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Basic notations:

A some finite (discrete) alphabet

G “ xG|Ry a finitely generated group with G “ tg1, . . . , gku a set of generators (k P N)
and R a set of relators (finite words in G 9YG´1 equal to the identity)

σ : GˆAG Ñ AG (left) shift action of G on the full shift AG

pg, xq ÞÑ σgpxq where @h P G:
`

σgpxq
˘

h
:“ xg´1h

G subshifts: X Ď AG shift invariant, closed subset

given by a family of forbidden patterns F Ď
Ť

F(G finite AF on finite shapes such that

XF :“
 

x P AG
ˇ

ˇ @F ( G finite : x|F R F
(

X is a G SFT :ðñ DF Ď
Ť

F(G finite AF with |F| ă 8 and X “ XF (local rules)

X is a nearest neighbor G SFT :ðñ DF Ď
Ť

gPG At1,gu and X “ XF

(constraints along edges in the Cayley graph of G)

Example: The G hard core shift is obtained by F :“ t11p1,giq | 1 ď i ď ku
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Aperiodicity X Ď AG a G subshift (closed, shift-invariant)

The stabilizer of x P X under the shift action: Stabσpxq :“ tg P G | σgpxq “ xu ď G

x P X is a weakly periodic point :ðñ |Stabσpxq| ą 1

x P X is a strongly periodic point :ðñ rG : Stabσpxqs ă 8 (equivalently |Orbσpxq| ă 8)

A G subshift X is called

weakly aperiodic :ðñ @x P X : rG : Stabσpxqs “ 8 ^ Dx P X : |Stabσpxq| “ 8
strongly aperiodic :ðñ @x P X : |Stabσpxq| “ 1 (no periodic behavior left at all)

Observation: For G “ Z2, a (weakly) periodic point is already doubly periodic (i.e. has two

non-colinear periods). Hence a weakly aperiodic Z2 SFT is already strongly aperiodic.
(The proof uses the pigeon hole principle and works only in co-dimension 1.)

However for G “ Z3 there is already a difference (there exist weakly, not strongly aperiodic Z3 SFTs,

e.g. full-Z-extensions of (strongly) aperiodic Z2 SFTs).
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(Non-)Existence of aperiodic SFTs — Undecidability of the tiling problem

An (incomplete) history of strongly aperiodic SFTs on different groups:

G “ Z: Every (non-empty) Z SFT has periodic points. The emptyness problem is decidable.

G “ Z2: Wang’s conjecture (every non-empty Z2 SFT contains periodic points) disproved by

60’s: Berger (huge alphabet size, 20.000 symbols, case analysis, “computer” proof)

70’s: Robinson (56 symbols, rigid nearly minimal construction with many interesting properties)

90’s: Kari-Culik (13 symbols – smallest so far, nearest neighbor rules, less rigid, positive entropy).

ñ Existence of those strongly aperiodic Z2 SFTs implies undecidability of the tiling problem.

G “ Z3: Example of strongly aperiodic Z3 SFTs by Kari-Culik ñ Undecidability.
(using Wang-cubes, Z2 Kari-Culik example and cellular automata techniques)

G “ H2 (hyperbolic plane): Undecidability of tiling problem (Kari, Margenstern)
Examples of strongly aperiodic H2 SFTs (Goodman-Strauss, Kari)

Mozes’ construction of strongly aperiodic SFTs on simple Lie groups (non-explicit, using rigidity result for certain Lie groups)
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(Non-)Existence of aperiodic SFTs — Undecidability of the tiling problem

Question: What about (weakly and) strongly aperiodic SFTs on other (non-abelian) groups?
Which groups admit weakly or even strongly aperiodic SFTs?

Theorem [Cohen, 2014]: If the finitely generated group G has at least two ends, then
there are no strongly aperiodic G-SFTs.

Examples: Z, free groups on finitely many generators

Theorem [Cohen, 2014]: If G,H are two torsion-free, finitely presented groups, which
are quasi-isometric, then the existence of a strongly aperiodic G-SFT is equivalent to the
existence of a strongly aperiodic H-SFT.

Examples: Groups quasi-isometric to Z: No strongly aperiodic SFTs.
Groups quasi-isometric to Z2 or Zd (d ě 2): Strongly aperiodic SFTs.

Theorem [Jeandel, 2015]: If a finitely generated group G admits a strongly aperiodic
G-SFT, then G has decidable word problem.
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The discrete Heisenberg group (and its “powers”)

The discrete Heisenberg group can be defined as

Γ :“ xx, y, z | xz “ zx ; yz “ zy ; z “ xyx´1y´1y .

It is isomorphic to the group of upper-triangular 3ˆ 3-matrices with integer parameters

Γ –
!´

1 x z
0 1 y
0 0 1

¯
ˇ

ˇ

ˇ
x, y, z P Z

)

with ordinary (non-abelian) matrix multiplication

px, y, zq ¨ pa, b, cq “ px` a , y ` b , z ` c` xbq .

