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Some definitions and motivation

I Let B be a Boolean algebra and µ : B→ R a function.

I We call µ a submeasure if and only if µ(0) = 0, µ(a) ≤ µ(b), for a ⊆ b
and µ(a ∪ b) ≤ µ(a) + µ(b), always.

I We call µ exhaustive if and only if µ(an)→ 0, for every antichain (an)n
from B.

I We call µ uniformly exhaustive if and only if for every ε > 0, there exists
an N such that, if a1, ..., aN are pairwise disjoint then

min
i
µ(ai ) ≤ ε.

I We call µ : B→ R a measure if and only if µ(a t b) = µ(a) + µ(b),
always, and µ ≥ 0.

Theorem (Kalton and Roberts, 1983)

A submeasure µ is uniformly exhaustive if and only if there exists a measure λ
that is equivalent to µ.
That is, µ(an)→ 0 if and only if λ(an)→ 0, for all sequences (an)n.
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Some definitions and motivation

I The Maharam problem (D. Maharam, 1947): Is every exhaustive
submeasure on the countable atomless Boolean algebra (the Cantor
algebra) uniformly exhaustive?

I Control measure problem: Let A be a Boolean algebra and X a real
vector space. Let X → R : x 7→ ||x || be (a so-called F-norm) such that:

I ||x || = 0⇒ x = 0;
I ||x + y || ≤ ||x ||+ ||y ||;
I lima→0 ||ax || = 0;
I |a| ≤ 1⇒ ||ax || ≤ ||x ||.
I A measure F : A→ X is exhaustive, if ||F (An)|| → 0, for all antichains

(An)n.
I A measure λ : A→ R is a control measure for a measure F : A→ X , if

λ(An)→ 0⇒ ||F (An)|| → 0

for all sequences (An)n.

I Does every exhaustive measure F : A→ X admit a control measure?
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Some definitions and motivation

Theorem (M. Talagrand, 2006)

There exists an exhaustive submeasure on the Cantor algebra that is not
uniformly exhaustive.

I Talagrand’s construction seems to be quite resistant to analysis.

I The Lebesgue measure λ : Clopen(2N)→ R is such that

λ([s]) = 2−|s|,

where [s] := {f ∈ 2N : (∀i ∈ dom(s))(f (i) = s(i))}.
I Can something similar be said about Talagrand’s construction? (That is,

can we take a sledgehammer to it!?)
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The first step in Talagrand’s construction

I Let B be the algebra of clopen subsets of T :=
∏∞

i=1{1, 2, ..., 2
i}.

I Define the set of marked weighted sets by

M = B× [N]<ω × R≥0.

I For finite X ⊆M where X = {(X1, I1,w1), ..., (Xn, I2,wn)} we adopt the
following notation

w(∅) = 0, w(X ) =
n∑

i=1

wi ,
⋃

X =
n⋃

i=1

Xi .

I If C ⊆M then the function φC : B→ R defined by

φC(B) = inf{w(X ) : X ⊆ C, X is finite and B ⊆
⋃

X}

is a submeasure (of course we need to see to it that there exists a finite
X ⊆ C such that T ⊆

⋃
X ).
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The first step in Talagrand’s construction

I Fix a sequence α(k) ∈ R≥0 that converges to 0 fast enough, and a
sequence β(k) ∈ R≥0 that diverges to infinity fast enough.

I Define D ⊆M such that (X , I ,w) ∈ D if and only if:

I w = 2−k
(
β(k)
|I |

)α(k)
, for some k such that β(k) ≥ |I |;

I X is of the form

X = {f ∈ T : (∀i ∈ I )(f (i) 6= x(i))},

for some x ∈
∏

i∈I {1, 2, ..., 2i}.
I Consider the associated submeasure

ψ(B) := φD(B) = inf{w(X ) : X ⊆ D, X is finite and B ⊆
⋃

X}.

I Talagrand’s submeasure is constructed inductively below ψ.

I ψ has the interesting property that any submeasure below it cannot be
uniformly exhaustive.

I We will consider covers of T (and [s]) that have an easily calculable
weight.
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Some pictures

I Suppose {(X1, I1,w1), ..., (Xn, In,wn)} ⊆ D.

I Recall that, for each i , we can find an xi ∈
∏

j∈Ii
{1, 2, ...., 2j} such that

Xi = {f ∈ T : (∀j ∈ Ii )(f (j) 6= xi (j))}.

I If, for example, we have I1 = {3, 11}, I2 = {2, 5}, I3 = {3, 5, 7}, I4 = {7}
and I5 = {7}.
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Rectangles

I Suppose {(X1, I1,w1), ..., (Xn, In,wn)} ⊆ D.

