Dynamic Asymptotic Dimension

Rufus Willett (joint work with Erik Guentner and Guoliang Yu)

University of Hawai'i

FADYS, Florianópolis, February 2015

<ロト < 部 > < 言 > < 言 > 言 か < で 2/13

E: finite subset of *G*. *U*: open subset of *X*.

E: finite subset of G. U: open subset of X.

Let \sim_E be the equivalence relation on U induced by E, i.e.

E: finite subset of G. U: open subset of X.

Let \sim_E be the equivalence relation on U induced by E, i.e.

 $\begin{aligned} x\sim_E y \quad \text{iff} \quad \exists g_1,...,g_n\in E\cup E^{-1}\cup\{e\} \text{ such that } x=g_n\cdots g_1y \\ \text{ and } g_k\cdots g_1x\in U \text{ for } k\in\{1,...,n\}. \end{aligned}$

E: finite subset of *G*. *U*: open subset of *X*.

Let \sim_E be the equivalence relation on U induced by E, i.e.

 $\begin{aligned} x\sim_E y \quad \text{iff} \quad \exists g_1,...,g_n\in E\cup E^{-1}\cup\{e\} \text{ such that } x=g_n\cdots g_1y \\ \text{ and } g_k\cdots g_1x\in U \text{ for } k\in\{1,...,n\}. \end{aligned}$

(ロ) (同) (E) (E) (E)

 $[x]_E$: equivalence class for \sim_E .

E: finite subset of *G*. *U*: open subset of *X*.

Let \sim_E be the equivalence relation on U induced by E, i.e.

 $\begin{aligned} x\sim_E y \quad \text{iff} \quad \exists g_1,...,g_n\in E\cup E^{-1}\cup\{e\} \text{ such that } x=g_n\cdots g_1y \\ \text{ and } g_k\cdots g_1x\in U \text{ for } k\in\{1,...,n\}. \end{aligned}$

 $[x]_E$: equivalence class for \sim_E .

Definition

U is small for E if

 $\sup_{x\in U}|[x]_E|<\infty.$

 $U \stackrel{\text{open}}{\subseteq} X$ is small for $E \stackrel{\text{finite}}{\subseteq} G$ if E induces a 'finite' equivalence relation on U.

 $U \stackrel{\text{open}}{\subseteq} X$ is *small* for $E \stackrel{\text{finite}}{\subseteq} G$ if E induces a 'finite' equivalence relation on U.

Definition

The *dynamic asymptotic dimension* of $G \subseteq X$ is the smallest $d \in \mathbb{N}$ with the following property.

 $U \subseteq^{\text{open}} X$ is *small* for $E \subseteq^{\text{finite}} G$ if E induces a 'finite' equivalence relation on U.

Definition

The *dynamic asymptotic dimension* of $G \subseteq X$ is the smallest $d \in \mathbb{N}$ with the following property. For any finite subset $E \subseteq G$, there is an open cover

$$X = U_0 \cup U_1 \cup \cdots \cup U_d$$

(ロ) (同) (E) (E) (E)

of X by sets that are small for E.

 $\mathbb{Z} \subseteq S^1$ by rotation by $2\pi\theta$, θ irrational,

 $\mathbb{Z} \subseteq S^1$ by rotation by $2\pi\theta$, θ irrational, $E = \{-1, 0, 1\}$.

 $\mathbb{Z} \subseteq S^1$ by rotation by $2\pi\theta$, θ irrational, $E = \{-1, 0, 1\}$. Define

 $\mathbb{Z} \subseteq S^1$ by rotation by $2\pi\theta$, θ irrational, $E = \{-1, 0, 1\}$. Define

More generally:

 $\mathbb{Z} \subseteq S^1$ by rotation by $2\pi\theta$, θ irrational, $E = \{-1, 0, 1\}$. Define

More generally:

Theorem

 $\mathbb{Z} \subseteq X$ free, minimal action on compact space. Then d.a.d. $(\mathbb{Z} \subseteq X) = 1$.

G finitely generated, equipped with word metric (e.g. \mathbb{Z} with d(n, m) = |n - m|).

G finitely generated, equipped with word metric (e.g. \mathbb{Z} with d(n, m) = |n - m|).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property.

