Freeness and Graph Sums

Jamie Mingo (Queen's University)

based on joint work with Roland Speicher and Mihai Popa

Análise funcional e sistemas dinâmicos
Universidade Federal de Santa Catarina
February 23, 2015

GUE random matrices

- (Ω, P) is a probability space
- $X_{N}: \Omega \rightarrow M_{N}(\mathbf{C})$ is a random matrix
- $X_{N}=X_{N}^{*}=\frac{1}{\sqrt{N}}\left(x_{i j}\right)_{i j}$ a $N \times N$ self-adjoint random matrix with $x_{i j}$ independent complex Gaussians with $\mathrm{E}\left(x_{i j}\right)=0$ and $\mathrm{E}\left(\left|x_{i j}\right|^{2}\right)=1$ (modulo self-adjointness)
- $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{N}$ eigenvalues of X_{N},
$\mu_{N}=\frac{1}{N}\left(\delta_{\lambda_{1}}+\cdots+\delta_{\lambda_{N}}\right)$ is the spectral measure of X_{N}, $\int t^{k} d \mu_{N}(t)=\operatorname{tr}\left(X_{N}^{k}\right)$
X_{N} is the $N \times N$ GUE with limiting
- eigenvalue distribution given by Wigner's semi-circle law

Wigner and Universality

- in the physics literature universality refers to the fact that the limiting eigenvalue distribution is semi-circular even if we don't assume the entries are Gaussian

random variables and their distributions

- (\mathcal{A}, φ) unital algebra with state;
- $\mathbf{C}\left\langle x_{1}, \ldots, x_{s}\right\rangle$ is the unital algebra generated by the non-commuting variables x_{1}, \ldots, x_{s}
- the distribution of $a_{1}, \ldots, a_{s} \in(\mathcal{A}, \varphi)$ is the state $\mu: \mathbf{C}\left\langle x_{1}, \ldots, x_{s}\right\rangle \rightarrow \mathbf{C}$ given by $\mu(p)=\varphi\left(p\left(a_{1}, \ldots, a_{s}\right)\right)$
- convergence in distribution of $\left\{a_{1}^{(N)}, \ldots, a_{s}^{(N)}\right\} \subset\left(\mathcal{A}_{N}, \varphi_{N}\right)$ to $\left\{a_{1}, \ldots, a_{s}\right\} \subset(\mathcal{A}, \varphi)$ means pointwise convergence of distributions: $\mu_{N}(p) \rightarrow \mu(p)$ for $p \in \mathbf{C}\left\langle x_{1}, \ldots, x_{s}\right\rangle$.
- let $f(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$ be the density of the Gauss law
- then $\log (\hat{f}(i s))=\frac{s^{2}}{2}=\sum_{n=1}^{\infty} k_{n} \frac{s^{n}}{n!}$ with $k_{2}=1$ and $k_{n}=0$ for $n \neq 2$, so the Gauss law is characterized by having all cumulants except k_{1} and k_{2} equal to 0

Moments and Cumulants

- $a_{1}, \ldots, a_{s} \in(\mathcal{A}, \varphi)$ random variables
- a partition, $\pi=\left\{V_{1}, \ldots, V_{k}\right\}$, of $[n]=\{1,2,3, \ldots, n\}$ is a decomposition of $[n]$ into a disjoint union of subsets: $V_{i} \cap V_{j}=\emptyset$ for $i \neq j$ and $[n]=V_{1} \cup \cdots \cup V_{k}$.
- $\mathcal{P}(n)$ is set of all partitions of $[n]$
- given a family of maps $\left\{k_{1}, k_{2}, k_{3}, \ldots,\right\}$ with $k_{n}: \mathcal{A}^{\otimes n} \rightarrow \mathbf{C}$ we define

$$
k_{\pi}\left(a_{1}, \ldots, a_{n}\right)=\prod_{\substack{V \in \pi \\ V=\left\{i_{1}, \ldots, i_{j}\right\}}} k_{j}\left(a_{i_{1}}, \ldots, a_{i_{j}}\right)
$$

- in general moments are defined by the moment-cumulant formula

$$
\varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in \mathcal{P}(n)} k_{\pi}\left(a_{1}, \ldots, a_{n}\right)
$$

- $k_{1}\left(a_{1}\right)=\varphi\left(a_{1}\right)$ and $\varphi\left(a_{1} a_{2}\right)=k_{2}\left(a_{1}, a_{2}\right)+k_{1}\left(a_{1}\right) k_{1}\left(a_{2}\right)$

cumulants and independence

- $a \in \mathcal{A}, n^{\text {th }}$ cumulant of a is $k_{n}^{(a)}=k_{n}(a, \ldots, a)$
- if a_{1} and a_{2} are (classically) independent then $k_{n}^{\left(a_{1}+a_{2}\right)}=k_{n}^{\left(a_{1}\right)}+k_{n}^{\left(a_{2}\right)}$ for all n
- if $k_{n}\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)=0$ unless $i_{1}=\cdots i_{n}$ we say mixed cumulants vanish
- if mixed cumulants vanish then a_{1} and a_{2} are independent

free cumulants and free independence (R. Speicher)

