Some calculations concerning Talagrand's submeasure

Omar Selim
oselim.mth@gmail.com
Workshop on Functional Analysis and Dynamical Systems, Florianópolis

February 2015

Some definitions and motivation

Some definitions and motivation

- Let \mathfrak{B} be a Boolean algebra and $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ a function.

Some definitions and motivation

- Let \mathfrak{B} be a Boolean algebra and $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ a function.
- We call μ a submeasure if and only if $\mu(0)=0, \mu(a) \leq \mu(b)$, for $a \subseteq b$ and $\mu(a \cup b) \leq \mu(a)+\mu(b)$, always.

Some definitions and motivation

- Let \mathfrak{B} be a Boolean algebra and $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ a function.
- We call μ a submeasure if and only if $\mu(0)=0, \mu(a) \leq \mu(b)$, for $a \subseteq b$ and $\mu(a \cup b) \leq \mu(a)+\mu(b)$, always.
- We call μ exhaustive if and only if $\mu\left(a_{n}\right) \rightarrow 0$, for every antichain $\left(a_{n}\right)_{n}$ from \mathfrak{B}.

Some definitions and motivation

- Let \mathfrak{B} be a Boolean algebra and $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ a function.
- We call μ a submeasure if and only if $\mu(0)=0, \mu(a) \leq \mu(b)$, for $a \subseteq b$ and $\mu(a \cup b) \leq \mu(a)+\mu(b)$, always.
- We call μ exhaustive if and only if $\mu\left(a_{n}\right) \rightarrow 0$, for every antichain $\left(a_{n}\right)_{n}$ from \mathfrak{B}.
- We call μ uniformly exhaustive if and only if for every $\epsilon>0$, there exists an N such that, if a_{1}, \ldots, a_{N} are pairwise disjoint then

$$
\min _{i} \mu\left(a_{i}\right) \leq \epsilon
$$

Some definitions and motivation

- Let \mathfrak{B} be a Boolean algebra and $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ a function.
- We call μ a submeasure if and only if $\mu(0)=0, \mu(a) \leq \mu(b)$, for $a \subseteq b$ and $\mu(a \cup b) \leq \mu(a)+\mu(b)$, always.
- We call μ exhaustive if and only if $\mu\left(a_{n}\right) \rightarrow 0$, for every antichain $\left(a_{n}\right)_{n}$ from \mathfrak{B}.
- We call μ uniformly exhaustive if and only if for every $\epsilon>0$, there exists an N such that, if a_{1}, \ldots, a_{N} are pairwise disjoint then

$$
\min _{i} \mu\left(a_{i}\right) \leq \epsilon
$$

- We call $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ a measure if and only if $\mu(a \sqcup b)=\mu(a)+\mu(b)$, always, and $\mu \geq 0$.

Some definitions and motivation

- Let \mathfrak{B} be a Boolean algebra and $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ a function.
- We call μ a submeasure if and only if $\mu(0)=0, \mu(a) \leq \mu(b)$, for $a \subseteq b$ and $\mu(a \cup b) \leq \mu(a)+\mu(b)$, always.
- We call μ exhaustive if and only if $\mu\left(a_{n}\right) \rightarrow 0$, for every antichain $\left(a_{n}\right)_{n}$ from \mathfrak{B}.
- We call μ uniformly exhaustive if and only if for every $\epsilon>0$, there exists an N such that, if a_{1}, \ldots, a_{N} are pairwise disjoint then

$$
\min _{i} \mu\left(a_{i}\right) \leq \epsilon
$$

- We call $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ a measure if and only if $\mu(a \sqcup b)=\mu(a)+\mu(b)$, always, and $\mu \geq 0$.

Theorem (Kalton and Roberts, 1983)

A submeasure μ is uniformly exhaustive if and only if there exists a measure λ that is equivalent to μ.
That is, $\mu\left(a_{n}\right) \rightarrow 0$ if and only if $\lambda\left(a_{n}\right) \rightarrow 0$, for all sequences $\left(a_{n}\right)_{n}$.

Some definitions and motivation

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?
- Control measure problem: Let \mathfrak{A} be a Boolean algebra and X a real vector space.

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?
- Control measure problem: Let \mathfrak{A} be a Boolean algebra and X a real vector space. Let $X \rightarrow \mathbb{R}: x \mapsto\|x\|$ be (a so-called F-norm) such that:

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?
- Control measure problem: Let \mathfrak{A} be a Boolean algebra and X a real vector space. Let $X \rightarrow \mathbb{R}: x \mapsto\|x\|$ be (a so-called F-norm) such that:
- $\|x\|=0 \Rightarrow x=0$;

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?
- Control measure problem: Let \mathfrak{A} be a Boolean algebra and X a real vector space. Let $X \rightarrow \mathbb{R}: x \mapsto\|x\|$ be (a so-called F-norm) such that:
- $\|x\|=0 \Rightarrow x=0$;
- $\|x+y\| \leq\|x\|+\|y\|$;

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?
- Control measure problem: Let \mathfrak{A} be a Boolean algebra and X a real vector space. Let $X \rightarrow \mathbb{R}: x \mapsto\|x\|$ be (a so-called F-norm) such that:
- $\|x\|=0 \Rightarrow x=0$;
- $\|x+y\| \leq\|x\|+\|y\|$;
- $\lim _{a \rightarrow 0}\|a x\|=0$;

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?
- Control measure problem: Let \mathfrak{A} be a Boolean algebra and X a real vector space. Let $X \rightarrow \mathbb{R}: x \mapsto\|x\|$ be (a so-called F-norm) such that:
- $\|x\|=0 \Rightarrow x=0$;
- $\|x+y\| \leq\|x\|+\|y\|$;
- $\lim _{a \rightarrow 0}\|a x\|=0$;
- $|a| \leq 1 \Rightarrow\|a x\| \leq\|x\|$.