G finitely generated, equipped with word metric (e.g. \mathbb{Z} with d(n, m) = |n - m|).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property. For each r > 0 there exists a uniformly bounded cover \mathcal{U} of G which splits into d + 1 'colours'

$$\mathcal{U} = \mathcal{U}_0 \sqcup \cdots \sqcup \mathcal{U}_d$$

(ロ) (同) (E) (E) (E)

6/13

such that for $U \neq V$ of the same colour, $d(U, V) \ge r$.

G finitely generated, equipped with word metric (e.g. \mathbb{Z} with d(n, m) = |n - m|).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property. For each r > 0 there exists a uniformly bounded cover \mathcal{U} of G which splits into d + 1 'colours'

$$\mathcal{U} = \mathcal{U}_0 \sqcup \cdots \sqcup \mathcal{U}_d$$

such that for $U \neq V$ of the same colour, $d(U, V) \ge r$.

Example: $\operatorname{asdim}(\mathbb{Z}) = 1$.

G finitely generated, equipped with word metric (e.g. \mathbb{Z} with d(n,m) = |n - m|).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property. For each r > 0 there exists a uniformly bounded cover \mathcal{U} of G which splits into d + 1 'colours'

$$\mathcal{U}=\mathcal{U}_0 \sqcup \cdots \sqcup \mathcal{U}_d$$

such that for $U \neq V$ of the same colour, $d(U, V) \ge r$.

Example: $\operatorname{asdim}(\mathbb{Z}) = 1$.

G finitely generated, equipped with word metric (e.g. \mathbb{Z} with d(n, m) = |n - m|).

Definition (Gromov)

The asymptotic dimension of G is the smallest $d \in \mathbb{N}$ with the following property. For each r > 0 there exists a uniformly bounded cover \mathcal{U} of G which splits into d + 1 'colours'

$$\mathcal{U}=\mathcal{U}_0 \sqcup \cdots \sqcup \mathcal{U}_d$$

such that for $U \neq V$ of the same colour, $d(U, V) \ge r$.

Example: $\operatorname{asdim}(\mathbb{Z}) = 1$.

Example: $\operatorname{asdim}(\mathbb{Z}^d) = d$.

Examples of groups with finite asymptotic dimension:

Examples of groups with finite asymptotic dimension: polycyclic groups,

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups,

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups, 3-manifold groups,

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups, 3-manifold groups, lattices in Lie groups...

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups, 3-manifold groups, lattices in Lie groups...

Theorem $asdim(G) = d.a.d.(G \subseteq \beta G).$

Examples of groups with finite asymptotic dimension: polycyclic groups, word hyperbolic groups, 3-manifold groups, lattices in Lie groups...

Theorem $asdim(G) = d.a.d.(G \subseteq \beta G).$

Corollary (essentially due to Rørdam and Sierakowski)

Any G with finite asymptotic dimension admits a free, minimal action on the Cantor set with finite dynamic asymptotic dimension.

Recall: crossed product

$$C(X) \rtimes_r G := \Big\{ \sum_{g \in G} f_g u_g \ \Big| \ f_g \in C(X), \text{ plus other conditions...} \Big\}.$$

Recall: crossed product

$$C(X) \rtimes_r G := \Big\{ \sum_{g \in G} f_g u_g \ \Big| \ f_g \in C(X), \text{ plus other conditions...} \Big\}.$$

For $U \stackrel{\text{open}}{\subseteq} X$ and $E \stackrel{\text{finite}}{\subseteq} G$ define

$$C^{*}(U; E) := C^{*}(f_{1}u_{g}f_{2} | f_{1}, f_{2} \in C_{0}(U), g \in E)$$
$$\subseteq C(X) \rtimes_{r} G.$$

8/13

Recall: crossed product

$$C(X) \rtimes_r G := \Big\{ \sum_{g \in G} f_g u_g \ \Big| \ f_g \in C(X), \text{ plus other conditions...} \Big\}.$$

For $U \stackrel{\text{open}}{\subseteq} X$ and $E \stackrel{\text{finite}}{\subseteq} G$ define

$$C^{*}(U; E) := C^{*}(f_{1}u_{g}f_{2} \mid f_{1}, f_{2} \in C_{0}(U), g \in E)$$
$$\subseteq C(X) \rtimes_{r} G.$$