- partition with a crossing: | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
- non-crossing partition: $1 \begin{aligned} & 1 \\ & ـ\end{aligned}$
- $N C(n)=\{$ non-crossing partitions of $[n]\}$
- $\varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C(n)} \kappa_{\pi}\left(a_{1}, \ldots, a_{n}\right)$ defines the free
cumulants: same rules apply as for classical independence.

freeness and asymptotic freeness

- if a and b are free with respect to φ then $\varphi(a b a b)=\varphi\left(a^{2}\right) \varphi(b)^{2}+\varphi(a)^{2} \varphi\left(b^{2}\right)-\varphi(a)^{2} \varphi(b)^{2}$
- in general if a_{1}, \ldots, a_{s} are free then all mixed moments $\varphi\left(x_{i_{1}} \cdots x_{i_{n}}\right)$ can be written as a polynomial in the moments of individual moments $\left\{\varphi\left(a_{i}^{k}\right)\right\}_{i, k}$.
- $\left\{a_{1}^{(N)}, \ldots, a_{s}^{(N)}\right\} \subset\left(\mathcal{A}_{N}, \varphi_{N}\right)$ are asymptotically free if $\mu_{n} \rightarrow \mu$ and x_{1}, \ldots, x_{s} are free with respect to μ
- in practice this means: $a_{1}^{(N)}, \ldots, a_{s}^{(N)} \in\left(\mathcal{A}_{n}, \varphi_{N}\right)$ are asymptotically free if whenever we have $b_{i}^{(N)} \in \operatorname{alg}\left(1, a_{j_{i}}^{(N)}\right)$ is such that $\varphi_{N}\left(b_{i}^{(N)}\right)=0$ and $j_{1} \neq j_{2} \neq \cdots \neq j_{m}$ we have $\varphi_{N}\left(b_{1}^{(N)} \cdots b_{m}^{(N)}\right) \rightarrow 0$

simple distributions: Wigner and Marchenko-Pastur

- let $f(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$ be the density of the Gauss law
- then $\log (\hat{f}(i s))=\frac{s^{2}}{2}=\sum_{n=1}^{\infty} k_{n} \frac{s^{n}}{n!}$ with $k_{2}=1$ and $k_{n}=0$ for
$n \neq 2$, so the Gauss law is characterized by having all cumulants except k_{1} and k_{2} equal to 0
- μ a probability measure on $\mathbb{R}, z \in \mathbf{C}^{+}$,
$G(z)=\int(z-t)^{-1} d \mu(t)$ is the Cauchy transform of μ and $R(z)=G^{\langle-1\rangle}(z)-\frac{1}{z}=\kappa_{1}+\kappa_{2} z+\kappa_{3} z^{2}+\cdots$ is the R-transform of μ
- if $d \mu(t)=\frac{1}{2 \pi} \sqrt{4-t^{2}} d t$ is the semi-circle law we have $\kappa_{n}=0$ except for $\kappa_{2}=1$
- if $1<c$ and $a=(1-\sqrt{c})^{2}$ and $b=(1+\sqrt{c})^{2}$ we let $d \mu=\frac{\sqrt{(b-t)(t-a)}}{2 \pi t} d t, \mu$ is the Marchenko-Pastur distribution: $\kappa_{n}=c$ for all n

random matrices and asymptotic freeness

- $X_{N}=X_{N}^{*}=\frac{1}{\sqrt{N}}\left(x_{i j}\right)_{i j}$ a $N \times N$ self-adjoint random matrix with $x_{i j}$ independent complex Gaussians with $\mathrm{E}\left(x_{i j}\right)=0$ and $\mathrm{E}\left(\left|x_{i j}\right|^{2}\right)=1$ (modulo self-adjointness)
- Voiculescu's big theorem: for large N mixed moments of X_{N} and Y_{N} are close to those of freely independent semi-circular operators (thus asymptotically free)

$$
X_{1000}+X_{1000}^{2}
$$

$$
X_{1000}+\left(X_{1000}^{T}\right)^{2}
$$

- (with M. Popa) transposing a matrix can free it from itself

Wishart Random Matrices

- Suppose $G_{1}, \ldots, G_{d_{1}}$ are $d_{2} \times p$ random matrices where $G_{i}=\left(g_{j k}^{(i)}\right)_{j k}$ and $g_{j k}^{(i)}$ are complex Gaussian random variables with mean 0 and (complex) variance 1, i.e.
$\mathrm{E}\left(\left|g_{j k}^{(i)}\right|^{2}\right)=1$. Moreover suppose that the random variables $\left\{g_{j k}^{(i)}\right\}_{i, j, k}$ are independent.

$$
W=\frac{1}{d_{1} d_{2}}\binom{\frac{G_{1}}{\vdots}}{\frac{G_{d_{1}}}{}}\left(G_{1}^{*}|\cdots| G_{d_{1}}^{*}\right)=\frac{1}{d_{1} d_{2}}\left(G_{i} G_{j}^{*}\right)_{i j}
$$

is a $d_{1} d_{2} \times d_{1} d_{2}$ Wishart
matrix. We write
$W=d_{1}^{-1}(W(i, j))_{i j}$ as $d_{1} \times d_{1}$ block matrix with each entry the $d_{2} \times d_{2}$ matrix $d_{2}^{-1} G_{i} G_{j}^{*}$.