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?
- Control measure problem: Let \mathfrak{A} be a Boolean algebra and X a real vector space. Let $X \rightarrow \mathbb{R}: x \mapsto\|x\|$ be (a so-called F-norm) such that:
- $\|x\|=0 \Rightarrow x=0$;
- $\|x+y\| \leq\|x\|+\|y\|$;
- $\lim _{a \rightarrow 0}\|a x\|=0$;
- $|a| \leq 1 \Rightarrow\|a x\| \leq\|x\|$.
- A measure $F: \mathfrak{A} \rightarrow X$ is exhaustive, if $\left\|F\left(A_{n}\right)\right\| \rightarrow 0$, for all antichains $\left(A_{n}\right)_{n}$.

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?
- Control measure problem: Let \mathfrak{A} be a Boolean algebra and X a real vector space. Let $X \rightarrow \mathbb{R}: x \mapsto\|x\|$ be (a so-called F-norm) such that:
- $\|x\|=0 \Rightarrow x=0$;
- $\|x+y\| \leq\|x\|+\|y\|$;
- $\lim _{a \rightarrow 0}\|a x\|=0$;
- $|a| \leq 1 \Rightarrow\|a x\| \leq\|x\|$.
- A measure $F: \mathfrak{A} \rightarrow X$ is exhaustive, if $\left\|F\left(A_{n}\right)\right\| \rightarrow 0$, for all antichains $\left(A_{n}\right)_{n}$.
- A measure $\lambda: \mathfrak{A} \rightarrow \mathbb{R}$ is a control measure for a measure $F: \mathfrak{A} \rightarrow X$, if

$$
\lambda\left(A_{n}\right) \rightarrow 0 \Rightarrow\left\|F\left(A_{n}\right)\right\| \rightarrow 0
$$

for all sequences $\left(A_{n}\right)_{n}$.

Some definitions and motivation

- The Maharam problem (D. Maharam, 1947): Is every exhaustive submeasure on the countable atomless Boolean algebra (the Cantor algebra) uniformly exhaustive?
- Control measure problem: Let \mathfrak{A} be a Boolean algebra and X a real vector space. Let $X \rightarrow \mathbb{R}: x \mapsto\|x\|$ be (a so-called F-norm) such that:
- $\|x\|=0 \Rightarrow x=0$;
- $\|x+y\| \leq\|x\|+\|y\|$;
- $\lim _{a \rightarrow 0}\|a x\|=0$;
- $|a| \leq 1 \Rightarrow\|a x\| \leq\|x\|$.
- A measure $F: \mathfrak{A} \rightarrow X$ is exhaustive, if $\left\|F\left(A_{n}\right)\right\| \rightarrow 0$, for all antichains $\left(A_{n}\right)_{n}$.
- A measure $\lambda: \mathfrak{A} \rightarrow \mathbb{R}$ is a control measure for a measure $F: \mathfrak{A} \rightarrow X$, if

$$
\lambda\left(A_{n}\right) \rightarrow 0 \Rightarrow\left\|F\left(A_{n}\right)\right\| \rightarrow 0
$$

for all sequences $\left(A_{n}\right)_{n}$.

- Does every exhaustive measure $F: \mathfrak{A} \rightarrow X$ admit a control measure?

Some definitions and motivation

Some definitions and motivation

Theorem (M. Talagrand, 2006)
There exists an exhaustive submeasure on the Cantor algebra that is not uniformly exhaustive.

Some definitions and motivation

Theorem (M. Talagrand, 2006)
There exists an exhaustive submeasure on the Cantor algebra that is not uniformly exhaustive.

- Talagrand's construction seems to be quite resistant to analysis.

Some definitions and motivation

Theorem (M. Talagrand, 2006)
There exists an exhaustive submeasure on the Cantor algebra that is not uniformly exhaustive.

- Talagrand's construction seems to be quite resistant to analysis.
- The Lebesgue measure $\lambda: \operatorname{Clopen}\left(2^{\mathbb{N}}\right) \rightarrow \mathbb{R}$ is such that

$$
\lambda([s])=2^{-|s|},
$$

where $[s]:=\left\{f \in 2^{\mathbb{N}}:(\forall i \in \operatorname{dom}(s))(f(i)=s(i))\right\}$.

Some definitions and motivation

Theorem (M. Talagrand, 2006)
There exists an exhaustive submeasure on the Cantor algebra that is not uniformly exhaustive.

- Talagrand's construction seems to be quite resistant to analysis.
- The Lebesgue measure $\lambda: \operatorname{Clopen}\left(2^{\mathbb{N}}\right) \rightarrow \mathbb{R}$ is such that

$$
\lambda([s])=2^{-|s|},
$$

where $[s]:=\left\{f \in 2^{\mathbb{N}}:(\forall i \in \operatorname{dom}(s))(f(i)=s(i))\right\}$.

- Can something similar be said about Talagrand's construction? (That is, can we take a sledgehammer to it!?)

