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G G X : (free) action of discrete group G on a compact space X.
E: finite subset of G. U: open subset of X.

Let ~g be the equivalence relation on U induced by E, i.e.

x~gy iff 3gi,...g.€ EUE™ U {e} suchthat x =g, - gy
and g ---gix€ U for ke {1,...,n}.

A S 93 9y 9G ( 6_]65

CONAATNHAN\_ D "

2/13



G G X : (free) action of discrete group G on a compact space X.
E: finite subset of G. U: open subset of X.

Let ~g be the equivalence relation on U induced by E, i.e.

x~gy iff 3gi,...g.€ EUE™ U {e} suchthat x =g, - gy
and g ---gix€ U for ke {1,...,n}.
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G G X : (free) action of discrete group G on a compact space X.
E: finite subset of G. U: open subset of X.

Let ~g be the equivalence relation on U induced by E, i.e.

x~gy iff 3gi,...g.€ EUE™ U {e} suchthat x =g, - gy
and g ---gix€ U for ke {1,...,n}.
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[x]e : equivalence class for ~f.

Definition
U is small for E if

sup |[x]e| < oo.
xelU
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G G X : (free) action of discrete group G on a compact space X.

open i finit . . e e . .
U°C X is smallfor E € G if E induces a ‘finite equivalence relation on U.

Definition
The dynamic asymptotic dimension of G G X is the smallest d € N with the

following property.
For any finite subset E < G, there is an open cover

X=UOUU1U“‘UUd

of X by sets that are small for E.
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© Examples

© Small subalgebras

© Applications - structure and K-theory
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7 G S by rotation by 270, 6 irrational,
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Z G S* by rotation by 276, 6 irrational, E = {—1,0,1}.
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Z G S* by rotation by 27, 6 irrational, E = {—1,0,1}. Define

OO
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Z G S by rotation by 270, 6 irrational, E = {—1,0,1}. Define

O

More generally:

Theorem
Z G X free, minimal action on compact space. Then d.a.d.(Z G X) = 1. J
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Examples

G finitely generated, equipped with word metric (e.g. Z with d(n, m) = |n — m|).
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Definition (Gromov)
The asymptotic dimension of G is the smallest d € N with the following property.
For each r > 0 there exists a uniformly bounded cover U of G which splits into

d + 1 ‘colours’
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such that for U # V of the same colour, d(U, V) > r.
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Definition (Gromov)

The asymptotic dimension of G is the smallest d € N with the following property.
For each r > 0 there exists a uniformly bounded cover U of G which splits into
d + 1 ‘colours’

U= U() (e Ud

such that for U # V of the same colour, d(U, V) > r

Example: asdim(Z) = 1.

.

7 = s ....J[_Z.T._.HE.,..E...JE....
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o
G finitely generated, equipped with word metric (e.g. Z with d(n, m) = |n — m|).

Definition (Gromov)

The asymptotic dimension of G is the smallest d € N with the following property.
For each r > 0 there exists a uniformly bounded cover U of G which splits into
d + 1 ‘colours’

U= U() (e Ud

such that for U # V of the same colour, d(U, V) > r

Example: asdim(Z) = 1.

7 = s ....J[_Z.T._,}JE.,..E.%'.JE....

Example: asdim(Z%) = d.
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Examples of groups with finite asymptotic dimension:

7/13



Examples

Examples of groups with finite asymptotic dimension: polycyclic groups,

7/13



Examples of groups with finite asymptotic dimension: polycyclic groups, word
hyperbolic groups,

7/13



Examples of groups with finite asymptotic dimension: polycyclic groups, word
hyperbolic groups, 3-manifold groups,

7/13



Examples of groups with finite asymptotic dimension: polycyclic groups, word
hyperbolic groups, 3-manifold groups, lattices in Lie groups...

7/13



Examples of groups with finite asymptotic dimension: polycyclic groups, word
hyperbolic groups, 3-manifold groups, lattices in Lie groups...

Theorem
asdim(G) = d.a.d.(G G BG). J
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Examples of groups with finite asymptotic dimension: polycyclic groups, word
hyperbolic groups, 3-manifold groups, lattices in Lie groups...

Theorem
asdim(G) = d.a.d.(G G (3G).

Corollary (essentially due to Rgrdam and Sierakowski)

Any G with finite asymptotic dimension admits a free, minimal action on the
Cantor set with finite dynamic asymptotic dimension.
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Small subalgebras

G G X : (free) action by discrete group G on compact space X.

