
LECTURE 1. STATEMENT OF CONNES’ EMBEDDING CONJECTURE

0.1. Introduction. Connes’ embedding conjecture comes from the sentence: “We now
construct an approximate imbedding of N in R. Apparently such an imbedding ought to
exist for all II1-factors because it does for the regular representation of free groups. How-
ever the construction below relies on condition 6 ” (see [8], p.105). Alain Connes himself
observed in p.106, Lemma 5.22, that such an approximate embedding would become an
exact embedding in the ultraproduct RU . Therefore, we can say that the original state-
ment of the problem is: does every (separable) II1-factor embeds into Rω? Since 1976,
there had not been any news in merit for about twenty years, when Eberhard Kirchberg
obtained in [22] a series of equivalent statements, the most unexpected one is probably the
following: Connes’ embedding conjecture holds true if and only if

C∗(F∞)⊗min C
∗(F∞) = C∗(F∞)⊗max C

∗(F∞) (1)

What is really fascinating about this formulation is not only the apparent farness be-
tween the two problems, but also the fact that Connes’ embedding conjecture is a problem
regarding a class of objects (separable II1-factors), while (1) is a problem regarding a
property of a particular object: the universal C∗-algebra of the free group on countably
many generators. Even more unexpected is the topological proof of Kirchberg’s theorem
appeared in [17], as a corollary of another reformulation of Connes’ embedding conjecture,
this time a topological reformulation. Over the same years, Voiculescu was developing his
free entropy theory and found that Connes’ embedding conjecture is related to the exis-
tence of microstates (see [34], [35]). All these findings inspired many other papers (see,
e.g., [1], [27], [7], [16]) and increased the interest around this conjecture. About ten years
ago, Florin Rădulescu tried to attack the problem from a simpler point of view, looking only
at II1-factors arising from groups and discovered the so-called hyperlinear groups [32] that
allowed Gabor Elek and Endre Szabó to prove that an important conjecture in Symbolic
Dynamics, called Gottschalk surjunctivity conjecture, is related to Connes’ embedding con-
jecture. In particular they proved that Gottschalk’s conjecture implies Connes’ embedding
conjecture for group algebras. Even more, Elek-Szabó theorem uses sofic groups and, in
fact, they showed that every sofic group is hyperlinear [9]. Starting from this point, Connes’
embedding problem went out his original field, Operator Algebras, to get in the field of
Geometric Group Theory. In 2005, again Florin Rădulescu found that Connes’ embedding
conjecture is equivalent to some non-commutative analogue of Hilbert’s 17th problem [33];
this inspired a work of Klep and Schweighofer, who found a purely algebraic reformula-
tion of Connes’ embedding conjecture, leading the problem of interest also in the field of
Real Algebra [23]. Another algebraic reformulation of Connes’ embedding conjecture has
been very recently proposed by Juschenko and Popovych [21]. Of the same flavor is the
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observation in [6] that Connes’ embedding conjecture is related to a problem of embed-
ding Euclidean spaces into Hilbert spaces with an additional structure, called cyclic Hilbert
spaces. Other very recent discoveries include the fact that Connes’ embedding conjecture is
related to an important problem in Quantum Information Theory, the so-called Tsirelson’s
problem (see [13], [20], and [29]) and that II1-factors verifying Connes’ embedding conjec-
ture admit a new invariant that can help to classify them in terms of rigidity properties.
This geometric invariant has been first abstractly introduced by Nate Brown in [2], while
more recently it has been observed that it can be realized as a convex subset of a suitable
Banach space (see [5], [3]).

0.2. II1-factors. Connes’ embedding conjecture concerns the so-called (separable) II1-
factors. They are a sort of a continuous analogue of matrix algebras and indeed, roughly
speaking, Connes’ embedding problem is equivalent to ask whether any II1-factor can be
approximated by matrix algebras in a suitable sense.