The first step in Talagrand's construction

The first step in Talagrand's construction

- Let \mathfrak{B} be the algebra of clopen subsets of $\mathcal{T}:=\prod_{i=1}^{\infty}\left\{1,2, \ldots, 2^{i}\right\}$.

The first step in Talagrand's construction

- Let \mathfrak{B} be the algebra of clopen subsets of $\mathcal{T}:=\prod_{i=1}^{\infty}\left\{1,2, \ldots, 2^{i}\right\}$.
- Define the set of marked weighted sets by

$$
\mathcal{M}=\mathfrak{B} \times[\mathbb{N}]^{<\omega} \times \mathbb{R}_{\geq 0}
$$

- Let \mathfrak{B} be the algebra of clopen subsets of $\mathcal{T}:=\prod_{i=1}^{\infty}\left\{1,2, \ldots, 2^{i}\right\}$.
- Define the set of marked weighted sets by

$$
\mathcal{M}=\mathfrak{B} \times[\mathbb{N}]^{<\omega} \times \mathbb{R}_{\geq 0}
$$

- For finite $X \subseteq \mathcal{M}$ where $X=\left\{\left(X_{1}, l_{1}, w_{1}\right), \ldots,\left(X_{n}, l_{2}, w_{n}\right)\right\}$ we adopt the following notation

$$
w(\emptyset)=0, \quad w(X)=\sum_{i=1}^{n} w_{i}, \quad \bigcup X=\bigcup_{i=1}^{n} X_{i}
$$

The first step in Talagrand's construction

- Let \mathfrak{B} be the algebra of clopen subsets of $\mathcal{T}:=\prod_{i=1}^{\infty}\left\{1,2, \ldots, 2^{i}\right\}$.
- Define the set of marked weighted sets by

$$
\mathcal{M}=\mathfrak{B} \times[\mathbb{N}]^{<\omega} \times \mathbb{R}_{\geq 0}
$$

- For finite $X \subseteq \mathcal{M}$ where $X=\left\{\left(X_{1}, l_{1}, w_{1}\right), \ldots,\left(X_{n}, l_{2}, w_{n}\right)\right\}$ we adopt the following notation

$$
w(\emptyset)=0, \quad w(X)=\sum_{i=1}^{n} w_{i}, \quad \bigcup X=\bigcup_{i=1}^{n} X_{i}
$$

- If $\mathcal{C} \subseteq \mathcal{M}$ then the function $\phi_{\mathcal{C}}: \mathfrak{B} \rightarrow \mathbb{R}$ defined by

$$
\phi_{\mathcal{C}}(B)=\inf \{w(X): X \subseteq \mathcal{C}, X \text { is finite and } B \subseteq \bigcup X\}
$$

is a submeasure (of course we need to see to it that there exists a finite $X \subseteq \mathcal{C}$ such that $\mathcal{T} \subseteq \bigcup X)$.

The first step in Talagrand's construction

- Fix a sequence $\alpha(k) \in \mathbb{R}_{\geq 0}$ that converges to 0 fast enough, and a sequence $\beta(k) \in \mathbb{R}_{\geq 0}$ that diverges to infinity fast enough.

The first step in Talagrand's construction

- Fix a sequence $\alpha(k) \in \mathbb{R}_{\geq 0}$ that converges to 0 fast enough, and a sequence $\beta(k) \in \mathbb{R} \geq 0$ that diverges to infinity fast enough.
- Define $\mathcal{D} \subseteq \mathcal{M}$ such that $(X, I, w) \in \mathcal{D}$ if and only if:

The first step in Talagrand's construction

- Fix a sequence $\alpha(k) \in \mathbb{R}_{\geq 0}$ that converges to 0 fast enough, and a sequence $\beta(k) \in \mathbb{R}_{\geq 0}$ that diverges to infinity fast enough.
- Define $\mathcal{D} \subseteq \mathcal{M}$ such that $(X, I, w) \in \mathcal{D}$ if and only if:
- $w=2^{-k}\left(\frac{\beta(k)}{|I|}\right)^{\alpha(k)}$, for some k such that $\beta(k) \geq|I|$;

The first step in Talagrand's construction

- Fix a sequence $\alpha(k) \in \mathbb{R}_{\geq 0}$ that converges to 0 fast enough, and a sequence $\beta(k) \in \mathbb{R}_{\geq 0}$ that diverges to infinity fast enough.
- Define $\mathcal{D} \subseteq \mathcal{M}$ such that $(X, I, w) \in \mathcal{D}$ if and only if:
- $w=2^{-k}\left(\frac{\beta(k)}{|I|}\right)^{\alpha(k)}$, for some k such that $\beta(k) \geq|I|$;
- X is of the form

$$
X=\{f \in \mathcal{T}:(\forall i \in I)(f(i) \neq x(i))\}
$$

for some $x \in \prod_{i \in I}\left\{1,2, \ldots, 2^{i}\right\}$.

The first step in Talagrand's construction

- Fix a sequence $\alpha(k) \in \mathbb{R}_{\geq 0}$ that converges to 0 fast enough, and a sequence $\beta(k) \in \mathbb{R}_{\geq 0}$ that diverges to infinity fast enough.
- Define $\mathcal{D} \subseteq \mathcal{M}$ such that $(X, I, w) \in \mathcal{D}$ if and only if:
- $w=2^{-k}\left(\frac{\beta(k)}{|I|}\right)^{\alpha(k)}$, for some k such that $\beta(k) \geq|I|$;
- X is of the form

$$
X=\{f \in \mathcal{T}:(\forall i \in I)(f(i) \neq x(i))\}
$$

for some $x \in \prod_{i \in I}\left\{1,2, \ldots, 2^{i}\right\}$.

