Dynamic Asymptotic Dimension

Rufus Willett
(joint work with Erik Guentner and Guoliang Yu)

University of Hawai'i
FADYS, Florianópolis, February 2015
$G \subset X:($ free $)$ action of discrete group G on a compact space X.
$G \subset X:($ free $)$ action of discrete group G on a compact space X.
E : finite subset of $G . U$: open subset of X.
$G \subset X:($ free $)$ action of discrete group G on a compact space X.
E : finite subset of $G . U$: open subset of X.

Let \sim_{E} be the equivalence relation on U induced by E, i.e.
$G \subset X:($ free $)$ action of discrete group G on a compact space X.
E : finite subset of $G . U$: open subset of X.
Let \sim_{E} be the equivalence relation on U induced by E, i.e.

$$
\begin{aligned}
x \sim_{E} y \text { iff } & \exists g_{1}, \ldots, g_{n} \in E \cup E^{-1} \cup\{e\} \text { such that } x=g_{n} \cdots g_{1} y \\
& \text { and } g_{k} \cdots g_{1} x \in U \text { for } k \in\{1, \ldots, n\} .
\end{aligned}
$$

$G \subset X:($ free $)$ action of discrete group G on a compact space X.
E : finite subset of $G . U$: open subset of X.

Let \sim_{E} be the equivalence relation on U induced by E, i.e.

$$
\begin{aligned}
x \sim_{E} y \text { iff } & \exists g_{1}, \ldots, g_{n} \in E \cup E^{-1} \cup\{e\} \text { such that } x=g_{n} \cdots g_{1} y \\
& \text { and } g_{k} \cdots g_{1} x \in U \text { for } k \in\{1, \ldots, n\} .
\end{aligned}
$$

$[x]_{E}$: equivalence class for \sim_{E}.
$G \subset X:($ free $)$ action of discrete group G on a compact space X.
E : finite subset of G. U : open subset of X.
Let \sim_{E} be the equivalence relation on U induced by E, i.e.

$$
\begin{aligned}
x \sim_{E} y \text { iff } & \exists g_{1}, \ldots, g_{n} \in E \cup E^{-1} \cup\{e\} \text { such that } x=g_{n} \cdots g_{1} y \\
& \text { and } g_{k} \cdots g_{1} x \in U \text { for } k \in\{1, \ldots, n\} .
\end{aligned}
$$

$[x]_{E}$: equivalence class for \sim_{E}.

Definition

U is small for E if

$$
\sup _{x \in U}\left|[x]_{E}\right|<\infty .
$$

$G G X:($ free $)$ action of discrete group G on a compact space X.
$U \stackrel{\text { open }}{\subseteq} X$ is small for $E \stackrel{\text { finite }}{\subseteq} G$ if E induces a 'finite' equivalence relation on U.
$G G X:($ free $)$ action of discrete group G on a compact space X.
$U \stackrel{\text { open }}{\subseteq} X$ is small for $E \stackrel{\text { finite }}{\subseteq} G$ if E induces a 'finite' equivalence relation on U.

Definition

The dynamic asymptotic dimension of $G G X$ is the smallest $d \in \mathbb{N}$ with the following property.
$G G X:($ free $)$ action of discrete group G on a compact space X.
$U \stackrel{\text { open }}{\subseteq} X$ is small for $E \stackrel{\text { finite }}{\subseteq} G$ if E induces a 'finite' equivalence relation on U.

Definition

The dynamic asymptotic dimension of $G G X$ is the smallest $d \in \mathbb{N}$ with the following property.
For any finite subset $E \subseteq G$, there is an open cover

$$
X=U_{0} \cup U_{1} \cup \cdots \cup U_{d}
$$

of X by sets that are small for E.
(1) Examples
(2) Small subalgebras
(3) Applications - structure and K-theory
$\mathbb{Z} \subset S^{1}$ by rotation by $2 \pi \theta, \theta$ irrational,
$\mathbb{Z} \subset S^{1}$ by rotation by $2 \pi \theta, \theta$ irrational, $E=\{-1,0,1\}$.
$\mathbb{Z} \subseteq S^{1}$ by rotation by $2 \pi \theta, \theta$ irrational, $E=\{-1,0,1\}$. Define

$\mathbb{Z} Q S^{1}$ by rotation by $2 \pi \theta, \theta$ irrational, $E=\{-1,0,1\}$. Define

More generally:
$\mathbb{Z} \subseteq S^{1}$ by rotation by $2 \pi \theta, \theta$ irrational, $E=\{-1,0,1\}$. Define

More generally:

Theorem

$\mathbb{Z} \subset X$ free, minimal action on compact space. Then d.a.d. $(\mathbb{Z} \subseteq X)=1$.
G finitely generated, equipped with word metric (e.g. \mathbb{Z} with $d(n, m)=|n-m|$).
G finitely generated, equipped with word metric (e.g. \mathbb{Z} with $d(n, m)=|n-m|$).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property.
G finitely generated, equipped with word metric (e.g. \mathbb{Z} with $d(n, m)=|n-m|$).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property. For each $r>0$ there exists a uniformly bounded cover \mathcal{U} of G which splits into $d+1$ 'colours'

$$
\mathcal{U}=\mathcal{U}_{0} \sqcup \cdots \sqcup \mathcal{U}_{d}
$$

such that for $U \neq V$ of the same colour, $d(U, V) \geqslant r$.
G finitely generated, equipped with word metric (e.g. \mathbb{Z} with $d(n, m)=|n-m|$).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property. For each $r>0$ there exists a uniformly bounded cover \mathcal{U} of G which splits into $d+1$ 'colours'

$$
\mathcal{U}=\mathcal{U}_{0} \sqcup \cdots \sqcup \mathcal{U}_{d}
$$

such that for $U \neq V$ of the same colour, $d(U, V) \geqslant r$.

Example: $\operatorname{asdim}(\mathbb{Z})=1$.
G finitely generated, equipped with word metric (e.g. \mathbb{Z} with $d(n, m)=|n-m|$).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property. For each $r>0$ there exists a uniformly bounded cover \mathcal{U} of G which splits into $d+1$ 'colours'

$$
\mathcal{U}=\mathcal{U}_{0} \sqcup \cdots \sqcup \mathcal{U}_{d}
$$

such that for $U \neq V$ of the same colour, $d(U, V) \geqslant r$.

Example: $\operatorname{asdim}(\mathbb{Z})=1$.

G finitely generated, equipped with word metric (e.g. \mathbb{Z} with $d(n, m)=|n-m|$).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property. For each $r>0$ there exists a uniformly bounded $\operatorname{cover} \mathcal{U}$ of G which splits into $d+1$ 'colours'

$$
\mathcal{U}=\mathcal{U}_{0} \sqcup \cdots \sqcup \mathcal{U}_{d}
$$

such that for $U \neq V$ of the same colour, $d(U, V) \geqslant r$.

Example: $\operatorname{asdim}(\mathbb{Z})=1$.

Example: $\operatorname{asdim}\left(\mathbb{Z}^{d}\right)=d$.

Examples of groups with finite asymptotic dimension:

Examples of groups with finite asymptotic dimension: polycyclic groups,

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups,

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups, 3-manifold groups,

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups, 3-manifold groups, lattices in Lie groups...

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups, 3-manifold groups, lattices in Lie groups...

Theorem

$$
\operatorname{asdim}(G)=\text { d.a.d. }(G G \beta G) .
$$

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups, 3-manifold groups, lattices in Lie groups...

```
Theorem
\(\operatorname{asdim}(G)=\) d.a.d. \((G G \beta G)\).
```


Corollary (essentially due to Rørdam and Sierakowski)

Any G with finite asymptotic dimension admits a free, minimal action on the Cantor set with finite dynamic asymptotic dimension.

Small subalgebras

$G G X:($ free $)$ action by discrete group G on compact space X.
$G G X:($ free $)$ action by discrete group G on compact space X.
Recall: crossed product

$$
C(X) \rtimes_{r} G:=\left\{\sum_{g \in G} f_{g} u_{g} \mid f_{g} \in C(X), \text { plus other conditions... }\right\} .
$$

$G G X:($ free $)$ action by discrete group G on compact space X.
Recall: crossed product

$$
C(X) \rtimes_{r} G:=\left\{\sum_{g \in G} f_{g} u_{g} \mid f_{g} \in C(X), \text { plus other conditions... }\right\} .
$$

For $U \stackrel{\text { open }}{\subseteq} X$ and $E \stackrel{\text { finite }}{\subseteq} G$ define

$$
\begin{aligned}
C^{*}(U ; E) & :=C^{*}\left(f_{1} u_{g} f_{2} \mid f_{1}, f_{2} \in C_{0}(U), g \in E\right) \\
& \subseteq C(X) \rtimes_{r} G .
\end{aligned}
$$

$G \subset X:($ free $)$ action by discrete group G on compact space X.

Recall: crossed product

$$
C(X) \rtimes_{r} G:=\left\{\sum_{g \in G} f_{g} u_{g} \mid f_{g} \in C(X), \text { plus other conditions... }\right\} .
$$

For $U \stackrel{\text { open }}{\subseteq} X$ and $E \stackrel{\text { finite }}{\subseteq} G$ define

$$
\begin{aligned}
C^{*}(U ; E) & :=C^{*}\left(f_{1} u_{g} f_{2} \mid f_{1}, f_{2} \in C_{0}(U), g \in E\right) \\
& \subseteq C(X) \rtimes_{r} G .
\end{aligned}
$$

Theorem

If U is small for E, then $C^{*}(U ; E)$ is 'nice'

$G \subset X:($ free $)$ action by discrete group G on compact space X.

