Freeness and Graph Sums

Jamie Mingo (Queen's University)

based on joint work with Roland Speicher and Mihai Popa

Análise funcional e sistemas dinâmicos Universidade Federal de Santa Catarina February 23, 2015

GUE random matrices

- (Ω, P) is a probability space
- $X_N : \Omega \to M_N(\mathbf{C})$ is a random matrix
- $X_N = X_N^* = \frac{1}{\sqrt{N}} (x_{ij})_{ij}$ a $N \times N$ self-adjoint random matrix with x_{ij} independent complex Gaussians with $E(x_{ij}) = 0$ and $E(|x_{ij}|^2) = 1$ (modulo self-adjointness)
- $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$ eigenvalues of X_N , $\mu_N = \frac{1}{N} (\delta_{\lambda_1} + \cdots + \delta_{\lambda_N})$ is the spectral measure of X_N , $\int t^k d\mu_N(t) = \operatorname{tr}(X_N^k)$

 X_N is the $N \times N$ GUE with limiting

 eigenvalue distribution given by Wigner's semi-circle law

Wigner and Universality

 in the physics literature *universality* refers to the fact that the limiting eigenvalue distribution is semi-circular even if we don't assume the entries are Gaussian

random variables and their distributions

- (\mathcal{A}, ϕ) unital algebra with state;
- ► C(x₁,...,x_s) is the unital algebra generated by the non-commuting variables x₁,...,x_s
- ► the *distribution* of $a_1, ..., a_s \in (\mathcal{A}, \varphi)$ is the state $\mu : \mathbf{C}\langle x_1, ..., x_s \rangle \to \mathbf{C}$ given by $\mu(p) = \varphi(p(a_1, ..., a_s))$
- convergence in distribution of {a₁^(N),...,a_s^(N)} ⊂ (A_N, φ_N) to {a₁,...,a_s} ⊂ (A, φ) means pointwise convergence of distributions: μ_N(p) → μ(p) for p ∈ C(x₁,...,x_s).
- ► let $f(t) = \frac{1}{\sqrt{2\pi}}e^{-t^2/2}$ be the density of the Gauss law
- then $\log(\hat{f}(is)) = \frac{s^2}{2} = \sum_{n=1}^{\infty} k_n \frac{s^n}{n!}$ with $k_2 = 1$ and $k_n = 0$ for

 $n \neq 2$, so the Gauss law is characterized by having all cumulants except k_1 and k_2 equal to 0

Moments and Cumulants

- $a_1, \ldots, a_s \in (\mathcal{A}, \varphi)$ random variables
- a partition, π = {V₁,..., V_k}, of [n] = {1, 2, 3, ..., n} is a decomposition of [n] into a disjoint union of subsets:
 V_i ∩ V_j = Ø for i ≠ j and [n] = V₁ ∪ ··· ∪ V_k.
- ▶ 𝒫(*n*) is set of all partitions of [*n*]
- given a family of maps $\{k_1, k_2, k_3, \dots, \}$ with $k_n : \mathcal{A}^{\otimes n} \to \mathbb{C}$ we define

$$k_{\pi}(a_1,\ldots,a_n) = \prod_{\substack{V \in \pi \\ V = \{i_1,\ldots,i_j\}}} k_j(a_{i_1},\ldots,a_{i_j})$$

 in general moments are defined by the *moment-cumulant* formula

$$\varphi(a_1\cdots a_n)=\sum_{\pi\in\mathfrak{P}(n)}k_{\pi}(a_1,\ldots,a_n)$$

► $k_1(a_1) = \varphi(a_1)$ and $\varphi(a_1a_2) = k_2(a_1, a_2) + k_1(a_1)k_1(a_2)$

cumulants and independence

- $a \in \mathcal{A}$, n^{th} cumulant of a is $k_n^{(a)} = k_n(a, \ldots, a)$
- if a_1 and a_2 are (classically) independent then $k_n^{(a_1+a_2)} = k_n^{(a_1)} + k_n^{(a_2)}$ for all n
- ▶ if k_n(a_{i1},..., a_{in}) = 0 unless i₁ = ··· i_n we say mixed cumulants vanish
- ▶ if mixed cumulants vanish then *a*₁ and *a*₂ are independent

free cumulants and free independence (R. Speicher)