- Consider the associated submeasure

$$
\psi(B):=\phi_{\mathcal{D}}(B)=\inf \{w(X): X \subseteq \mathcal{D}, X \text { is finite and } B \subseteq \bigcup X\}
$$

The first step in Talagrand's construction

- Fix a sequence $\alpha(k) \in \mathbb{R}_{\geq 0}$ that converges to 0 fast enough, and a sequence $\beta(k) \in \mathbb{R}_{\geq 0}$ that diverges to infinity fast enough.
- Define $\mathcal{D} \subseteq \mathcal{M}$ such that $(X, I, w) \in \mathcal{D}$ if and only if:
- $w=2^{-k}\left(\frac{\beta(k)}{|I|}\right)^{\alpha(k)}$, for some k such that $\beta(k) \geq|I|$;
- X is of the form

$$
X=\{f \in \mathcal{T}:(\forall i \in I)(f(i) \neq x(i))\}
$$

$$
\text { for some } x \in \prod_{i \in I}\left\{1,2, \ldots, 2^{i}\right\}
$$

- Consider the associated submeasure

$$
\psi(B):=\phi_{\mathcal{D}}(B)=\inf \{w(X): X \subseteq \mathcal{D}, X \text { is finite and } B \subseteq \bigcup X\}
$$

- Talagrand's submeasure is constructed inductively below ψ.

The first step in Talagrand's construction

- Fix a sequence $\alpha(k) \in \mathbb{R}_{\geq 0}$ that converges to 0 fast enough, and a sequence $\beta(k) \in \mathbb{R}_{\geq 0}$ that diverges to infinity fast enough.
- Define $\mathcal{D} \subseteq \mathcal{M}$ such that $(X, I, w) \in \mathcal{D}$ if and only if:
- $w=2^{-k}\left(\frac{\beta(k)}{|I|}\right)^{\alpha(k)}$, for some k such that $\beta(k) \geq|I|$;
- X is of the form

$$
X=\{f \in \mathcal{T}:(\forall i \in I)(f(i) \neq x(i))\}
$$

$$
\text { for some } x \in \prod_{i \in I}\left\{1,2, \ldots, 2^{i}\right\}
$$

- Consider the associated submeasure

$$
\psi(B):=\phi_{\mathcal{D}}(B)=\inf \{w(X): X \subseteq \mathcal{D}, X \text { is finite and } B \subseteq \bigcup X\}
$$

- Talagrand's submeasure is constructed inductively below ψ.
- ψ has the interesting property that any submeasure below it cannot be uniformly exhaustive.

The first step in Talagrand's construction

- Fix a sequence $\alpha(k) \in \mathbb{R}_{\geq 0}$ that converges to 0 fast enough, and a sequence $\beta(k) \in \mathbb{R}_{\geq 0}$ that diverges to infinity fast enough.
- Define $\mathcal{D} \subseteq \mathcal{M}$ such that $(X, I, w) \in \mathcal{D}$ if and only if:
- $w=2^{-k}\left(\frac{\beta(k)}{|I|}\right)^{\alpha(k)}$, for some k such that $\beta(k) \geq|I|$;
- X is of the form

$$
X=\{f \in \mathcal{T}:(\forall i \in I)(f(i) \neq x(i))\}
$$

for some $x \in \prod_{i \in I}\left\{1,2, \ldots, 2^{i}\right\}$.

- Consider the associated submeasure

$$
\psi(B):=\phi_{\mathcal{D}}(B)=\inf \{w(X): X \subseteq \mathcal{D}, X \text { is finite and } B \subseteq \bigcup X\}
$$

- Talagrand's submeasure is constructed inductively below ψ.
- ψ has the interesting property that any submeasure below it cannot be uniformly exhaustive.
- We will consider covers of \mathcal{T} (and [s]) that have an easily calculable weight.

Some pictures

Some pictures

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.

Some pictures

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in l_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\} .
$$

Some pictures

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in l_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\} .
$$

- If, for example, we have $I_{1}=\{3,11\}, I_{2}=\{2,5\}, I_{3}=\{3,5,7\}, I_{4}=\{7\}$ and $I_{5}=\{7\}$.

Some pictures

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in \epsilon_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\} .
$$

- If, for example, we have $I_{1}=\{3,11\}, I_{2}=\{2,5\}, I_{3}=\{3,5,7\}, I_{4}=\{7\}$ and $I_{5}=\{7\}$.

Some pictures

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in l_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\} .
$$

- If, for example, we have $I_{1}=\{3,11\}, I_{2}=\{2,5\}, I_{3}=\{3,5,7\}, I_{4}=\{7\}$ and $I_{5}=\{7\}$.