Recall: crossed product

$$
C(X) \rtimes_{r} G:=\left\{\sum_{g \in G} f_{g} u_{g} \mid f_{g} \in C(X), \text { plus other conditions... }\right\} .
$$

For $U \stackrel{\text { open }}{\subseteq} X$ and $E \stackrel{\text { finite }}{\subseteq} G$ define

$$
\begin{aligned}
C^{*}(U ; E) & :=C^{*}\left(f_{1} u_{g} f_{2} \mid f_{1}, f_{2} \in C_{0}(U), g \in E\right) \\
& \subseteq C(X) \rtimes_{r} G .
\end{aligned}
$$

Theorem

If U is small for E, then $C^{*}(U ; E)$ is 'nice' (e.g. subhomogeneous, with explicit primitive ideal space...).

Slightly more explicitly, for $U \stackrel{\text { open }}{\subseteq} X$, define $U^{(m)}:=\left\{x \in U| |[x]_{E} \mid=m\right\}$.

Slightly more explicitly, for $U \stackrel{\text { open }}{\subseteq} X$, define $U^{(m)}:=\left\{x \in U| |[x]_{E} \mid=m\right\}$.

Example:

Slightly more explicitly, for $U \stackrel{\text { open }}{\subseteq} X$, define $U^{(m)}:=\left\{x \in U| |[x]_{E} \mid=m\right\}$.
Example:

Slightly more explicitly, for $U \stackrel{\text { open }}{\subseteq} X$, define $U^{(m)}:=\left\{x \in U| |[x]_{E} \mid=m\right\}$.
Example:

Quotients / C^{*}-algebras $C^{*}(U ; E)$:

Slightly more explicitly, for $U \stackrel{\text { open }}{\subseteq} X$, define $U^{(m)}:=\left\{x \in U| |[x]_{E} \mid=m\right\}$.
Example:

Quotients / C^{*}-algebras $C^{*}(U ; E)$:

(always look sort of like this).

$A: C^{*}$-algebra.

$A: C^{*}$-algebra.

Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest $d \in \mathbb{N}$ with the following property.
For any $\epsilon>0$ and $\mathcal{F} \stackrel{\text { finite }}{\subseteq} A$, there are finite dimensional C^{*}-algebras B_{0}, \ldots, B_{d} and c.c.p. maps

$$
A \xrightarrow{\psi_{i}} B_{i} \xrightarrow{\phi_{i}} A
$$

such that ϕ_{i} preserves orthogonality, and such that

$$
\left\|\sum_{i=0}^{d} \phi_{i}\left(\psi_{i}(a)\right)-a\right\|<\epsilon
$$

for all $a \in \mathcal{F}$.
Facts:
$A: C^{*}$-algebra.

Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest $d \in \mathbb{N}$ with the following property.
For any $\epsilon>0$ and $\mathcal{F} \stackrel{\text { finite }}{\subseteq} A$, there are finite dimensional C^{*}-algebras B_{0}, \ldots, B_{d} and c.c.p. maps

$$
A \xrightarrow{\psi_{i}} B_{i} \xrightarrow{\phi_{i}} A
$$

such that ϕ_{i} preserves orthogonality, and such that

$$
\left\|\sum_{i=0}^{d} \phi_{i}\left(\psi_{i}(a)\right)-a\right\|<\epsilon
$$

for all $a \in \mathcal{F}$.
Facts:

- The nuclear dimension of $C(X)$ equals the covering dimension of X.
$A: C^{*}$-algebra.

Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest $d \in \mathbb{N}$ with the following property.
For any $\epsilon>0$ and $\mathcal{F} \stackrel{\text { finite }}{\subseteq} A$, there are finite dimensional C^{*}-algebras B_{0}, \ldots, B_{d} and c.c.p. maps

$$
A \xrightarrow{\psi_{i}} B_{i} \xrightarrow{\phi_{i}} A
$$

such that ϕ_{i} preserves orthogonality, and such that

$$
\left\|\sum_{i=0}^{d} \phi_{i}\left(\psi_{i}(a)\right)-a\right\|<\epsilon
$$

for all $a \in \mathcal{F}$.
Facts:

- The nuclear dimension of $C(X)$ equals the covering dimension of X.
- Nuclear dimension has been important in the circle of ideas around Elliott's classification program ...