The nth-power of the discrete Heisenberg group is defined as

Γpnq :“ xx, y, z | xz “ zx ; yz “ zy ; zn “ xyx´1y´1y pn P Nq .
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(Right) Cayley graph of the discrete Heisenberg group Γ

(-2,-1,-1)

(-2,-1,0)

(-2,-1,1)

(-2,-1,2)

(-2,0,-1)

(-2,0,0)

(-2,0,1)

(-2,0,2)

(-2,1,-1)

(-2,1,0)

(-2,1,1)

(-2,1,2)

(-2,2,-1)

(-2,2,0)

(-2,2,1)

(-2,2,2)

(-1,-1,-1)

(-1,-1,0)

(-1,-1,1)

(-1,-1,2)

(-1,0,-1)

(-1,0,0)

(-1,0,1)

(-1,0,2)

(-1,1,-1)

(-1,1,0)

(-1,1,1)

(-1,1,2)

(-1,2,-1)

(-1,2,0)

(-1,2,1)

(-1,2,2)

(0,-1,-1)

(0,-1,0)

(0,-1,1)

(0,-1,2)

(0,0,-1)

(0,0,0)

(0,0,1)

(0,0,2)

(0,1,-1)

(0,1,0)

(0,1,1)

(0,1,2)

(0,2,-1)

(0,2,0)

(0,2,1)

(0,2,2)

(1,-1,-1)

(1,-1,0)

(1,-1,1)

(1,-1,2)

(1,0,-1)

(1,0,0)

(1,0,1)

(1,0,2)

(1,1,-1)

(1,1,0)

(1,1,1)

(1,1,2)

(1,2,-1)

(1,2,0)

(1,2,1)

(1,2,2)

(2,-1,-1)

(2,-1,0)

(2,-1,1)

(2,-1,2)

(2,0,-1)

(2,0,0)

(2,0,1)

(2,0,2)

(2,1,-1)

(2,1,0)

(2,1,1)

(2,1,2)

(2,2,-1)

(2,2,0)

(2,2,1)

(2,2,2)

Γ :“ xx, y, z | xz “ zx; yz “ zy; z “ xyx´1y´1y ě Γp2q (every other xx, zy-layer)

(Careful with non-abelian groups: Left shift action needs a right Cayley graph.)
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Loosing periodic points in Γpnq SFTs

Note: All powers of the Heisenberg group have two nice normal Z2 subgroups sitting inside.

Full Γpnq shift: Stabilizer can be “anything”. ñ Lots of different periodic behavior.

Full extension of strongly aperiodic Z2 SFT: Stabilizers of all points are cyclic groups
and have to lie in the complement of the Z2 subgroup seeing the strongly aperiodic Z2 SFT.

ñ weakly aperiodic Γpnq SFTs

Restricted extension of Kari-Culik Z2 SFT: Stabilizers are cyclic groups and have to lie
in a Z2 subgroup “perpendicular” to the Z2 subgroup seeing the Kari-Culik SFT.

ñ weakly aperiodic Γpnq SFT with more restrictive periodic directions

Question (Piantadosi): Are there any strongly aperiodic SFTs on Γpnq? (difficulty: shear in Γpnq)

Theorem [Sahin, S., Ugarcovici, 2014]: For every n P N there exist

‚ weakly aperiodic Γpnq SFTs,
‚ weakly aperiodic Γpnq SFTs with restricted set of periodic directions,
‚ strongly aperiodic Γpnq SFTs. (explicit construction, alphabet size not too small, order of 200)
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The Z2 Robinson SFT (strongly aperiodic)

The alphabet used in the Robinson tilings (displayed tiles can still be rotated giving a total
of 4ˆ 14 “ 56 symbols):
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Nearest neighbor SFT rules: Square tiles are placed on Z2 edge to edge satisfying

‚ Digits on either side of an edge have to sum to two.
‚ Black arrows have to meet head to tail.
‚ Red arrows have to meet head to tail.

Facts: These rules force

‚ hierarchical structure of nested squares of side length 2k for k P N,
‚ crosses appear exactly at the corners of those squares,
‚ crosses in rows (and columns) of a valid tiling appear with period 2k and the sequence

of those periods forms a Toeplitz sequence
. . . , 2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2, . . ..
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Part of a point in the Z2 Robinson SFT (note the hierarchical structure)

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

...
...

...

...
...

...
. . .

. . .. .
.

. .
.

?168 84 4 4 42 2 2 2 2 2 2 2

?

16

8

8

4

4

4

4

2

2

2

2

2

2

2

2

¨ ¨ ¨ ¨ ¨ ¨

...

...

Period of crosses in rows resp. columns recorded along the left resp. bottom edge.
(regular points vs. (un-)broken exceptional points)
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Part of a point in the Z2 Robinson SFT (note the hierarchical structure)
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Period of crosses in rows resp. columns recorded along the left resp. bottom edge.
(regular points vs. (un-)broken exceptional points)
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Step 1: Robinson rules in the xx, zy-layers of Γp2q

The xx, zy-cosets in Γp2q are isomorphic to Z2.