Rectangles

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in l_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\} .
$$

Rectangles

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in I_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\} .
$$

- Suppose, for example, that $n=6$, for each i and j we have $I_{i}=I_{j},\left|I_{1}\right|=5$ and

$$
(\forall i)(\forall j \neq k)\left(x_{j}(i) \neq x_{k}(i)\right) .
$$

Rectangles

- Suppose $\left\{\left(X_{1}, l_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in l_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\}
$$

- Suppose, for example, that $n=6$, for each i and j we have $I_{i}=I_{j},\left|I_{1}\right|=5$ and

$$
(\forall i)(\forall j \neq k)\left(x_{j}(i) \neq x_{k}(i)\right) .
$$

Rectangles

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in l_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\} .
$$

- Suppose, for example, that $n=6$, for each i and j we have $I_{i}=I_{j},\left|I_{1}\right|=5$ and

$$
(\forall i)(\forall j \neq k)\left(x_{j}(i) \neq x_{k}(i)\right) .
$$

- Then $\bigcup_{i=1}^{6} X_{i}$, in the shape of a 'rectangle', properly covers \mathcal{T}.

Rectangles

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in l_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\} .
$$

- Suppose, for example, that $n=6$, for each i and j we have $I_{i}=I_{j},\left|I_{1}\right|=5$ and

$$
(\forall i)(\forall j \neq k)\left(x_{j}(i) \neq x_{k}(i)\right) .
$$

- Then $\bigcup_{i=1}^{6} X_{i}$, in the shape of a 'rectangle', properly covers \mathcal{T}.

Rectangles

- Suppose $\left\{\left(X_{1}, I_{1}, w_{1}\right), \ldots,\left(X_{n}, I_{n}, w_{n}\right)\right\} \subseteq \mathcal{D}$.
- Recall that, for each i, we can find an $x_{i} \in \prod_{j \in l_{i}}\left\{1,2, \ldots ., 2^{j}\right\}$ such that

$$
X_{i}=\left\{f \in \mathcal{T}:\left(\forall j \in I_{i}\right)\left(f(j) \neq x_{i}(j)\right)\right\} .
$$

- Suppose, for example, that $n=6$, for each i and j we have $I_{i}=I_{j},\left|I_{1}\right|=5$ and

$$
(\forall i)(\forall j \neq k)\left(x_{j}(i) \neq x_{k}(i)\right) .
$$

- Then $\bigcup_{i=1}^{6} X_{i}$, in the shape of a 'rectangle', properly covers \mathcal{T}.
- It turns out that this rectangular shape is common to all proper covers of \mathcal{T}.

Rectangles

Rectangles

Lemma
Let $\left\{\left(X_{i}, I_{i}, w_{i}\right): i \in I\right\} \subseteq \mathcal{D}$ be a collection that properly covers \mathcal{T}. Then

$$
\left|\bigcup_{i \in 1} I_{i}\right| \leq|I|-1
$$

Rectangles

Lemma

Let $\left\{\left(X_{i}, I_{i}, w_{i}\right): i \in I\right\} \subseteq \mathcal{D}$ be a collection that properly covers \mathcal{T}. Then

$$
\left|\bigcup_{i \in I} I_{i}\right| \leq|I|-1
$$

- Recall that a complete system of distinct representatives for $\left\{I_{i}: i \in I\right\}$ (a CDR) is an injective function $F: I \rightarrow \bigcup_{i \in I} I_{i}$ such that $(\forall i \in I)\left(F(i) \in I_{i}\right)$, and that Hall's marriage theorem states that a CDR exists if and only if

$$
(\forall J \subseteq I)\left(|J| \leq\left|\bigcup_{i \in J} I_{i}\right|\right)
$$

Rectangles

Lemma
Let $\left\{\left(X_{i}, I_{i}, w_{i}\right): i \in I\right\} \subseteq \mathcal{D}$ be a collection that properly covers \mathcal{T}. Then

$$
\left|\bigcup_{i \in I} I_{i}\right| \leq|I|-1
$$

- Recall that a complete system of distinct representatives for $\left\{I_{i}: i \in I\right\}$ (a CDR) is an injective function $F: I \rightarrow \bigcup_{i \in I} I_{i}$ such that $(\forall i \in I)\left(F(i) \in I_{i}\right)$, and that Hall's marriage theorem states that a CDR exists if and only if

$$
(\forall J \subseteq I)\left(|J| \leq\left|\bigcup_{i \in J} I_{i}\right|\right)
$$

- If a CDR exists then $\bigcup_{i \in I} X_{i}$ will not cover \mathcal{T}.

Rectangles

Proof.

Rectangles

Proof.

- There exists a largest $J \subseteq I$ we have $\left|\bigcup_{i \in J} I_{i}\right| \leq|J|-1$ and assume for a contradiction that $J \subsetneq I$.

Rectangles

Proof.

- There exists a largest $J \subseteq I$ we have $\left|\bigcup_{i \in J} I_{i}\right| \leq|J|-1$ and assume for a contradiction that $J \subsetneq I$.
- There exists $f \in \mathcal{T}$ such that $f \notin \bigcup_{i \in J} X_{i}$.

Rectangles

Proof.

- There exists a largest $J \subseteq I$ we have $\left|\bigcup_{i \in J} I_{i}\right| \leq|J|-1$ and assume for a contradiction that $J \subsetneq I$.
- There exists $f \in \mathcal{T}$ such that $f \notin \bigcup_{i \in J} X_{i}$.
- For $i \in I \backslash J$ let $I_{i}^{\prime}=I_{i} \backslash \bigcup_{j \in J} I_{i}$.

Rectangles

Proof.