Theorem

If U is small for E, then $C^*(U; E)$ is 'nice'

<ロト < 部ト < 言ト < 言ト 差 の Q (~ 8/13

Recall: crossed product

$$C(X) \rtimes_r G := \Big\{ \sum_{g \in G} f_g u_g \ \Big| \ f_g \in C(X), \text{ plus other conditions...} \Big\}.$$

For $U \stackrel{\text{open}}{\subseteq} X$ and $E \stackrel{\text{finite}}{\subseteq} G$ define

$$C^{*}(U; E) := C^{*}(f_{1}u_{g}f_{2} \mid f_{1}, f_{2} \in C_{0}(U), g \in E)$$
$$\subseteq C(X) \rtimes_{r} G.$$

Theorem

If U is small for E, then $C^*(U; E)$ is 'nice' (e.g. subhomogeneous, with explicit primitive ideal space...).

Slightly more explicitly, for $U \stackrel{\text{open}}{\subseteq} X$, define $U^{(m)} := \{x \in U \mid |[x]_E| = m\}$.

Slightly more explicitly, for $U \stackrel{\text{open}}{\subseteq} X$, define $U^{(m)} := \{x \in U \mid |[x]_E| = m\}$.

Example:

Slightly more explicitly, for $U \stackrel{\text{open}}{\subseteq} X$, define $U^{(m)} := \{x \in U \mid |[x]_E| = m\}$.

Example:

Slightly more explicitly, for $U \stackrel{\text{open}}{\subseteq} X$, define $U^{(m)} := \{x \in U \mid |[x]_E| = m\}$.

Quotients / C^* -algebras $C^*(U; E)$:

Slightly more explicitly, for $U \stackrel{\text{open}}{\subseteq} X$, define $U^{(m)} := \{x \in U \mid |[x]_E| = m\}$.

Quotients / C^* -algebras $C^*(U; E)$:

(always look sort of like this).

<ロ > < 部 > < 言 > < 言 > こ ラ へ (?) 10 / 13

$A: C^*$ -algebra.

A: C^* -algebra.

Definition (Winter-Zacharias)

The *nuclear dimension* of A is the smallest $d \in \mathbb{N}$ with the following property.

For any $\epsilon > 0$ and $\mathcal{F} \stackrel{\text{finite}}{\subseteq} A$, there are finite dimensional C^* -algebras $B_0, ..., B_d$ and c.c.p. maps

 $A \xrightarrow{\psi_i} B_i \xrightarrow{\phi_i} A$

such that ϕ_i preserves orthogonality, and such that

$$\left\|\sum_{i=0}^{d}\phi_{i}(\psi_{i}(a))-a\right\|<\epsilon$$

10/13

for all $a \in \mathcal{F}$.

Facts:

A: C^* -algebra.

Definition (Winter-Zacharias)

The *nuclear dimension* of A is the smallest $d \in \mathbb{N}$ with the following property.

For any $\epsilon > 0$ and $\mathcal{F} \stackrel{\text{finite}}{\subseteq} A$, there are finite dimensional C^* -algebras $B_0, ..., B_d$ and c.c.p. maps

 $A \xrightarrow{\psi_i} B_i \xrightarrow{\phi_i} A$

such that ϕ_i preserves orthogonality, and such that

$$\left\|\sum_{i=0}^{d}\phi_{i}(\psi_{i}(\boldsymbol{a}))-\boldsymbol{a}\right\|<\epsilon$$

for all $a \in \mathcal{F}$.

Facts:

• The nuclear dimension of C(X) equals the covering dimension of X.

 $A : C^*$ -algebra.

Definition (Winter-Zacharias)

The *nuclear dimension* of A is the smallest $d \in \mathbb{N}$ with the following property.

For any $\epsilon > 0$ and $\mathcal{F} \stackrel{\text{finite}}{\subseteq} A$, there are finite dimensional C^* -algebras $B_0, ..., B_d$ and c.c.p. maps

 $A \xrightarrow{\psi_i} B_i \xrightarrow{\phi_i} A$

such that ϕ_i preserves orthogonality, and such that

$$\left\|\sum_{i=0}^{d}\phi_{i}(\psi_{i}(\boldsymbol{a}))-\boldsymbol{a}\right\|<\epsilon$$

for all $a \in \mathcal{F}$.

