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GUE random matrices

I (Ω, P) is a probability space
I XN : Ω→MN(C) is a random matrix

I XN = X∗N =
1√
N
(xij)ij a N ×N self-adjoint random matrix

with xij independent complex Gaussians with E(xij) = 0
and E(|xij|

2) = 1 (modulo self-adjointness)
I λ1 6 λ2 6 · · · 6 λN eigenvalues of XN,

µN =
1
N
(δλ1 + · · ·+ δλN) is the spectral measure of XN,∫

tk dµN(t) = tr(Xk
N)

I

XN is the N ×N GUE with limiting
eigenvalue distribution given by
Wigner’s semi-circle law
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Wigner and Universality

I in the physics literature universality refers to the fact that
the limiting eigenvalue distribution is semi-circular even if
we don’t assume the entries are Gaussian
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random variables and their distributions

I (A,ϕ) unital algebra with state;
I C〈x1, . . . , xs〉 is the unital algebra generated by the

non-commuting variables x1, . . . , xs

I the distribution of a1, . . . , as ∈ (A,ϕ) is the state
µ : C〈x1, . . . , xs〉 → C given by µ(p) = ϕ(p(a1, . . . , as))

I convergence in distribution of {a(N)
1 , . . . , a(N)

s } ⊂ (AN,ϕN)
to {a1, . . . , as} ⊂ (A,ϕ) means pointwise convergence of
distributions: µN(p)→ µ(p) for p ∈ C〈x1, . . . , xs〉.

I let f (t) = 1√
2π

e−t2/2 be the density of the Gauss law

I then log(f̂ (is)) =
s2

2
=

∞∑
n=1

kn
sn

n!
with k2 = 1 and kn = 0 for

n , 2, so the Gauss law is characterized by having all
cumulants except k1 and k2 equal to 0
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Moments and Cumulants
I a1, . . . , as ∈ (A,ϕ) random variables
I a partition, π = {V1, . . . , Vk}, of [n] = {1, 2, 3, . . . , n} is a

decomposition of [n] into a disjoint union of subsets:
Vi ∩ Vj = ∅ for i , j and [n] = V1 ∪ · · · ∪ Vk.

I P(n) is set of all partitions of [n]
I given a family of maps {k1, k2, k3, . . . , } with kn : A⊗n → C

we define

kπ(a1, . . . , an) =
∏
V∈π

V={i1,...,ij}

kj(ai1 , . . . , aij)

I in general moments are defined by the moment-cumulant
formula

ϕ(a1 · · · an) =
∑

π∈P(n)

kπ(a1, . . . , an)

I k1(a1) = ϕ(a1) and ϕ(a1a2) = k2(a1, a2) + k1(a1)k1(a2)
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cumulants and independence
I a ∈ A, nth cumulant of a is k(a)

n = kn(a, . . . , a)
I if a1 and a2 are (classically) independent then

k(a1+a2)
n = k(a1)

n + k(a2)
n for all n

I if kn(ai1 , . . . , ain) = 0 unless i1 = · · · in we say mixed
cumulants vanish

I if mixed cumulants vanish then a1 and a2 are independent

free cumulants and free independence (R. Speicher)

I partition with a crossing: 1 2 3 4

I non-crossing partition: 1 2 3 4
I NC(n) = { non-crossing partitions of [n]}
I ϕ(a1 · · · an) =

∑
π∈NC(n)

κπ(a1, . . . , an) defines the free

cumulants: same rules apply as for classical independence.
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freeness and asymptotic freeness

I if a and b are free with respect to ϕ then
ϕ(abab) = ϕ(a2)ϕ(b)2 +ϕ(a)2ϕ(b2) −ϕ(a)2ϕ(b)2

I in general if a1, . . . , as are free then all mixed moments
ϕ(xi1 · · · xin) can be written as a polynomial in the moments
of individual moments {ϕ(ak

i )}i,k.