- There exists a largest $J \subseteq I$ we have $\left|\bigcup_{i \in J} I_{i}\right| \leq|J|-1$ and assume for a contradiction that $J \subsetneq I$.
- There exists $f \in \mathcal{T}$ such that $f \notin \bigcup_{i \in J} X_{i}$.
- For $i \in I \backslash J$ let $I_{i}^{\prime}=I_{i} \backslash \bigcup_{j \in J} I_{i}$.
- Suppose $\left\{I_{i}^{\prime}: i \in I \backslash J\right\}$ has a CDR $F: I \backslash J \rightarrow \bigcup_{i \in \backslash \backslash} I_{i}^{\prime}$.

Rectangles

Proof.

- There exists a largest $J \subseteq I$ we have $\left|\bigcup_{i \in J} I_{i}\right| \leq|J|-1$ and assume for a contradiction that $J \subsetneq I$.
- There exists $f \in \mathcal{T}$ such that $f \notin \bigcup_{i \in J} X_{i}$.
- For $i \in I \backslash J$ let $I_{i}^{\prime}=I_{i} \backslash \bigcup_{j \in J} I_{i}$.
- Suppose $\left\{I_{i}^{\prime}: i \in I \backslash J\right\}$ has a CDR $F: I \backslash J \rightarrow \bigcup_{i \in \backslash \backslash J} I_{i}^{\prime}$.
- Let $s \in \prod_{k \in \operatorname{ran}(F)}\left[2^{k}\right]$ be defined by $s(k)=X_{F-1(k)}(k)$.

Rectangles

Proof.

- There exists a largest $J \subseteq I$ we have $\left|\bigcup_{i \in J} I_{i}\right| \leq|J|-1$ and assume for a contradiction that $J \subsetneq I$.
- There exists $f \in \mathcal{T}$ such that $f \notin \bigcup_{i \in J} X_{i}$.
- For $i \in I \backslash J$ let $I_{i}^{\prime}=I_{i} \backslash \bigcup_{j \in J} I_{i}$.
- Suppose $\left\{I_{i}^{\prime}: i \in I \backslash J\right\}$ has a CDRF: $I \backslash J \rightarrow \bigcup_{i \in \backslash \backslash} I_{i}^{\prime}$.
- Let $s \in \prod_{k \in \operatorname{ran}(F)}\left[2^{k}\right]$ be defined by $s(k)=X_{F-{ }^{1}(k)}(k)$.
- Then the function $(f \backslash\{(k, f(k)): k \in \operatorname{ran}(F)\}) \cup s \notin \bigcup_{i \in I} X_{i}$, which is a contradiction.

Rectangles

Proof.

- There exists a largest $J \subseteq I$ we have $\left|\bigcup_{i \in J} I_{i}\right| \leq|J|-1$ and assume for a contradiction that $J \subsetneq I$.
- There exists $f \in \mathcal{T}$ such that $f \notin \bigcup_{i \in J} X_{i}$.
- For $i \in I \backslash J$ let $I_{i}^{\prime}=I_{i} \backslash \bigcup_{j \in J} I_{i}$.
- Suppose $\left\{l_{i}^{\prime}: i \in I \backslash J\right\}$ has a CDR $F: I \backslash J \rightarrow \bigcup_{i \in \backslash \backslash J} I_{i}^{\prime}$.
- Let $s \in \prod_{k \in \operatorname{ran}(F)}\left[2^{k}\right]$ be defined by $s(k)=X_{F-{ }^{1}(k)}(k)$.
- Then the function $(f \backslash\{(k, f(k)): k \in \operatorname{ran}(F)\}) \cup s \notin \bigcup_{i \in I} X_{i}$, which is a contradiction.
- There exists $J^{\prime} \subseteq I \backslash J$ such that $\left|\bigcup_{i \in J^{\prime}} I_{i}^{\prime}\right| \leq\left|J^{\prime}\right|-1$.

Rectangles

Proof.

- There exists a largest $J \subseteq I$ we have $\left|\bigcup_{i \in J} I_{i}\right| \leq|J|-1$ and assume for a contradiction that $J \subsetneq I$.
- There exists $f \in \mathcal{T}$ such that $f \notin \bigcup_{i \in J} X_{i}$.
- For $i \in I \backslash J$ let $I_{i}^{\prime}=I_{i} \backslash \bigcup_{j \in J} I_{i}$.
- Suppose $\left\{I_{i}^{\prime}: i \in I \backslash J\right\}$ has a CDRF: $I \backslash J \rightarrow \bigcup_{i \in \backslash \backslash} I_{i}^{\prime}$.
- Let $s \in \prod_{k \in \operatorname{ran}(F)}\left[2^{k}\right]$ be defined by $s(k)=X_{F-{ }^{1}(k)}(k)$.
- Then the function $(f \backslash\{(k, f(k)): k \in \operatorname{ran}(F)\}) \cup s \notin \bigcup_{i \in I} X_{i}$, which is a contradiction.
- There exists $J^{\prime} \subseteq I \backslash J$ such that $\left|\bigcup_{i \in J^{\prime}} I_{i}^{\prime}\right| \leq\left|J^{\prime}\right|-1$.
- But then

$$
\left|\bigcup_{i \in J \cup J^{\prime}} I_{i}\right| \leq\left|J \cup J^{\prime}\right|-1 \text { and }\left|J \cup J^{\prime}\right|>|J| \text {. }
$$

Rectangles

Rectangles

- From this (and some calculations involving the weight functions) we can conclude that

$$
\psi(\mathcal{T})=\inf \{w(X): X \subseteq \mathcal{D} \wedge X \text { is a rectangle }\}
$$

Rectangles

- From this (and some calculations involving the weight functions) we can conclude that

$$
\psi(\mathcal{T})=\inf \{w(X): X \subseteq \mathcal{D} \wedge X \text { is a rectangle }\}
$$

- This is actually attained by any rectangle $\left\{\left(X_{1}, I_{1}, w_{1}\right),\left(X_{2}, I_{2}, w_{2}\right)\right\}$, where $\left|I_{1}\right|=1$.