Facts:

- The nuclear dimension of C(X) equals the covering dimension of X.
- Nuclear dimension has been important in the circle of ideas around Elliott's classification program ...

$G \subseteq X$: action of discrete G on compact X.

 $nucdim(C(X) \rtimes_r G) + 1 \leq (dim(X) + 1)(d.a.d.(G \subseteq X) + 1)$

 $G \subseteq X$: action of discrete G on compact X.

 $nucdim(C(X) \rtimes_r G) + 1 \leq (dim(X) + 1)(d.a.d.(G \subseteq X) + 1)$

Corollary

• (Winter-Zacharias) nucdim $(I^{\infty}(G) \rtimes_r G) \leq asdim(G)$.

<ロ> < 部> < 書> < 書> < 書> 目 のQの 11/13

 $G \subseteq X$: action of discrete G on compact X.

 $nucdim(C(X) \rtimes_r G) + 1 \leq (dim(X) + 1)(d.a.d.(G \subseteq X) + 1)$

Corollary

- (Winter-Zacharias) nucdim $(I^{\infty}(G) \rtimes_r G) \leq asdim(G)$.
- (Toms-Winter) Z ⊂ X free and minimal. Then nucdim(C(X) ×_r Z) ≤ 2dim(X) + 1.

 $G \subseteq X$: action of discrete G on compact X.

 $nucdim(C(X) \rtimes_r G) + 1 \leq (dim(X) + 1)(d.a.d.(G \subseteq X) + 1)$

Corollary

- (Winter-Zacharias) nucdim $(I^{\infty}(G) \rtimes_r G) \leq asdim(G)$.
- (Toms-Winter) Z ⊂ X free and minimal. Then nucdim(C(X) ⋊_r Z) ≤ 2dim(X) + 1.
- Output Any G admits free and minimal G ⊂ X, X the Cantor set, with nucdim(C(X) ⋊_r G) ≤ asdim(G).

Vague idea: say d.a.d.($G \subseteq X$) = 1 and write $X = U_0 \cup U_1$.

Vague idea: say d.a.d. $(G \subseteq X) = 1$ and write $X = U_0 \cup U_1$.

'Sort-of' get a Mayer-Vietoris sequence:

$$\rightarrow K_i(C^*(U_0; E)) \oplus K_i(C^*(U_1; E)) \rightarrow K_i(C(X) \rtimes_r G) \rightarrow K_{i+1}(C^*(U_0 \cap U_1; E)) \rightarrow$$

Vague idea: say d.a.d.($G \subseteq X$) = 1 and write $X = U_0 \cup U_1$.

'Sort-of' get a Mayer-Vietoris sequence:

$$\rightarrow K_i(C^*(U_0; E)) \oplus K_i(C^*(U_1; E)) \rightarrow K_i(C(X) \rtimes_r G) \rightarrow K_{i+1}(C^*(U_0 \cap U_1; E)) \rightarrow K_i(C^*(U_0; E)) \rightarrow K_i(C)) \rightarrow K_i(C^*(U_0; E)) \rightarrow K_i(C^*(U_0; E)) \rightarrow K_i(C^*(U$$

As $C^*(U_0; E)$ etc. have 'computable' *K*-theory, can compute $K_*(C(X) \rtimes_r G)$.

<ロト < 部 ト < 言 ト < 言 ト 差 の Q () 12/13

Theorem

Say d.a.d.($G \subseteq X$) < ∞ . Then the Baum-Connes conjecture is true for G with coefficients in C(X).

Theorem

Say d.a.d.($G \subseteq X$) < ∞ . Then the Baum-Connes conjecture is true for G with coefficients in C(X).

Not a new result! - due to Tu ...

Theorem

Say d.a.d.($G \subseteq X$) < ∞ . Then the Baum-Connes conjecture is true for G with coefficients in C(X).

Not a new result! - due to Tu ...

 \dots but the technique - using controlled *K*-theory, and decomposition into almost ideals - is more elementary, and works in the purely algebraic setting \dots