Let H be a Hilbert space and denote by B(H) the set of all linear and bounded operators
from H to itself. Recall that B(H) can be endowed with several different topologies:

• The norm topology is the one induced by the usual norm of an operator x ∈ B(H)

||x|| = sup {||xξ|| : ξ ∈ H, ||ξ|| ≤ 1} .

• The weak operator topology is the weakest (locally convex) topology on B(H)
making continuous all maps belonging to the following family:

{B(H) 3 x→ |(xξ, η)| : ξ, η ∈ H} ,

where (·, ·) stands for the inner product in H.
• The strong operator topology is the weakest (locally convex) topology on B(H)

making continuous all maps belonging to the following family:

{B(H) 3 x→ ||xξ|| : ξ ∈ H} .

All these topologies coincide if and only if H is finite dimensional.

Let A be a subset of B(H), the commutant of A, denoted by A′, is the set of operators
that commute with every operator in A; namely,

A′ = {x ∈ B(H) : ax = xa, for all a ∈ A} . (2)

The double commutant of A, denoted by A′′, is the set of operators that commute with
all operators that commute with every operator in A.

Exercise 0.1. Prove that for all subsets A ⊆ B(H), one has A ⊆ A′′ and A′ = A′′′.
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Theorem 0.2. (von Neumann’s bicommutant theorem) Let A be a *subalgebra1 of
B(H) containing the identity. One has

A
s

= A
w

= A′′

A matrix algebra MnC can be seen as the algebra of linear (and automatically bounded)
operators on a finite dimensional complex Hilbert space. It then verifies the following
properties:

(1) Mn(C) is a unital *algebra; i.e. a unital algebra equipped with an involution * that
is compatible with the structure of algebra,

(2) Mn(C) is closed with respect to any topology.
(3) Mn(C) is a factor, meaning that Z(MnC) := MnC ∩ (Mn(C))′ = C1.
(4) Mn(C) admits a unique normalized trace; i.e. there is a unique linear (and auto-

matically continuous) functional τ : Mn(C)→ C such that
• τ(x∗x) = τ(xx∗) ≥ 0, for all x ∈M ,
• τ(x∗x) = 0 implies x = 0,
• τ(1) = 1,
• Let P (Mn(C)) := {e ∈MnC : e∗e = e} denote the set of projections, one has

τ(P (Mn(C))) =

{
0,

1

n
, . . . ,

n− 1

n
, 1

}
.

As mentioned before, II1-factors are the continuous analogue of matrix algebras.

Definition 0.3. A II1-factor is a subset M of B(H) verifying the following properties

(1) M is a unital *algebra;
(2) M is closed in the weak operator topology2.
(3) M is a factor, in the sense that M ∩M ′ = C1.
(4) M admits a unique linear weakly continuous functional τ such that

• τ(xx∗) = τ(x∗x) ≥ 0, for all x ∈M ,
• τ(x∗x) = 0 implies x = 0,
• τ(1) = 1,
• τ(P (M)) = [0, 1], where P (M) = {e ∈M : e∗e = e}.

The very last property shows the meaning of the rough sentence that II1-factors are the
continuous analogue of matrix algebras. If M verifies only the first two properties above,
then it is called von Neumann algebra. A von Neumann algebra is called separable if H is
a separable Hilbert space. The simplest example of von Neumann algebra is B(H) itself,
for any Hilbert space.
II1-factors may seem quite wild objects but actually they can be constructed very easily

starting from groups through a procedure that was already known to Murray and von
Neumann.

1A *subalgebra of B(H) is simply a subalgebra A of B(H) such that a ∈ A implies a∗ ∈ A, where a∗ is
the adjoint of the operator a.

2This is equivalent to require that M is closed in the strong topology, by von Neumann’s bicommutant
theorem.
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Example 0.4. Let G be a countable group with property i.c.c. (i.e. every conjugacy class
is infinite except the one containing the identity 1G) and let `2(G) be the Hilbert space
of all square-summable complex-valued functions on G. Each g ∈ G defines an operator
λg : `2(G)→ `2(G) in the following way:

λg(f)(x) = f(g−1x)

Exercise 0.5. Prove that g → λg is a group monomorphism from G to the unitary group3

of B(`2(G)).

