let Emb(X, Y) be the collection of all embeddings from X into Y.
- Emb(X, Y) is a metric space with the norm distance $d(T, U) := ||T U|| := \sup_{x \in S_X} ||T(x) U(x)||.$

★ ∃ →

Bartošová , Lopez-Abad and M.

Given integers d, m and r, and given $\varepsilon > 0$, there exists $n = \mathbf{n}_{\infty}(d, m, r, \varepsilon)$ such that for every coloring $c : \operatorname{Emb}(\ell_{\infty}^{d}, \ell_{\infty}^{n}) \longrightarrow [r]$ there are $T \in \operatorname{Emb}(\ell_{\infty}^{m}, \ell_{\infty}^{n})$ and $\tilde{r} < r$ such that

$$\mathcal{T} \circ \operatorname{Emb}(\ell^d_\infty,\ell^m_\infty) \subseteq (c^{-1}\{\widetilde{r}\})_{arepsilon}.$$

Definition

- A finite dimensional space F is called *polyhedral* when the set of extremal points of its unit ball $\partial_e(B_F)$ is finite.
- ② Given an integer d, let Pol_d be the class of all polyhedral spaces F such that $\#\partial_e(B_{F^*}) = 2d$.

Corollary 1

Given $d, m \in \mathbb{N}$, $r \in \mathbb{N}$ and $\varepsilon > 0$, there is $n = \mathbf{n}_{pol}(d, m, r, \varepsilon)$ such that for every $F \in \operatorname{Pol}_d$ every $G \in \operatorname{Pol}_m$ and every coloring $c : \operatorname{Emb}(F, \ell_{\infty}^n) \longrightarrow r$, there is $T \in \operatorname{Emb}(G, \ell_{\infty}^n)$ and $\tilde{r} < r$ such that

$$T \circ \operatorname{Emb}(F, G) \subseteq (c^{-1}{\widetilde{r}})_{\varepsilon}.$$

Given two finite dimensional spaces F and G and given $\theta \ge 1$. Let $\operatorname{Emb}_{\theta}(F, G) := \{T : F \longrightarrow G : T \text{ is an isomorphic embedding such that } \|T\| = \|T^{-1}\| < 0\}$

T is an isomorphic embedding such that ||T||, $||T^{-1}|| \le \theta$.

Corollary 2: Ingredient 1

Given finite normed dimensional spaces F and G, an integer r, numbers $\theta > 1$ and $\varepsilon > 0$, there exists $n = \mathbf{n_{fd}}(F, G, r, \theta, \varepsilon)$ such that for every coloring $c : \operatorname{Emb}_{\theta^2}(F, \ell_{\infty}^n) \longrightarrow r$, there are $\widetilde{T} \in \operatorname{Emb}_{\theta}(G, \ell_{\infty}^n)$ and $\widetilde{r} < r$ such that

$$\widetilde{\mathcal{T}} \circ \operatorname{Emb}_{\theta}(\mathsf{F}, \mathsf{G}) \subseteq (c^{-1}\{\widetilde{r}\})_{\theta^2 - 1 + \varepsilon}.$$

Extreme amenability of $Iso_L(\mathbb{G})$: Pestov's criteria

Let G be a group acting on X and (Y, d) a metric space.

Definition

A function $f : X \longrightarrow (Y, d)$ is finitely left oscillation stable when for every finite subset $F \subseteq X$ and every $\varepsilon > 0$ there is $g \in G$ such that $\operatorname{osc}(f \upharpoonright gF) \le \varepsilon$.

Pestov: Ingredient 2

For a topological group G, the following are equivalent.

- **G** is extremely amenable
- Every bounded real-valued left uniformly continuous function *f* on *G* is finitely left oscillation stable.
- Every bounded real-valued right uniformly continuous function
 f on G is finitely right oscillation stable.

E.A. of $Iso_L(\mathbb{G})$: Approximate ultra homogeneity

W. Kubis and S. Solecki: Ingredient 3

Let $X \subseteq \mathbb{G}$ be a subspace of finite dimension, $\theta > 1$ and let $\gamma \in \operatorname{Emb}_{\theta}(X, \mathbb{G})$. Then there exists $g \in G = Iso_{L}(\mathbb{G})$ such that $\|g \upharpoonright X - \gamma\| \leq \theta - 1$.

Hints of the proof

- Let $f : G \longrightarrow \mathbb{R}, \ \varepsilon > 0$, and $F \subseteq G$ be as Ingredient 2.
- O There are n₀ and δ > 0 such that
 $\|g \upharpoonright X_{n_0} h \upharpoonright X_{n_0}\| \le \delta \implies |f(g) f(h)| \le \frac{\varepsilon}{4} \forall g, h \in G.$
- Let $Y := \langle \bigcup_{\sigma \in F} \sigma(X_{n_0}) \rangle$ is a finite dimensional subspace of \mathbb{G} .
- Six a finite ε/4-net N of the image of f and an isometry θ : ℓⁿ_∞ → X_n.
- **5** Denote $n := \mathbf{n}_{\mathbf{fd}}(X_{n_0}, Y, \#\mathcal{N}, (1+\delta/4)^{1/2}, \delta/4).$
- given $\varphi \in \operatorname{Emb}_{1+\delta/4}(X_{n_0}, \ell_{\infty}^n)$, by Ingredient 3, let $g_{\varphi} \in G$ be such that $\|\theta \circ \varphi g_{\varphi} \upharpoonright X_{n_0}\| \leq \frac{\delta}{4}$