- ► partition with a crossing: 1 2 3 4
- non-crossing partition: $1 \ 2 \ 3 \ 4$
- $NC(n) = \{ \text{ non-crossing partitions of } [n] \}$
- $\varphi(a_1 \cdots a_n) = \sum_{\pi \in NC(n)} \kappa_{\pi}(a_1, \dots, a_n)$ defines the *free*

cumulants: same rules apply as for classical independence.

freeness and asymptotic freeness

- if *a* and *b* are free with respect to φ then $\varphi(abab) = \varphi(a^2)\varphi(b)^2 + \varphi(a)^2\varphi(b^2) - \varphi(a)^2\varphi(b)^2$
- in general if a₁,..., a_s are free then all *mixed moments* φ(x_{i₁}...x_{i_n}) can be written as a polynomial in the moments of individual moments {φ(a_i^k)}_{i,k}.
- ► $\{a_1^{(N)}, \ldots, a_s^{(N)}\} \subset (\mathcal{A}_N, \varphi_N)$ are *asymptotically free* if $\mu_n \to \mu$ and x_1, \ldots, x_s are free with respect to μ
- in practice this means: a₁^(N),..., a_s^(N) ∈ (A_n, φ_N) are asymptotically free if whenever we have b_i^(N) ∈ alg(1, a_{ji}^(N)) is such that φ_N(b_i^(N)) = 0 and j₁ ≠ j₂ ≠ ··· ≠ j_m we have φ_N(b₁^(N) ··· b_m^(N)) → 0

simple distributions: Wigner and Marchenko-Pastur

- ► let $f(t) = \frac{1}{\sqrt{2\pi}}e^{-t^2/2}$ be the density of the Gauss law
- then $\log(\hat{f}(is)) = \frac{s^2}{2} = \sum_{n=1}^{\infty} k_n \frac{s^n}{n!}$ with $k_2 = 1$ and $k_n = 0$ for

 $n \neq 2$, so the Gauss law is characterized by having all cumulants except k_1 and k_2 equal to 0

- μ a probability measure on \mathbb{R} , $z \in \mathbb{C}^+$, $G(z) = \int (z-t)^{-1} d\mu(t)$ is the Cauchy transform of μ and $R(z) = G^{\langle -1 \rangle}(z) - \frac{1}{z} = \kappa_1 + \kappa_2 z + \kappa_3 z^2 + \cdots$ is the *R*-transform of μ
- if $d\mu(t) = \frac{1}{2\pi}\sqrt{4-t^2} dt$ is the *semi-circle* law we have $\kappa_n = 0$ except for $\kappa_2 = 1$
- ► if 1 < c and $a = (1 \sqrt{c})^2$ and $b = (1 + \sqrt{c})^2$ we let $d\mu = \frac{\sqrt{(b-t)(t-a)}}{2\pi t} dt$, μ is the *Marchenko-Pastur* distribution: $\kappa_n = c$ for all n

random matrices and asymptotic freeness

- $X_N = X_N^* = \frac{1}{\sqrt{N}} (x_{ij})_{ij}$ a $N \times N$ self-adjoint random matrix with x_{ij} independent complex Gaussians with $E(x_{ij}) = 0$ and $E(|x_{ij}|^2) = 1$ (modulo self-adjointness)
- Voiculescu's big theorem: for large N mixed moments of X_N and Y_N are close to those of freely independent semi-circular operators (thus *asymptotically free*)

• (*with M. Popa*) transposing a matrix can free it from itself

Wishart Random Matrices

Suppose G₁,..., G_{d1} are d₂ × p random matrices where G_i = (g_{jk}⁽ⁱ⁾)_{jk} and g_{jk}⁽ⁱ⁾ are complex Gaussian random variables with mean 0 and (complex) variance 1, i.e. E(|g_{jk}⁽ⁱ⁾|²) = 1. Moreover suppose that the random variables {g_{jk}⁽ⁱ⁾}_{ij,k} are independent.

$$W = \frac{1}{d_1 d_2} \left(\underbrace{\frac{G_1}{\vdots}}{G_{d_1}} \right) \left(\begin{array}{c} G_1^* \mid \cdots \mid G_{d_1}^* \end{array} \right) = \frac{1}{d_1 d_2} (G_i G_j^*)_{ij}$$

is a $d_1d_2 \times d_1d_2$ Wishart matrix. We write $W = d_1^{-1}(W(i, j))_{ij}$ as $d_1 \times d_1$ block matrix with each entry the $d_2 \times d_2$ matrix $d_2^{-1}G_iG_j^*$.

