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G ü X : (free) action of discrete group G on a compact space X .

E : finite subset of G . U: open subset of X .

Let „E be the equivalence relation on U induced by E , i.e.

x „E y iff Dg1, ..., gn P E Y E´1 Y teu such that x “ gn ¨ ¨ ¨ g1y

and gk ¨ ¨ ¨ g1x P U for k P t1, ..., nu.

rxsE : equivalence class for „E .

Definition
U is small for E if

sup
xPU

|rxsE | ă 8.
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G ü X : (free) action of discrete group G on a compact space X .

U
open
Ď X is small for E

finite
Ď G if E induces a ‘finite’ equivalence relation on U.

Definition
The dynamic asymptotic dimension of G ü X is the smallest d P N with the
following property.
For any finite subset E Ď G , there is an open cover

X “ U0 Y U1 Y ¨ ¨ ¨ Y Ud

of X by sets that are small for E .
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Examples

Z ü S1 by rotation by 2πθ, θ irrational,

E “ t´1, 0, 1u. Define

More generally:

Theorem

Z ü X free, minimal action on compact space. Then d.a.d.pZ ü X q “ 1.
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Examples

G finitely generated, equipped with word metric (e.g. Z with dpn,mq “ |n ´m|).

Definition (Gromov)

The asymptotic dimension of G is the smallest d P N with the following property.
For each r ą 0 there exists a uniformly bounded cover U of G which splits into
d ` 1 ‘colours’

U “ U0 \ ¨ ¨ ¨ \ Ud

such that for U ‰ V of the same colour, dpU,V q ě r .

Example: asdimpZq “ 1.

Example: asdimpZdq “ d .
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Examples

Examples of groups with finite asymptotic dimension:

polycyclic groups, word
hyperbolic groups, 3-manifold groups, lattices in Lie groups...

Theorem

asdimpG q “ d.a.d.pG ü βG q.

Corollary (essentially due to Rørdam and Sierakowski)

Any G with finite asymptotic dimension admits a free, minimal action on the
Cantor set with finite dynamic asymptotic dimension.
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Small subalgebras

G ü X : (free) action by discrete group G on compact space X .

Recall: crossed product

C pX q ¸r G :“
!

ÿ

gPG

fgug

ˇ

ˇ

ˇ
fg P C pX q, plus other conditions...

)

.

For U
open
Ď X and E

finite
Ď G define

C˚pU;E q :“C˚pf1ug f2 | f1, f2 P C0pUq, g P E q

ĎC pX q ¸r G .

Theorem

If U is small for E , then C˚pU;E q is ’nice’ (e.g. subhomogeneous, with explicit
primitive ideal space...).
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Small subalgebras

Slightly more explicitly, for U
open
Ď X , define Upmq :“ tx P U | |rxsE | “ mu.

Example:

Quotients / C˚-algebras C˚pU;E q:

(always look sort of like this).
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Applications - structure and K -theory

A : C˚-algebra.

Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest d P N with the following property.

For any ε ą 0 and F
finite
Ď A, there are finite dimensional C˚-algebras B0, ...,Bd

and c.c.p. maps

A
ψi
ÝÑ Bi

φi
ÝÑ A

such that φi preserves orthogonality, and such that

›

›

›

d
ÿ

i“0

φi pψi paqq ´ a
›

›

›
ă ε

for all a P F .

Facts:

The nuclear dimension of C pX q equals the covering dimension of X .

Nuclear dimension has been important in the circle of ideas around Elliott’s
classification program ...

10 / 13



Applications - structure and K -theory

A : C˚-algebra.

Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest d P N with the following property.

For any ε ą 0 and F
finite
Ď A, there are finite dimensional C˚-algebras B0, ...,Bd

and c.c.p. maps

A
ψi
ÝÑ Bi

φi
ÝÑ A

such that φi preserves orthogonality, and such that

›

›

›

d
ÿ

i“0

φi pψi paqq ´ a
›

›

›
ă ε

for all a P F .

Facts:

The nuclear dimension of C pX q equals the covering dimension of X .

Nuclear dimension has been important in the circle of ideas around Elliott’s
classification program ...

10 / 13



Applications - structure and K -theory

A : C˚-algebra.

Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest d P N with the following property.

For any ε ą 0 and F
finite
Ď A, there are finite dimensional C˚-algebras B0, ...,Bd

and c.c.p. maps

A
ψi
ÝÑ Bi

φi
ÝÑ A

such that φi preserves orthogonality, and such that

›

›

›

d
ÿ

i“0

φi pψi paqq ´ a
›

›

›
ă ε

for all a P F .

Facts:

The nuclear dimension of C pX q equals the covering dimension of X .

Nuclear dimension has been important in the circle of ideas around Elliott’s
classification program ...

10 / 13



Applications - structure and K -theory

A : C˚-algebra.

Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest d P N with the following property.

For any ε ą 0 and F
finite
Ď A, there are finite dimensional C˚-algebras B0, ...,Bd

and c.c.p. maps

A
ψi
ÝÑ Bi

φi
ÝÑ A

such that φi preserves orthogonality, and such that

›

›

›

d
ÿ

i“0

φi pψi paqq ´ a
›

›

›
ă ε

for all a P F .

Facts:

The nuclear dimension of C pX q equals the covering dimension of X .

Nuclear dimension has been important in the circle of ideas around Elliott’s
classification program ...

10 / 13



Applications - structure and K -theory

A : C˚-algebra.

Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest d P N with the following property.

For any ε ą 0 and F
finite
Ď A, there are finite dimensional C˚-algebras B0, ...,Bd

and c.c.p. maps

A
ψi
ÝÑ Bi

φi
ÝÑ A

such that φi preserves orthogonality, and such that

›

›

›

d
ÿ

i“0

φi pψi paqq ´ a
›

›

›
ă ε

for all a P F .

Facts:

The nuclear dimension of C pX q equals the covering dimension of X .

Nuclear dimension has been important in the circle of ideas around Elliott’s
classification program ...

10 / 13



Applications - structure and K -theory

Theorem
G ü X : action of discrete G on compact X .

nucdimpC pX q ¸r G q ` 1 ď pdimpX q ` 1qpd.a.d.pG ü X q ` 1q

Corollary
1 (Winter-Zacharias) nucdimpl8pG q ¸r G q ď asdimpG q.

2 (Toms-Winter) Z ü X free and minimal. Then
nucdimpC pX q ¸r Zq ď 2dimpX q ` 1.

3 Any G admits free and minimal G ü X, X the Cantor set, with
nucdimpC pX q ¸r G q ď asdimpG q.
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Applications - structure and K -theory

Our main motivation is to ‘compute’ K -theory of C pX q ¸r G (and related purely
algebraic objects).

Vague idea: say d.a.d.pG ü X q “ 1 and write X “ U0 Y U1.

‘Sort-of’ get a Mayer-Vietoris sequence:

Ñ Ki pC
˚pU0;E qq‘Ki pC

˚pU1;E qq Ñ Ki pC pX q¸r G q Ñ Ki`1pC
˚pU0XU1;E qq Ñ

As C˚pU0;E q etc. have ‘computable’ K -theory, can compute K˚pC pX q ¸r G q.
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Applications - structure and K -theory

Sample result:

Theorem

Say d.a.d.pG ü X q ă 8. Then the Baum-Connes conjecture is true for G with
coefficients in C pX q.

Not a new result! - due to Tu ...

... but the technique - using controlled K -theory, and decomposition into almost
ideals - is more elementary, and works in the purely algebraic setting ...
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