More Hints of the proof

O Define

$$c_0: \operatorname{Emb}_{1+rac{\delta}{4}}(X_{n_0}, \ell_\infty^n) \longrightarrow \#\mathcal{N}$$

as follows: given $\varphi \in \operatorname{Emb}_{1+\delta/4}(X_{n_0}, \ell_{\infty}^n)$, let $c_0(\varphi) \in \mathcal{N}$ be such that $|c_0(\varphi) - f(g_{\varphi})| \leq \frac{\varepsilon}{4}$

- Sy ingredient 1, there exists $\gamma \in \operatorname{Emb}_{(1+\delta/4)^{1/2}}(Y, \ell_n^{\infty})$ and $\eta \in \mathcal{N}$ such that $\gamma \circ \operatorname{Emb}_{(1+\delta/4)^{1/2}}(X_{n_0}, Y) \subseteq (c_0^{-1}\{\eta\})_{\frac{\delta}{2}}$.
- Using again ingredient 3, we find $\overline{g} \in G$ such that $\|\overline{g} \upharpoonright Y \theta \circ \gamma\| \le (1 + \frac{\delta}{4})^{\frac{1}{2}} 1 \le \frac{\delta}{4}$.

$$osc(f \restriction \overline{g}F) \leq \varepsilon$$

Remark

The Extreme amenability of the Polish group $Iso_L(\mathbb{G})$ is in fact, via the approximate ultra homogeneity of \mathbb{G} , equivalent to the ingredient 1, i.e. the Ramsey Property for finite dimensional normed spaces.

< ∃ >

Bartošová , Lopez-Abad and M.

The universal minimal flow of the group $Aut(\mathbb{P})$ of affine homeomorphisms on \mathbb{P} with the compact-open topology is \mathbb{P} .

Proposition

The stabilizer G_p of any extreme point $p \in \mathbb{P}$ is extremely amenable.

Hints

- Every metrizable simplex is the inverse limit of some system
 (Δ_n, ρ_n)_n. Where Δ_n is the positive part of the unit ball of
 ℓ₁ⁿ⁻¹. (Lazar and Lindenstrauss)
- Let Epi(K, L) be the collection of all affine continuous mappings from K onto L.
- S As consequence of the approximate Ramsey property for the positive embedding between ℓⁿ_∞'s, we have:

Theorem

Given integers d, m and r, $p \in \partial_e(\Delta_d)$, $q \in \partial_e(\Delta_m)$, and given $\varepsilon > 0$ there exist an integer $n = \mathbf{n_{Simpl,0}}(d, m, r, \varepsilon)$ such that for every coloring $c : \operatorname{Epi}((\Delta_n, t), (\Delta_d, p)) \longrightarrow r$, there is $\gamma \in \operatorname{Epi}((\Delta_n, t), (\Delta_m, q))$ and $r_0 < r$ such that

$$\operatorname{Epi}((\Delta_m, q), (\Delta_d, p)) \circ \gamma \subseteq (c^{-1}\{r_0\})_{\varepsilon}.$$
 (1)

The corresponding quotient G/G_p is precompact and its completion is *G*-homeomorphic to \mathbb{P}

Minimality: Consequence of the following:

Bartošová , Lopez-Abad and M.

Every non-trivial metrizable simplex for which the natural action of its group of affine homeomorphisms is minimal is affinely homeomorphic to the Poulsen simplex.

- Let F(M, p) be the Lipschitz Free space over the pointed metric space (M, p).
- **2** If *M* is a finite metric space, then $\mathcal{F}(M)$ is a polyhedral space.

Bartošová , Lopez-Abad and M.: Ingredient 1'

For every finite metric spaces M and N, $r \in \mathbb{N}$ and $\varepsilon > 0$ there exists a finite metric space P such that for every coloring $c : \operatorname{Emb}(M, P) \longrightarrow r$, there exists $\sigma \in \operatorname{Emb}(N, P)$ and $\overline{r} < r$ such that

$$\sigma \circ \operatorname{Emb}(M, N) \subseteq (c^{-1}(\overline{r}))_{\varepsilon}.$$

Changing in the proof of the extreme amenability of $\operatorname{Iso}(\mathbb{G})$

- **()** Ingredient 1 by ingredient 1'
- eping Ingredient 2, and
- $\textcircled{O} \ \ \mbox{Ingredient 3 by the Ultrahomogeneity of } \mathbb{U}$

we obtain an alternative proof of

Pestov

The group $Iso(\mathbb{U})$ is extremely amenable.

Group	Lévy group	Automatic continuity
$\operatorname{Iso}(\mathbb{U})$	Pestov, 2005	Sabok, 2014
$\operatorname{Iso}_L(\mathbb{G})$?	?
$\operatorname{Homeo}(Q)$	No	?
$\operatorname{Aut}(\mathbb{P})$	No	?

Gromov and Milman

- An increasing sequence (G_n) of compact subgroups of G, equipped with their Haar probability measures µ_n, is a Lévy sequence if for every open V ∋ e and every sequence A_n ⊆ K_n of measurable sets such that lim inf_{n→∞} µ_n(A_n) > 0, we have that lim_{n→∞} µ_n(VA_n) = 1.
- G is a Lévy group if it has a Lévy sequence of compact subgroups whose union is dense in G.