Theorem

$G \subset X$: action of discrete G on compact X.

$$
\operatorname{nucdim}\left(C(X) \rtimes_{r} G\right)+1 \leqslant(\operatorname{dim}(X)+1)(\text { d.a.d. }(G G X)+1)
$$

Theorem

$G \subset X$: action of discrete G on compact X.

$$
\operatorname{nucdim}\left(C(X) \rtimes_{r} G\right)+1 \leqslant(\operatorname{dim}(X)+1)(\text { d.a.d. }(G G X)+1)
$$

Corollary
(1) (Winter-Zacharias) nucdim $\left(I^{\infty}(G) \rtimes_{r} G\right) \leqslant \operatorname{asdim}(G)$.

Theorem

$G \subset X$: action of discrete G on compact X.

$$
\operatorname{nucdim}\left(C(X) \rtimes_{r} G\right)+1 \leqslant(\operatorname{dim}(X)+1)(\text { d.a.d. }(G G X)+1)
$$

Corollary

(1) (Winter-Zacharias) nucdim $\left(I^{\infty}(G) \rtimes_{r} G\right) \leqslant \operatorname{asdim}(G)$.
(2) (Toms-Winter) $\mathbb{Z} G X$ free and minimal. Then $\operatorname{nucdim}\left(C(X) \rtimes_{r} \mathbb{Z}\right) \leqslant 2 \operatorname{dim}(X)+1$.

Theorem

$G G X$: action of discrete G on compact X.

$$
\operatorname{nucdim}\left(C(X) \rtimes_{r} G\right)+1 \leqslant(\operatorname{dim}(X)+1)(\text { d.a.d. }(G G X)+1)
$$

Corollary

(1) (Winter-Zacharias) nucdim $\left(I^{\infty}(G) \rtimes_{r} G\right) \leqslant \operatorname{asdim}(G)$.
(2) (Toms-Winter) $\mathbb{Z} G X$ free and minimal. Then $\operatorname{nucdim}\left(C(X) \rtimes_{r} \mathbb{Z}\right) \leqslant 2 \operatorname{dim}(X)+1$.
(3) Any G admits free and minimal $G G X, X$ the Cantor set, with $\operatorname{nucdim}\left(C(X) \rtimes_{r} G\right) \leqslant \operatorname{asdim}(G)$.

Our main motivation is to 'compute' K-theory of $C(X) \rtimes_{r} G$ (and related purely algebraic objects).

Our main motivation is to 'compute' K-theory of $C(X) \rtimes_{r} G$ (and related purely algebraic objects).

Vague idea: say d.a.d. $(G G X)=1$ and write $X=U_{0} \cup U_{1}$.

Our main motivation is to 'compute' K-theory of $C(X) \rtimes_{r} G$ (and related purely algebraic objects).

Vague idea: say d.a.d. $(G G X)=1$ and write $X=U_{0} \cup U_{1}$.
'Sort-of' get a Mayer-Vietoris sequence:
$\rightarrow K_{i}\left(C^{*}\left(U_{0} ; E\right)\right) \oplus K_{i}\left(C^{*}\left(U_{1} ; E\right)\right) \rightarrow K_{i}\left(C(X) \rtimes_{r} G\right) \rightarrow K_{i+1}\left(C^{*}\left(U_{0} \cap U_{1} ; E\right)\right) \rightarrow$

Our main motivation is to 'compute' K-theory of $C(X) \rtimes_{r} G$ (and related purely algebraic objects).

Vague idea: say d.a.d. $(G G X)=1$ and write $X=U_{0} \cup U_{1}$.
'Sort-of' get a Mayer-Vietoris sequence:
$\rightarrow K_{i}\left(C^{*}\left(U_{0} ; E\right)\right) \oplus K_{i}\left(C^{*}\left(U_{1} ; E\right)\right) \rightarrow K_{i}\left(C(X) \rtimes_{r} G\right) \rightarrow K_{i+1}\left(C^{*}\left(U_{0} \cap U_{1} ; E\right)\right) \rightarrow$
As $C^{*}\left(U_{0} ; E\right)$ etc. have 'computable' K-theory, can compute $K_{*}\left(C(X) \rtimes_{r} G\right)$.

Sample result:

Sample result:
Theorem
Say d.a.d. $(G \in X)<\infty$. Then the Baum-Connes conjecture is true for G with coefficients in $C(X)$.

Sample result:

Theorem

Say d.a.d. $(G \in X)<\infty$. Then the Baum-Connes conjecture is true for G with coefficients in $C(X)$.

Not a new result! - due to Tu ...

Sample result:

Theorem

Say d.a.d. $(G G X)<\infty$. Then the Baum-Connes conjecture is true for G with coefficients in $C(X)$.

Not a new result! - due to Tu ...
... but the technique - using controlled K-theory, and decomposition into almost ideals - is more elementary, and works in the purely algebraic setting ...