I {a(N)
1 , . . . , a(N)

s } ⊂ (AN,ϕN) are asymptotically free if µn → µ

and x1, . . . , xs are free with respect to µ

I in practice this means: a(N)
1 , . . . , a(N)

s ∈ (An,ϕN) are
asymptotically free if whenever we have b(N)

i ∈ alg(1, a(N)
ji

)

is such that ϕN(b
(N)
i ) = 0 and j1 , j2 , · · · , jm we have

ϕN(b
(N)
1 · · · b(N)

m )→ 0
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simple distributions: Wigner and Marchenko-Pastur

I let f (t) = 1√
2π

e−t2/2 be the density of the Gauss law

I then log(f̂ (is)) =
s2

2
=

∞∑
n=1

kn
sn

n!
with k2 = 1 and kn = 0 for

n , 2, so the Gauss law is characterized by having all
cumulants except k1 and k2 equal to 0

I µ a probability measure on R, z ∈ C+,
G(z) =

∫
(z − t)−1 dµ(t) is the Cauchy transform of µ and

R(z) = G〈−1〉(z) − 1
z = κ1 + κ2z + κ3z2 + · · · is the

R-transform of µ
I if dµ(t) = 1

2π

√
4 − t2 dt is the semi-circle law we have κn = 0

except for κ2 = 1
I if 1 < c and a = (1 −

√
c)2 and b = (1 +

√
c)2 we let

dµ =

√
(b−t)(t−a)

2πt dt, µ is the Marchenko-Pastur distribution:
κn = c for all n
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random matrices and asymptotic freeness

I XN = X∗N =
1√
N
(xij)ij a N ×N self-adjoint random matrix

with xij independent complex Gaussians with E(xij) = 0
and E(|xij|

2) = 1 (modulo self-adjointness)
I Voiculescu’s big theorem: for large N mixed moments of

XN and YN are close to those of freely independent
semi-circular operators (thus asymptotically free)
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I (with M. Popa) transposing a matrix can free it from itself
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Wishart Random Matrices
I Suppose G1, . . . , Gd1 are d2 × p random matrices where

Gi = (g(i)
jk )jk and g(i)

jk are complex Gaussian random
variables with mean 0 and (complex) variance 1, i.e.
E(|g(i)

jk |2) = 1. Moreover suppose that the random variables

{g(i)
jk }i,j,k are independent.

I

W =
1

d1d2

 G1
...

Gd1

( G∗1 · · · G∗d1

)
=

1
d1d2

(GiG∗j )ij

is a d1d2 × d1d2 Wishart
matrix. We write
W = d−1

1 (W(i, j))ij as d1 × d1
block matrix with each entry
the d2 × d2 matrix d−1

2 GiG∗j .
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Partial Transposes on Md1(C)⊗Md2(C)

· Gi a d2 × p matrix
· W(i, j) = 1

d2
GiG∗j , a d2 × d2 matrix,

· W = 1
d1
(W(i, j))ij is a d1 × d1 block matrix with entries W(i, j)

· WT = 1
d1
(W(j, i)T)ij is the “full” transpose

· W Γ= 1
d1
(W(j, i))ij is the “left” partial transpose

· WΓ = 1
d1
(W(i, j)T)ij is the “right” partial transpose

· we assume that
p

d1d2
→ c, 0 < c <∞

· eigenvalue distributions of W and WT converge to
Marchenko-Pastur with parameter c

I eigenvalues of W Γand WΓ converge to a shifted
semi-circular with mean c and variance c (Aubrun, 2012)

I W and WT are asymptotically free (M. and Popa, 2014)
I (main theorem) the matrices {W, W Γ, WΓ , WT} form an

asymptotically free family
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graphs and graphs sums (with Roland Speicher)

I a graph means a finite oriented graph with possibly loops
and multiple edges

SCALING LIMITS OF RANDOM TREES AND PLANAR MAPS 3

Figure 1. Two planar quadrangulations, with respectively
2500 and 20000 edges. These pictures represent the quad-
rangulations as graphs, and do not take account of the em-
bedding in the sphere. Simulations by J.-F. Marckert.