Recall: crossed product

C(X) %, G:= { Z fgug ’ fy € C(X), plus other conditions...}.
geG

For U opgen X and E ﬁngite G define
C*(U; E) :=C*(fugh | fi,fr € Go(U), g€ E)
cC(X) %, G.

Theorem

If U is small for E, then C*(U; E) is 'nice’ (e.g. subhomogeneous, with explicit
primitive ideal space...).
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Slightly more explicitly, for U < X, define U™ := {x e U | |[x]g| = m}.
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Slightly more explicitly, for U ‘C X, define U™ := {x e U | |[x]¢| = m}.
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Small subalgebras

Slightly more explicitly, for U ‘C X, define U™ := {x e U | |[x]¢| = m}.

Example:
2 O
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Small subalgebras

Slightly more explicitly, for U ‘C X, define U™ := {x e U | |[x]¢| = m}.

Example:

/i\‘

Quotients / C*-algebras C*(U; E):
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Small subalgehras

Slightly more explicitly, for U°E" X, define UM ;= = {xe U] |[x]e| = m}.

Example:

v

Quotients / C*-algebras C*(U; E):

H\/’.

m{@)
M@ —

‘——q

M)

(always look sort of like this). 01
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A C*-algebra.

ons - structure and K-theory
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Applications - structure and K-theory

A C*-algebra.

Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest d € N with the following property.

fini
For any € > 0 and F ngte A, there are finite dimensional C*-algebras By, ..., By

and c.c.p. maps
AL, B YA

such that ¢; preserves orthogonality, and such that
d
|Soton-o <
i=0

for all a e F.

Facts:
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Applications - structure and K-theory

A C*-algebra.
Definition (Winter-Zacharias)

The nuclear dimension of A is the smallest d € N with the following property.

finit
For any € > 0 and F (= A, there are finite dimensional C*-algebras By, ..., By

and c.c.p. maps
AL, B YA

such that ¢; preserves orthogonality, and such that

Setwta - <«
i=0

for all ae F. )

Facts:
@ The nuclear dimension of C(X) equals the covering dimension of X.
@ Nuclear dimension has been important in the circle of ideas around Elliott's

classification program ...
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Applications - structure and K-theory

Theorem
G G X : action of discrete G on compact X.

nucdim(C(X) x, G) + 1 < (dim(X) + 1)(d.a.d.(G G X) + 1)
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Theorem
G G X : action of discrete G on compact X.
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Corollary

@ (Winter-Zacharias) nucdim(I*°(G) x, G) <

asdim(G).
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Theorem
G G X : action of discrete G on compact X.

nucdim(C(X) x, G) + 1 < (dim(X) + 1)(d.a.d.(G G X) + 1)

Corollary
@ (Winter-Zacharias) nucdim(I*(G) x, G) < asdim(G).

@ (Toms-Winter) Z G X free and minimal. Then
nucdim(C(X) x, Z) < 2dim(X) + 1.
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Applications - structure and K-theory

Theorem
G G X : action of discrete G on compact X.

nucdim(C(X) x, G) + 1 < (dim(X) + 1)(d.a.d.(G G X) + 1)

Corollary
@ (Winter-Zacharias) nucdim(I*(G) x, G) < asdim(G).
@ (Toms-Winter) Z G X free and minimal. Then
nucdim(C(X) x, Z) < 2dim(X) + 1.
© Any G admits free and minimal G G X, X the Cantor set, with
nucdim(C(X) x, G) < asdim(G).
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Applications - structure and K-theory

Our main motivation is to ‘compute’ K-theory of C(X) x, G (and related purely
algebraic objects).
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Applications - structure and K-theory

Our main motivation is to ‘compute’ K-theory of C(X) x, G (and related purely
algebraic objects).

Vague idea: say d.a.d.(G G X) =1 and write X = Uy u Uj.

‘Sort-of ' get a Mayer-Vietoris sequence:

— K,'(C*(Uo; E))@K,(C*(Ul, E)) d K,(C(X) Xy G) — ,'+1(C*(Uoﬁ Ul; E)) —

As C*(Up; E) etc. have ‘computable’ K-theory, can compute Ky (C(X) %, G).
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Sample result:

Theorem

Say d.a.d.(G G X) < 0. Then the Baum-Connes conjecture is true for G with
coefficients in C(X).
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Applications - structure and K-theory

Sample result:

Theorem

Say d.a.d.(G G X) < 0. Then the Baum-Connes conjecture is true for G with
coefficients in C(X).

Not a new result! - due to Tu ...

... but the technique - using controlled K-theory, and decomposition into almost
ideals - is more elementary, and works in the purely algebraic setting ...
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