The group von Neumann algebra of G, denoted by L(G), is the weak operator closure
of the subalgebra of B(`2(G)) generated by all the λg’s, equipped with the trace obtained
extending by linearity and continuity the conditions: tr(1G) = 1 and tr(g) = 0, ∀g 6= 1G.

Exercise 0.6. Prove that L(G) is a separable II1-factor (Hint: property i.c.c. should be
reflected in the fact that L(G) has trivial center).

Exercise 0.7. Let S∞fin be the group of permutations of a countable set that fix all but
finitely many elements. Prove that S∞fin has the property i.c.c.

Definition 0.8. The hyperfinite II1-factor, denoted by R, is the group von Neumann
algebra of the group S∞fin.

The hyperfinite II1-factor is the smallest II1-factor: it is contained in every II1-factor
and it is the unique, up to isomorphisms, II1-factor having this property [8]. It can be
described in several ways: Murray and von Neumann showed in [25] that it is the unique
factor, up to isomorphisms, which contains an increasing chain of copies of matrix algebras
whose union is weakly dense; Alain Connes was the first to observe that R could be
described as an infinite tensor product of 2 × 2-matrices; i.e. R ∼=

⊗∞
n=1M2(C). This

description makes essentially trivial the useful property that R⊗̄R is isomorphic to R 4.

0.3. Ultrafilters and Ultraproducts.

Definition 0.9. A free ultrafilter on the natural numbers is a family U of subsets of N
such that

(1) If A is a finite subset of N, then A /∈ U ,
(2) A,B ∈ U implies A ∩B ∈ U ,
(3) For each A ⊆ N, either A ∈ U or N \A ∈ U

Exercise 0.10. Prove that if A ∈ U and B ⊇ A, then B ∈ U .

Exercise 0.11. Prove, making use of Zorn’s lemma, that there exists at least one free
ultrafilter (Hint: condition (3) is a maximality condition).

3The unitary group of a von Neumann algebra M is the multiplicative group

U(M) = {u ∈M : u∗u = uu∗ = 1}
.

4The formal definition of tensor product of von Neumann algebras will be given later in this course.
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Exercise 0.12. Prove that free ultrafilters coincide with finitely additive probability mea-
sures U : P (N)→ {0, 1} such that U(A) = 0 for all finite subsets of N.

Ultrafilters are very useful to define a weak notion of convergence.

Definition 0.13. Let {xn}n∈N be a sequence of real numbers, x ∈ R and U a free ultrafilter
on A. We say that limn→U xn = x if for any ε > 0 one has

{n ∈ N : |xn − x| < ε} ∈ U

Exercise 0.14. Prove that every bounded sequence converges along any free ultrafilter
(Hint: Bolzano-Weierstrass).

Exercise 0.15. Prove that the operator limn→U is linear, multiplicative and verifies the
property that limn→U xn belongs to the set of limit points of the sequence xn. Conversely,
show that if L : `∞ → R is a linear and multiplicative operator with the property that
L(xn) belongs to the set of limit points of the sequence (xn), then there is a free ultrafilter
U such that L = limn→U .

Let {(Mn, τn)}n∈N be a family of II1-factors equipped with normalized traces τn and let
U be a free ultrafilter on N. Set

M =

{
x = (xn) ∈

∏
n∈N

Mn : sup
n
||xn|| <∞

}
(3)

and

J =

{
x = (xn) ∈M : lim

n→U
τn(x∗nxn)

1
2 = 0

}
(4)

The quotient M/J turns out to be a II1-factor with component-wise operations and with
trace τ({xn}n) = limn→Uτn(xn), that does not depend on the choice of the representative
sequence. The proof that M/J is a II1-factor is not easy. A sketch of the proof can be found
at pp. 18-19 of [30], or in the first papers about tracial ultraproducts by Wright ( [36]),
McDuff ( [24]) and Janssen ( [18]). We will give a proof using logic of metric structures in
the next chapter. The quotient M/J is called tracial ultraproduct of the Mn’s. The word
ultrapower is used when Mn = Mm for every m,n ∈ N.