Rectangles

- From this (and some calculations involving the weight functions) we can conclude that

$$
\psi(\mathcal{T})=\inf \{w(X): X \subseteq \mathcal{D} \wedge X \text { is a rectangle }\}
$$

- This is actually attained by any rectangle $\left\{\left(X_{1}, I_{1}, w_{1}\right),\left(X_{2}, I_{2}, w_{2}\right)\right\}$, where $\left|\left.\right|_{1}\right|=1$.
- This gives $\psi(\mathcal{T})=\beta(1)^{\alpha(1)}$.

Rectangles

- From this (and some calculations involving the weight functions) we can conclude that

$$
\psi(\mathcal{T})=\inf \{w(X): X \subseteq \mathcal{D} \wedge X \text { is a rectangle }\}
$$

- This is actually attained by any rectangle $\left\{\left(X_{1}, I_{1}, w_{1}\right),\left(X_{2}, I_{2}, w_{2}\right)\right\}$, where $\left|I_{1}\right|=1$.
- This gives $\psi(\mathcal{T})=\beta(1)^{\alpha(1)}$.
- A similar analyse gives

$$
\psi([s])=\min \left\{2^{-m+1}, 2^{-m}\left(\frac{\beta(m)}{m}\right)^{\alpha(m)}\right\}
$$

where $m=\min \{k:|s| \leq \beta(k)\}$.

So far, not so good..

So far, not so good..

- The Lebesgue measure is completely determined by its values on sets of the form [s].

So far, not so good..

- The Lebesgue measure is completely determined by its values on sets of the form [s].
- The submeasures ψ and Talagrand's final construction are certainly not.

So far, not so good..

- The Lebesgue measure is completely determined by its values on sets of the form [s].
- The submeasures ψ and Talagrand's final construction are certainly not.
- In particular, I don't know how to adapt these arguments to measure sets of the form $[s] \cup[t]$, for example.

So far, not so good..

- The Lebesgue measure is completely determined by its values on sets of the form [s].
- The submeasures ψ and Talagrand's final construction are certainly not.
- In particular, I don't know how to adapt these arguments to measure sets of the form $[s] \cup[t]$, for example.
- Talagrand's final construction lies far below the ψ we considered here.

So far, not so good..

- The Lebesgue measure is completely determined by its values on sets of the form [s].
- The submeasures ψ and Talagrand's final construction are certainly not.
- In particular, I don't know how to adapt these arguments to measure sets of the form $[s] \cup[t]$, for example.
- Talagrand's final construction lies far below the ψ we considered here.
- I don't know how to adapt these arguments to circumvent Talagrand's induction step(s).

The next submeasure to consider

Let $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ be a submeasure and let $m, n \in \mathbb{N}, m<n$.

Let $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ be a submeasure and let $m, n \in \mathbb{N}, m<n$.

- For each $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, we define the map

$$
\pi_{[s]}: \mathcal{T} \rightarrow[s]
$$

by

$$
\left(\pi_{[s]}(x)\right)(i)= \begin{cases}s(i), & \text { if } i \leq m, \\ x(i), & \text { otherwise } .\end{cases}
$$

Let $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ be a submeasure and let $m, n \in \mathbb{N}, m<n$.

- For each $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, we define the map

$$
\pi_{[s]}: \mathcal{T} \rightarrow[s]
$$

by

$$
\left(\pi_{[s]}(x)\right)(i)= \begin{cases}s(i), & \text { if } i \leq m \\ x(i), & \text { otherwise }\end{cases}
$$

- For $X \subseteq \mathcal{T}$ is (m, n, μ)-thin if and only if, for every $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, there exists $\exists B \in \mathfrak{B}$, determined by its first n co-ordinates, such that

$$
B \subseteq[s], \quad B \cap X=\emptyset, \quad \mu\left(\pi_{[s]}^{-1}[B]\right) \geq 1
$$

The next submeasure to consider

Let $\mu: \mathfrak{B} \rightarrow \mathbb{R}$ be a submeasure and let $m, n \in \mathbb{N}, m<n$.

- For each $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, we define the map

$$
\pi_{[s]}: \mathcal{T} \rightarrow[s]
$$

by

$$
\left(\pi_{[s]}(x)\right)(i)= \begin{cases}s(i), & \text { if } i \leq m \\ x(i), & \text { otherwise }\end{cases}
$$

- For $X \subseteq \mathcal{T}$ is (m, n, μ)-thin if and only if, for every $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, there exists $\exists B \in \mathfrak{B}$, determined by its first n co-ordinates, such that

$$
B \subseteq[s], \quad B \cap X=\emptyset, \quad \mu\left(\pi_{[s]}^{-1}[B]\right) \geq 1
$$

For $I \subseteq \mathbb{N}$, we say that X is (I, μ)-thin if it is (m, n, μ)-thin for each $m, n \in I$ with $m<n$.