Force Cayley graph edges in x- and z-direction to respect the (symmetric) nearest neighbor
Robinson rules given by the Z2 Robinson SFT.
ñ Every xx, zy-coset sees a Robinson point.

Hence there are no periodic directions within the xx, zy-subgroup.

Clearly we need some restrictions along the y-edges as well.
(Otherwise we would get periodic behaviour like in a full-extension.)

This is the tricky part! (Loose rules allow for periodic points, too rigid rules imply emptyness.)

Force Cayley graph edges in y-direction to respect the “crosses have to propagate” rule:

If site g P Γp2q sees a cross, then site gy has to see a cross as well.
If site g P Γp2q sees an arm, then site gy has to see an arm as well.

ñ This forces crosses to be “aligned”, in particular periods of crosses along rows in the
z-direction have to coincide going one layer up/down.
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A Robinson point in each xx, zy-coset of Γp2q

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10
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Checking the “crosses have to propagate”-rule by blue y-edges

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10
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Checking the “crosses have to propagate”-rule by blue y-edges

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10
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Checking the “crosses have to propagate”-rule by blue y-edges

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10
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Checking the “crosses have to propagate”-rule by blue y-edges

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10

´10 ´8 ´6 ´4 ´2 0 2 4 6 8 10
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Step 2: “Coset magic” implies non-emptyness (check the Γp2q SFT is not empty)

The shear in a z-row of Γp2q is an even number and grows linearly (by 2) with the distance
from the px “ 0q-coset. (Site g “ px, y, zq P Γp2q is connected via a y-edge to site gy “ px, y`1, z`2xq.)

This is were “magically” the Toeplitz structure of the periods of crosses fits together
with the shear. (see previous slide)

This is easily checked for exceptional Robinson points, where there is a z-row with a unique cross which

has to be sheared along from each xx, zy-coset to the next.

(For regular points we have to use a compactness argument looking at larger and larger finite patterns.)

ñ Our Γp2q SFT is non-empty.

Lemma: When the positions of the cross-symbols in a Z2 Robinson point are known,
all finite (i.e. complete) squares can be reconstructed.

This Lemma gives us control about all admissible configurations in our Γpnq SFT:
Seeing a Robinson point in a xx, zy-coset, the “crosses have to propagate”-rule forces all
crosses in the xx, zy-cosets above and below, thus determining “uniquely” the Robinson
point in those cosets.

ñ Our Γp2q SFT has a rigid structure, but points still have one periodic direction.
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Step 3: Destroying all remaining (weakly) periodic points

Now look at the positions of crosses in a fixed xy, zy-coset of our constructed points.
They form “slanted” stripes of slope 2x and width 2k (for some k P N).

Using local rules implement synchronized binary counters which run in those strips, starting
from 0, increasing by `1 going to the next xx, zy-coset above and resetting to 0 after 22

k
-steps.

ñ As the width of those strips is arbitrarily large in each point, this breaks periodicity.
(similar to proving aperiodicity of a hierarchical Z2 SFT)

ñ The Γp2q SFT with those counters is strongly aperiodic.

Step 4: Final adjustment to get a strongly aperiodic Γpnq SFT for each n P N

Put our strongly aperiodic Γp2q SFT in any power of the Heisenberg group (spacing its xx, zy-

coset configurations accordingly and filling in the remaining cosets with symbols that just propagate information).

ñ There exist strongly aperiodic Γpnq SFTs for every n P N.
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Semi-direct products of type Z2 oA Z (a.k.a. abelian-by-cyclic groups)

Let A be a 2ˆ 2 matrix over the non-negative integers.

The semi-direct product Z2 oA Z can be seen as an HNN-extension:

Z2 oA Z “ xt, a1, a2 | a1a2 “ a2a1 , ta1t
´1
“ a

A1,1
1 a

A2,1
2 , ta2t

´1
“ a

A1,2
1 a

A2,2
2 y

Note: Still all those groups have Z2 sitting inside.

Examples:

A “
`

1 0
0 1

˘

: Z2 oA Z – Z3 (strongly aperiodic SFTs by Kari-Culik’s Wang cubes)

A “
`

0 1
1 0

˘

: Z2 oA Z is the Flip-group (doable)

A “
`

1 0
1 1

˘

: Z2 oA Z – Γ is the discrete Heisenberg group (doable)

A “
`

1 0
n 1

˘

: Z2 oA Z is the n-th power of the Heisenberg group (doable)

A “
`

n 0
0 1

˘

: Z2 oA Z is a “2-dimensional” Baumslag-Solitar group (open)

A “
`

1 1
1 0

˘

: Z2 oA Z is the Sol group (particular solvable Lie group) (open)
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(Right) Cayley graph of the Flip-px, zq group (its square is isomorphic to Z3)
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Flip :“ Z2 o
p
0 1
1 0q

Z – xx, y, z | xz “ zx; yx “ zy; yz “ xyy
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