I Recall that, for each i , we can find an xi ∈
∏

j∈Ii
{1, 2, ...., 2j} such that

Xi = {f ∈ T : (∀j ∈ Ii )(f (j) 6= xi (j))}.

I Suppose, for example, that n = 6, for each i and j we have Ii = Ij , |I1| = 5
and

(∀i)(∀j 6= k)(xj(i) 6= xk(i)).

I Then
⋃6

i=1 Xi , in the shape of a ‘rectangle’, properly covers T .

I It turns out that this rectangular shape is common to all proper covers of
T .
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Rectangles

Lemma
Let {(Xi , Ii ,wi ) : i ∈ I} ⊆ D be a collection that properly covers T . Then

|
⋃
i∈I

Ii | ≤ |I | − 1.

I Recall that a complete system of distinct representatives for {Ii : i ∈ I} (a
CDR) is an injective function F : I →

⋃
i∈I Ii such that (∀i ∈ I )(F (i) ∈ Ii ),

and that Hall’s marriage theorem states that a CDR exists if and only if

(∀J ⊆ I )(|J| ≤ |
⋃
i∈J

Ii |),

I If a CDR exists then
⋃

i∈I Xi will not cover T .
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Rectangles

Proof.

I There exists a largest J ⊆ I we have |
⋃

i∈J Ii | ≤ |J| − 1 and assume for a
contradiction that J ( I .

I There exists f ∈ T such that f 6∈
⋃

i∈J Xi .

I For i ∈ I \ J let I ′i = Ii \
⋃

j∈J Ii .

I Suppose {I ′i : i ∈ I \ J} has a CDR F : I \ J →
⋃

i∈I\J I
′
i .

I Let s ∈
∏

k∈ran(F )[2
k ] be defined by s(k) = XF−1(k)(k).

I Then the function (f \ {(k, f (k)) : k ∈ ran(F )}) ∪ s 6∈
⋃

i∈I Xi , which is a
contradiction.

I There exists J ′ ⊆ I \ J such that |
⋃

i∈J′ I
′
i | ≤ |J ′| − 1.

I But then
|
⋃

i∈J∪J′
Ii | ≤ |J ∪ J ′| − 1 and |J ∪ J ′| > |J|.
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Rectangles

I From this (and some calculations involving the weight functions) we can
conclude that

ψ(T ) = inf{w(X ) : X ⊆ D ∧ X is a rectangle}.

I This is actually attained by any rectangle {(X1, I1,w1), (X2, I2,w2)}, where
|I1| = 1.

I This gives ψ(T ) = β(1)α(1).

I A similar analyse gives

ψ([s]) = min{2−m+1, 2−m

(
β(m)

m

)α(m)

},

where m = min{k : |s| ≤ β(k)}.
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I This is actually attained by any rectangle {(X1, I1,w1), (X2, I2,w2)}, where
|I1| = 1.
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So far, not so good..

I The Lebesgue measure is completely determined by its values on sets of
the form [s].

I The submeasures ψ and Talagrand’s final construction are certainly not.

I In particular, I don’t know how to adapt these arguments to measure sets
of the form [s] ∪ [t], for example.

I Talagrand’s final construction lies far below the ψ we considered here.

I I don’t know how to adapt these arguments to circumvent Talagrand’s
induction step(s).
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The next submeasure to consider

Let µ : B→ R be a submeasure and let m, n ∈ N, m < n.

I For each s ∈
∏m

i=1{1, 2, ..., 2
i}, we define the map

π[s] : T → [s]

by

(π[s](x))(i) =

{
s(i), if i ≤ m,
x(i), otherwise.

I For X ⊆ T is (m, n, µ)-thin if and only if, for every s ∈
∏m

i=1{1, 2, ..., 2
i},

there exists ∃B ∈ B, determined by its first n co-ordinates, such that

B ⊆ [s], B ∩ X = ∅, µ(π−1
[s] [B]) ≥ 1.

For I ⊆ N, we say that X is (I , µ)-thin if it is (m, n, µ)-thin for each
m, n ∈ I with m < n.
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I Now define E ⊆M by, (X , I ,w) ∈ E if and only if

I w = 2−k
(
β(k)
|I |

)α(k)
, for some k such that β(k) ≥ |I |;

I X is (I , ψ)-thin.

I The next submeasure to consider is now

φD∪E(B) = inf{w(X ) : X ⊆ D ∪ E , X is finite and B ⊆
⋃

X}.

(...sigh).
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