Partial Transposes on $M_{d_1}(\mathbf{C}) \otimes M_{d_2}(\mathbf{C})$

- $\cdot G_i$ a $d_2 \times p$ matrix
- $W(i,j) = \frac{1}{d_2}G_iG_j^*$, a $d_2 \times d_2$ matrix,
- $W = \frac{1}{d_1}(W(i,j))_{ij}$ is a $d_1 \times d_1$ block matrix with entries W(i,j)
- $W^{\mathrm{T}} = \frac{1}{d_1} (W(j, i)^{\mathrm{T}})_{ij}$ is the "full" transpose
- $W^{\mathsf{T}} = \frac{1}{d_1} (W(j, i))_{ij}$ is the "left" partial transpose
- · $W^{\Gamma} = \frac{1}{d_1} (W(i, j)^{T})_{ij}$ is the "right" partial transpose

• we **assume** that
$$\frac{p}{d_1 d_2} \rightarrow c$$
, $0 < c < \infty$

- eigenvalue distributions of W and W^T converge to Marchenko-Pastur with parameter c
- ► eigenvalues of W^T and W^Γ converge to a shifted semi-circular with mean *c* and variance *c* (Aubrun, 2012)
- ► W and W^T are asymptotically free (M. and Popa, 2014)
- ► (main theorem) the matrices {W, W^T, W^Γ, W^T} form an asymptotically free family

graphs and graphs sums (with Roland Speicher)

 a *graph* means a finite oriented graph with possibly loops and multiple edges

 a *graph sum* means attach a matrix to each edge and sum over vertices

graph sums and their growth

► given G = (V, E) a graph and an assignment $e \mapsto T_e \in M_N(\mathbb{C})$ we have a graph sum

$$S_G(T) = \sum_{i:V \to [N]} \prod_{e \in E} t_{i_{t(e)}i_{s(e)}}^{(e)}$$

▶ problem find "best" $r(G) \in \mathbb{R}^+$ such that for all *T* we have

$$|S_G(T)| \leqslant N^{r(G)} \prod_{e \in E} ||T_e||$$

► for example: $|S_G(T_1, T_2, T_3)| \leq N^{3/2} ||T_1|| ||T_2|| ||T_3||$ when

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

finding the growth (J.F.A. 2012)

- a edge is *cutting* is its removal disconnects the graph
- a graph is *two-edge connected* if it has no cutting edge
- a *two-edge connected component* is a two-edge connected subgraph which is maximal
- we make a quotient graph whose vertices are the two-edge connected components on the old graph and the edges are the cutting edges of the old graph
- r(G) is ¹/₂ the number of leaves on the quotient graph (*always a union of trees*)

Conclusion: traces and graph sums

- ► X = W^T is the partially transposed Wishart matrix, but now we **no longer** assume entries are Gaussian
- we let A_1, A_2, \ldots, A_n be $d_1d_2 \times d_1d_2$ constant matrices
- compute $E(Tr(XA_1XA_2 \cdots XA_n))$; when $A_i = I$ we get the n^{th} moment of the eigenvalue distribution
- integrating out the X's leaves a sum of graph sums, one for each partition π ∈ P(n)

THM: the only π 's for which $r(G_{\pi})$ is large enough (n/2 + 1 in this case) are non-crossing partitions with blocks of size 1 or 2 (corresponding to the free cumulants κ_1 and κ_2) THM: method extends to showing that $\{W, W_{\star, D}^{T}, W_{\star, D}^{\Gamma}, W_{\star, D}^{T}\}$ ass. free