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> Let B be a Boolean algebra and x4 : B — R a function.

> We call u a submeasure if and only if 4(0) =0, p(a) < u(b), foraC b
and p(aU b) < p(a) + p(b), always.

» We call i exhaustive if and only if p(a,) — 0, for every antichain (an),
from 5.

> We call 1 uniformly exhaustive if and only if for every € > 0, there exists
an N such that, if a1, ..., ay are pairwise disjoint then

min p(ai) <e.

> We call i : B — R a measure if and only if u(all b) = p(a) + p(b),
always, and p > 0.

Theorem (Kalton and Roberts, 1983)

A submeasure i is uniformly exhaustive if and only if there exists a measure A
that is equivalent to p.

That is, u(an) — 0 if and only if X(an) — 0, for all sequences (an)n.
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» The Maharam problem (D. Maharam, 1947): Is every exhaustive
submeasure on the countable atomless Boolean algebra (the Cantor
algebra) uniformly exhaustive?

» Control measure problem: Let 2 be a Boolean algebra and X a real
vector space. Let X — R : x — ||x|| be (a so-called F-norm) such that:

> ||x]|=0=x=0;
> I < X+ vl
> limyoo|lax|| =0;
> fal <1 = lax|| < [|x]].

v

A measure F : 2 — X is exhaustive, if ||F(A;)|| — 0, for all antichains

(An)n.
A measure X : 2 — R is a control measure for a measure F : 2 — X, if

AMAn) = 0= ||F(An)|| =0

v

for all sequences (Ap)n.

> Does every exhaustive measure F : 2l — X admit a control measure?
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Theorem (M. Talagrand, 2006)

There exists an exhaustive submeasure on the Cantor algebra that is not
uniformly exhaustive.

» Talagrand’s construction seems to be quite resistant to analysis.
> The Lebesgue measure A : Clopen(2") — R is such that
s =27,
where [s] := {f € 2 : (Vi € dom(s))(f(i) = s(i))}.

» Can something similar be said about Talagrand’s construction? (That is,
can we take a sledgehammer to it!?)
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> Define the set of marked weighted sets by

M =B x [N]** x Rso.

> For finite X C M where X = {(X1, h, w1), ..., (Xn, b, wy)} we adopt the
following notation

w(0) =0, w(X)= th UX :UX;.

> If C C M then the function ¢¢ : B — R defined by
¢c(B) = inf{w(X) : X CC, X is finite and B C |J X}

is a submeasure (of course we need to see to it that there exists a finite
X C C such that T C |J X).
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» Define D C M such that (X, [/, w) € D if and only if:

a(k
> w =2k (%) ( ), for some k such that 8(k) > |/|;
> X is of the form
X ={feT:(¥iel)(f(i)#x(i))},
for some x € [[;,{1,2,...,2'}.

» Consider the associated submeasure

Y(B) := ¢p(B) = inf{w(X) : X C D, X is finite and B C |J X}.

» Talagrand's submeasure is constructed inductively below ).

> 1) has the interesting property that any submeasure below it cannot be
uniformly exhaustive.

> We will consider covers of 7 (and [s]) that have an easily calculable
weight.
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> Recall that, for each i, we can find an x; € [[;¢, {1,2, vy 2} such that

Xi ={f €T :(vj € I)(f() # x())}-

> If, for example, we have h = {3,11}, b = {2,5}, 5 ={3,5,7}, I, = {7}

and 5 = {7}.
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» Recall that, for each /, we can find an x; € HJ.E,[

Xi={f €T : (Vi € )(f() # x())}-

{1,2,....,2} such that

» Suppose, for example, that n = 6, for each i and j we have I; = [;, |L| =5
and

(Vi)(V) # K)0g(i) # xi(0))-

» Then UL Xi, in the shape of a ‘rectangle’, properly covers T.

> It turns out that this rectangular shape is common to all proper covers of

T.
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Lemma
Let {(Xi, li,w;) : i € I} C D be a collection that properly covers T. Then

Jn<i-1

iel

> Recall that a complete system of distinct representatives for {l; : i € I} (a
CDR) is an injective function F : | — J,¢, I such that (Vi € I)(F(i) € ),
and that Hall’s marriage theorem states that a CDR exists if and only if

(vJ (< 1D,

ied

» If a CDR exists then U,E,X,- will not cover T.



Rectangles

Proof.



Rectangles

Proof.

> There exists a largest J C | we have |J;c, /i| < |J| — 1 and assume for a
contradiction that J C /.