Much of the recent progress in the understanding of asymptotic proper-
ties of large random planar maps was made possible by the use of bijections
between different classes of planar maps and certain labeled trees. In the par-
ticular case of quadrangulations, such bijections were discovered by Cori and
Vauquelin [14] and later popularized by Schaeffer [46] (see also Chasssaing
and Schaeffer [12]). The Cori-Vauquelin-Schaeffer bijection was extended
to much more general planar maps by Bouttier, Di Francesco and Guitter
[9]. In the case of bipartite planar maps, this extension takes a particu-
larly simple form, which explains why some of the recent work [35, 30, 31]
concentrates on the bipartite case. The reason why the bijections between
maps and trees are interesting is the fact that properties of large (labeled)
trees are often much easier to understand than those of large graphs. In-
deed, it has been known for a long time and in particular since the work of
Aldous [1, 2] that one can often describe the asymptotic properties of large
random trees in terms of “continuous trees” whose prototype is the so-called
CRT or Brownian continuum random tree. In the case of trees with labels,
the relevant scaling limit for most of the discrete models of interest is the
CRT equipped with Brownian labels, which can conveniently be constructed

I a graph sum means attach a matrix to each edge and sum
over vertices

T

i j∑
i,j tij

i T

∑
i tii

T1 T2

T3
i

j

k∑
i,j,k t(1)

ij t(2)
jk t(3)

ki
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graph sums and their growth

I given G = (V, E) a graph and an assignment
e 7→ Te ∈MN(C) we have a graph sum

SG(T) =
∑

i:V→[N]

∏
e∈E

t(e)
it(e)is(e)

I problem find “best” r(G) ∈ R+ such that for all T we have

|SG(T)| 6 Nr(G)
∏
e∈E

‖Te‖

I for example: |SG(T1, T2, T3)| 6 N3/2‖T1‖ ‖T2‖ ‖T3‖when

G =
T1

T2

T3

i

k

l

j
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finding the growth (J.F.A. 2012)

T1

T2

T3

T4

T5

T6 T7

T8 T9
T10

T11

T12

i2
i1

i3

i4

i5

i7
i8

i6

 i2 = i3

i7 = i8

= i5 = i6

i4

i1

∴ r =
3
2

I a edge is cutting is its removal disconnects the graph
I a graph is two-edge connected if it has no cutting edge
I a two-edge connected component is a two-edge connected

subgraph which is maximal
I we make a quotient graph whose vertices are the two-edge

connected components on the old graph and the edges are
the cutting edges of the old graph

I r(G) is 1
2 the number of leaves on the quotient graph

(always a union of trees)
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Conclusion: traces and graph sums
I X = W Γis the partially transposed Wishart matrix, but

now we no longer assume entries are Gaussian
I we let A1, A2, . . . , An be d1d2 × d1d2 constant matrices
I compute E(Tr(XA1XA2 · · ·XAn)); when Ai = I we get the

nth moment of the eigenvalue distribution
I integrating out the X’s leaves a sum of graph sums, one for

each partition π ∈ P(n)
1

2

3

4

X

X X

X

A

A

A

A

i1 i−1

i2

i−2

i3i−3

i4

i−4
π =
(1,−3)(−1, 3)
(2,−2)(4,−4)

a
(1)
i1i−1

a
(2)
i2i−2

a

(3)

i3i−3

a
(4)
i4i−4

(1, −3) (−1, 3)

(2, −2)

(4, −4)

thm: the only π’s for which r(Gπ) is large enough (n/2 + 1 in this
case) are non-crossing partitions with blocks of size 1 or 2
(corresponding to the free cumulants κ1 and κ2)

thm: method extends to showing that {W, W Γ, WΓ , WT} ass. free
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