- For $X \subseteq \mathcal{T}$ is (m, n, μ)-thin if and only if, for every $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, there exists $\exists B \in \mathfrak{B}$, determined by its first n co-ordinates, such that

$$
B \subseteq[s], \quad B \cap X=\emptyset, \quad \mu\left(\pi_{[s]}^{-1}[B]\right) \geq 1
$$

For $I \subseteq \mathbb{N}$, we say that X is (I, μ)-thin if it is (m, n, μ)-thin for each $m, n \in I$ with $m<n$.

- For $X \subseteq \mathcal{T}$ is (m, n, μ)-thin if and only if, for every $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, there exists $\exists B \in \mathfrak{B}$, determined by its first n co-ordinates, such that

$$
B \subseteq[s], \quad B \cap X=\emptyset, \quad \mu\left(\pi_{[s]}^{-1}[B]\right) \geq 1
$$

For $I \subseteq \mathbb{N}$, we say that X is (I, μ)-thin if it is (m, n, μ)-thin for each $m, n \in I$ with $m<n$.

- Now define $\mathcal{E} \subseteq \mathcal{M}$ by, $(X, I, w) \in \mathcal{E}$ if and only if
- For $X \subseteq \mathcal{T}$ is (m, n, μ)-thin if and only if, for every $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, there exists $\exists B \in \mathfrak{B}$, determined by its first n co-ordinates, such that

$$
B \subseteq[s], \quad B \cap X=\emptyset, \quad \mu\left(\pi_{[s]}^{-1}[B]\right) \geq 1
$$

For $I \subseteq \mathbb{N}$, we say that X is (I, μ)-thin if it is (m, n, μ)-thin for each $m, n \in I$ with $m<n$.

- Now define $\mathcal{E} \subseteq \mathcal{M}$ by, $(X, I, w) \in \mathcal{E}$ if and only if
- $w=2^{-k}\left(\frac{\beta(k)}{|I|}\right)^{\alpha(k)}$, for some k such that $\beta(k) \geq|I|$;
- For $X \subseteq \mathcal{T}$ is (m, n, μ)-thin if and only if, for every $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, there exists $\exists B \in \mathfrak{B}$, determined by its first n co-ordinates, such that

$$
B \subseteq[s], \quad B \cap X=\emptyset, \quad \mu\left(\pi_{[s]}^{-1}[B]\right) \geq 1
$$

For $I \subseteq \mathbb{N}$, we say that X is (I, μ)-thin if it is (m, n, μ)-thin for each $m, n \in I$ with $m<n$.

- Now define $\mathcal{E} \subseteq \mathcal{M}$ by, $(X, I, w) \in \mathcal{E}$ if and only if
- $w=2^{-k}\left(\frac{\beta(k)}{|I|}\right)^{\alpha(k)}$, for some k such that $\beta(k) \geq|I|$;
- X is (I, ψ)-thin.

The next submeasure to consider

- For $X \subseteq \mathcal{T}$ is (m, n, μ)-thin if and only if, for every $s \in \prod_{i=1}^{m}\left\{1,2, \ldots, 2^{i}\right\}$, there exists $\exists B \in \mathfrak{B}$, determined by its first n co-ordinates, such that

$$
B \subseteq[s], \quad B \cap X=\emptyset, \quad \mu\left(\pi_{[s]}^{-1}[B]\right) \geq 1
$$

For $I \subseteq \mathbb{N}$, we say that X is (I, μ)-thin if it is (m, n, μ)-thin for each $m, n \in I$ with $m<n$.

- Now define $\mathcal{E} \subseteq \mathcal{M}$ by, $(X, I, w) \in \mathcal{E}$ if and only if
- $w=2^{-k}\left(\frac{\beta(k)}{|I|}\right)^{\alpha(k)}$, for some k such that $\beta(k) \geq|I|$;
- X is (I, ψ)-thin.
- The next submeasure to consider is now

$$
\phi_{\mathcal{D} \cup \mathcal{E}}(B)=\inf \{w(X): X \subseteq \mathcal{D} \cup \mathcal{E}, X \text { is finite and } B \subseteq \bigcup X\}
$$

(...sigh).

References

Some references:

- My Ph.D. thesis. Available from here:
https://ueaeprints.uea.ac.uk/41414/

References

Some references:

- My Ph.D. thesis. Available from here:
https://ueaeprints.uea.ac.uk/41414/
- Maharam's original paper: An algebraic characterization of measure algebras, 1947.

References

Some references:

- My Ph.D. thesis. Available from here:
https://ueaeprints.uea.ac.uk/41414/
- Maharam's original paper: An algebraic characterization of measure algebras, 1947.
- Talagrand's solution: Maharam's problem, 2006 (arxiv), 2008 (journal).

References

Some references:

- My Ph.D. thesis. Available from here: https://ueaeprints.uea.ac.uk/41414/
- Maharam's original paper: An algebraic characterization of measure algebras, 1947.
- Talagrand's solution: Maharam's problem, 2006 (arxiv), 2008 (journal).
- Fremlin's Measure Theory, Volume 3.

References

Some references:

- My Ph.D. thesis. Available from here: https://ueaeprints.uea.ac.uk/41414/
- Maharam's original paper: An algebraic characterization of measure algebras, 1947.
- Talagrand's solution: Maharam's problem, 2006 (arxiv), 2008 (journal).
- Fremlin's Measure Theory, Volume 3.

Thanks very much for your attention!