Rectangles

Proof.

> There exists a largest J C | we have |J;c, /i| < |J| — 1 and assume for a
contradiction that J C /.

> There exists f € T such that f & |J;., Xi.



Rectangles

Proof.

> There exists a largest J C | we have |J;c, /i| < |J| — 1 and assume for a
contradiction that J C /.

» There exists f € T such that f ¢ |J

> Foriel\Jlet ] =1\Uy,

/GJ



Rectangles

Proof.

> There exists a largest J C | we have |J;c, /i| < |J| — 1 and assume for a
contradiction that J C /.

» There exists f € T such that f ¢ |J

> Foriel\Jlet ] =1\Uy,

> Suppose {l/ :i€l\J} hasaCDRF:/\J—=J

/EJ

l€I\J



Rectangles

Proof.

> There exists a largest J C | we have |J;c, /i| < |J| — 1 and assume for a
contradiction that J C /.

» There exists f € T such that f ¢ |J

» Foriel\Jletl =L\

/EJ

JEJ
> Suppose {// ;i €1\ J} hasa CDR F : I\J—>U,€,\J
> Let s € [icran(r) [2¥] be defined by s(k) = (k).



Rectangles

Proof.

> There exists a largest J C | we have |J;c, /i| < |J| — 1 and assume for a
contradiction that J C /.

» There exists f € T such that f ¢ |J

» Foriel\Jletl =L\

/EJ

JEJ
> Suppose {// ;i €1\ J} hasa CDR F : I\J—>U,€,\J
> Let s € [icran(r) [2¥] be defined by s(k) = (k).

> Then the function (f \ {(k, f(k)): k € ran(F)}) Us & U, X, which is a
contradiction.



Rectangles

Proof.

> There exists a largest J C | we have |J;c, /i| < |J| — 1 and assume for a
contradiction that J C /.

» There exists f € T such that f ¢ |J

» Foriel\Jletl =L\

/EJ

JEJ
> Suppose {// ;i €1\ J} hasa CDR F : I\J—>U,€,\J
> Let s € [icran(r) [2¥] be defined by s(k) = (k).

> Then the function (f \ {(k, f(k)): k € ran(F)}) Us & U, X, which is a
contradiction.

> There exists J' C I\ J such that |, /| < |J'[—1.



Rectangles

Proof.

> There exists a largest J C | we have |J;c, /i| < |J| — 1 and assume for a
contradiction that J C /.

» There exists f € T such that f ¢ |J

» Foriel\Jletl =L\

/EJ

JEJ
> Suppose {// ;i €1\ J} hasa CDR F : I\J—>U,€,\J
> Let s € [icran(r) [2¥] be defined by s(k) = (k).

> Then the function (f \ {(k, f(k)): k € ran(F)}) Us & U, X, which is a
contradiction.

> There exists J' C I\ J such that |, /| < |J'[—1.

» But then
| J #hl<lJud|—1and [JUS|> |J].
ieJuJ’
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From this (and some calculations involving the weight functions) we can
conclude that

v

Y(T) =inf{w(X) : X CDA X is a rectangle}.

» This is actually attained by any rectangle {(X1, h, w1), (X2, b, w2)}, where
|h] =1.

This gives (T) = £(1)*™.
» A similar analyse gives

\4

B(ls]) = minf2""1, 27 (ﬁ‘m))a(m)},

m

where m = min{k : |s| < B(k)}.
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So far, not so good..

» The Lebesgue measure is completely determined by its values on sets of
the form [s].

» The submeasures ¢ and Talagrand'’s final construction are certainly not.

> In particular, | don’t know how to adapt these arguments to measure sets
of the form [s] U [t], for example.

» Talagrand's final construction lies far below the i) we considered here.

» | don’t know how to adapt these arguments to circumvent Talagrand’s
induction step(s).
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The next submeasure to consider

» For X C T is (m, n, p)-thin if and only if, for every s € [[",{1,2,...,2},
there exists 3B € B, determined by its first n co-ordinates, such that

BC[sl, BNX=0, u(ry'[B])>1.

For I C N, we say that X is (/, u)-thin if it is (m, n, u)-thin for each
m,n € | with m < n.
> Now define £ C M by, (X,/,w) € £ if and only if

K
> w =27k (%)a( ), for some k such that B(k) > |/|;

> X is (1,v)-thin.

» The next submeasure to consider is now
¢pue(B) = inf{w(X): X CDUE, X is finite and B C |J X}.

(...sigh).
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Thanks very much for your attention!