Partial Transposes on $M_{d_{1}}(\mathbf{C}) \otimes M_{d_{2}}(\mathbf{C})$

- G_{i} a $d_{2} \times p$ matrix
- $W(i, j)=\frac{1}{d_{2}} G_{i} G_{j}^{*}$, a $d_{2} \times d_{2}$ matrix,
- $W=\frac{1}{d_{1}}(W(i, j))_{i j}$ is a $d_{1} \times d_{1}$ block matrix with entries $W(i, j)$
- $W^{\mathrm{T}}=\frac{1}{d_{1}}\left(W(j, i)^{\mathrm{T}}\right)_{i j}$ is the "full" transpose
- $W^{\top}=\frac{1}{d_{1}}(W(j, i))_{i j}$ is the "left" partial transpose
- $W^{\Gamma}=\frac{1}{d_{1}}\left(W(i, j)^{\mathrm{T}}\right)_{i j}$ is the "right" partial transpose
- we assume that $\frac{p}{d_{1} d_{2}} \rightarrow c, 0<c<\infty$
- eigenvalue distributions of W and W^{T} converge to Marchenko-Pastur with parameter c
- eigenvalues of W^{\top} and W^{Γ} converge to a shifted semi-circular with mean c and variance c (Aubrun, 2012)
- W and W^{T} are asymptotically free (M. and Popa, 2014)
- (main theorem) the matrices $\left\{W, W^{\top}, W^{\Gamma}, W^{\mathrm{T}}\right\}$ form an asymptotically free family

graphs and graphs sums (with Roland Speicher)

- a graph means a finite oriented graph with possibly loops and multiple edges

- a graph sum means attach a matrix to each edge and sum over vertices

$$
\sum_{i, j} t_{i j} \quad \sum_{i} t_{i i}
$$

$$
\sum_{i j, k} t_{i j}^{(1)} t_{j k}^{(2)} t_{k i}^{(3)}
$$

graph sums and their growth

- given $G=(V, E)$ a graph and an assignment $e \mapsto T_{e} \in M_{N}(\mathbf{C})$ we have a graph sum

$$
S_{G}(T)=\sum_{i: V \rightarrow[N]} \prod_{e \in E} t_{i_{t(e)} i_{s(e)}}^{(e)}
$$

- problem find "best" $r(G) \in \mathbb{R}^{+}$such that for all T we have

$$
\left|S_{G}(T)\right| \leqslant N^{r(G)} \prod_{e \in E}\left\|T_{e}\right\|
$$

- for example: $\left|S_{G}\left(T_{1}, T_{2}, T_{3}\right)\right| \leqslant N^{3 / 2}\left\|T_{1}\right\|\left\|T_{2}\right\|\left\|T_{3}\right\|$ when

finding the growth (J.F.A. 2012)

- a edge is cutting is its removal disconnects the graph
- a graph is two-edge connected if it has no cutting edge
- a two-edge connected component is a two-edge connected subgraph which is maximal
- we make a quotient graph whose vertices are the two-edge connected components on the old graph and the edges are the cutting edges of the old graph
- $r(G)$ is $\frac{1}{2}$ the number of leaves on the quotient graph (always a union of trees)

Conclusion: traces and graph sums

- $X=W^{7}$ is the partially transposed Wishart matrix, but now we no longer assume entries are Gaussian
- we let $A_{1}, A_{2}, \ldots, A_{n}$ be $d_{1} d_{2} \times d_{1} d_{2}$ constant matrices
- compute $\mathrm{E}\left(\operatorname{Tr}\left(X A_{1} X A_{2} \cdots X A_{n}\right)\right)$; when $A_{i}=I$ we get the $n^{\text {th }}$ moment of the eigenvalue distribution
- integrating out the X's leaves a sum of graph sums, one for each partition $\pi \in \mathcal{P}(n)$

$$
\begin{aligned}
& \begin{array}{l}
\pi= \\
(1,-3)(-1,3) \\
(1,-3) \propto \underset{a_{i_{2} i-2}^{(2)}}{(2)}(-1,3) \\
(3)
\end{array} \\
& (2,-2)(4,-4)
\end{aligned}
$$

$$
\begin{aligned}
& (4,-4) \bigcirc a_{i_{i} i_{-}}^{(4)}
\end{aligned}
$$

тнм: the only π 's for which $r\left(G_{\pi}\right)$ is large enough $(n / 2+1$ in this case) are non-crossing partitions with blocks of size 1 or 2 (corresponding to the free cumulants κ_{1} and κ_{2})
тнм: method extends to showing that $\left\{W, W_{\uparrow}^{\top},^{W} W^{\Gamma} W^{\top}\right\}$ ass, free