Definition 0.16. RU is the tracial ultrapower of R with respect to a free ultrafilter U on
the natural numbers.

0.4. Original statement of Connes’ Embedding Conjecture.

Conjecture 0.17. (A. Connes, [8] pp.105-106) Every separable II1-factor is embed-
dable into some RU?

Assuming Continuum Hypothesis (CH), Ge and Hadwin [14] proved that all ultrapowers
of a fixed separable II1-factor with respect to a free ultrafilter on the natural numbers
are isomorphic among themselves. More recently, Farah, Hart and Sherman proved also
the converse: for any separable II1-factor M , CH is equivalent to the statement that all
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tracial ultrapowers of M (with respect to a free ultrafilter on the natural numbers) are

isomorphic among themselves (see [10], Th.3.1). Even more: if CH fails, there are 22ℵ0

many non-isomorphic ultrapowers (see [11]). It follows that CH together with Connes’
embedding conjecture implies the existence of a universal II1-factor; universal in the sense
that it should contain every separable type II1 factors. Ozawa proved in [28] that such
a universal II1-factor cannot be separable. So, the first thing to check is that RU is not
separable.

Proposition 0.18. RU is not separable.

Non-separability of RU is well-known and proved by several authors (see [12] and, in
greater generality, [31] Prop. 4.3). We will present a new proof, appeared in [4], because
it uses a new construction that will be useful in the next lecture to give a short proof of
Rădulescu’s theorem.

Proof of Proposition 0.18. We have to prove that RU is not faithfully representable in
B(H), with H separable Hilbert space. We recall that if H is separable, then the strong
topology on B(H) is separable. Moreover, we recall that the strong topology coincides with
the Hilbert-Schmidt topology5 on bounded sets. So it suffices to prove that RU contains
an uncountable family of unitaries {u(t)} such that ||u(t) − u(s)||2 =

√
2 for all t 6= s.

It is a simple exercise, using the construction of the group factor, to show that there
is a sequence {un} ⊆ U(R) of distinct unitaries such that un 6= 1, for all n ∈ N and
τ(u∗num) = 0 for all n 6= m. Take such a sequence a take a number t ∈

[
1
10 , 1

)
, for instance

t = 0, 132471.... Define

It = {1, 13, 132, 1324, 13247, 132471, ...}

i.e. It is the sequence of the approximations of t. Clearly, {It}t∈[ 1
10

,1) is uncountable and

It ∩ Is is finite for all t 6= s (this property requires the choice of t ≥ 1
10 !).

Now define

u
(t)
1 = u1 u

(t)
2 = u2 . . . u

(t)
12 = u12

u
(t)
13 = u1 u

(t)
14 = u2 . . . u

(t)
131 = u131−12

u
(t)
132 = u1 . . . . . .

...

i.e. any time we find an element of It, we start again from u1. Now define u(t) =∏
U u

(t)
n ∈ U(RU ). Since It ∩ Is is finite (for t 6= s), then u(t) and u(s) have only a finite

5The Hilbert-Schmidt topology on a II1-factor is the topology induced by the norm ||x||2 = τ(x∗x)
1
2 .
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number of common components. Thus we have

||u(t) − u(s)||22 = lim
n→U

τn((u(t)
n − u(s)

n )∗(u(t)
n − u(s)

n ))

where τn is the normalized trace on the n-th copy of R. Now we observe that

τn((u(t)
n − u(s)

n )∗(u(t)
n − u(s)

n )) =

{
0 if u

(t)
n = u

(s)
n

2 if u
(t)
n 6= u

(s)
n

Since u
(t)
n = u

(s)
n holds only for finitely many n’s and since U is free (and thus it does not

contain finite sets), it follows that

lim
n→U

τn((u(t)
n − u(s)

n )∗(u(t)
n − u(s)

n )) = 2

and thus ||u(t) − u(s)||2 =
√

2. �
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