1 Kaplanski conjectures

1.1 Group algebras and the statements of Kaplanski's conjectures

Suppose that Γ is a group and K is a field. The group algebra $K\Gamma$ is the K-algebra of formal finite linear combinations

$$k_1\gamma_1 + \ldots + k_n\gamma_n$$

of elements of Γ with coefficients in K. A typical element a of $K\Gamma$ can be denoted by

$$\sum_{\gamma} a_{\gamma} \gamma$$

where the coefficients $a_{\gamma} \in K$ are zero for all but finitely many $\gamma \in \Gamma$. The operations on $K\Gamma$ are defined by

$$\left(\sum_{\gamma} a_{\gamma} \gamma\right) + \left(\sum_{\gamma} b_{\gamma} \gamma\right) = \sum_{\gamma} \left(a_{\gamma} + b_{\gamma}\right) \gamma$$

and

$$\left(\sum_{\gamma} a_{\gamma} \gamma\right) \left(\sum_{\gamma} b_{\gamma} \gamma\right) = \sum_{\gamma} \left(\sum_{\rho \rho' = \gamma} a_{\rho} b_{\rho'}\right) \gamma$$

Several conjectures concerning $K\Gamma$ are attributed to Kaplanski:

- Zero divisors conjecture: KΓ has no zero divisors;
- Nilpotent elements conjecture: $K\Gamma$ has no nilpotent elements;
- Idempotent elements conjecture: the only idempotent elements of $K\Gamma$ are 0 and 1;
- Units conjecture: the only units of $K\Gamma$ are $k\gamma$ for $k \in K \setminus \{0\}$ and $\gamma \in \Gamma$;
- Finiteness conjecture: $K\Gamma$ is directly finite, i.e. ab = 1 for $a, b \in K\Gamma$ implies ba = 1;
- Values of traces on idempotent elements: if τ_0 is the trace on $K\Gamma$ defined by

$$\tau_{0}\left(a\right) = a_{1r}$$

and b is an idempotent element of $K\Gamma$ then $\tau_0(b)$ belongs to the prime field K_0 of K.

Recall that a **trace** on a K-algebra A is a K-linear functional $\tau : A \to K$ such that $\tau (ab) = \tau (ba)$ for $a, b \in A$.

1.2 Zalesskii's theorem

Among the conjectures mentioned, only the one concerning values of traces on idempotent elemements has been established in full generality. This is the content of a theorem of Zalesskii from [3].

Theorem 1 If $p \in K\Gamma$ is an idempotent element and τ is a trace on $K\Gamma$, then $\tau(p)$ belongs to the prime field K_0 of K.

Let us consider the particular case when K is a finite field of characteristic p. If $n \geq 0$ and $a \in K\Gamma$, define $\tau_n(a)$ to be the sum of the coefficients of a corresponding to elements of Γ of order p^n . In particular $\tau_0(a)$ is the coefficient of a corresponding to the identity element 1_{Γ} of Γ .

Exercise 2 Show that τ_n is a trace on $K\Gamma$ for every $n \ge 0$, i.e. τ_n is a K-linear map such that $\tau(ab) = \tau(ba)$.

Lemma 3 Recall that K is supposed to be a finite field of characteristic p. Show that if τ is any trace on $K\Gamma$ then

$$\tau\left(\left(a+b\right)^{p}\right) = \tau\left(a^{p}\right) + \tau\left(b^{p}\right)$$

for every $a, b \in K\Gamma$. Thus by induction

$$au\left(a^{p}
ight) = \sum_{\gamma} a^{p}_{\gamma} \tau\left(\gamma^{p}
ight).$$

The latter identities can be referred to as "Frobenius under trace", in analogy with the corresponding identity for elements of a field of characteristic p. Suppose now that $e \in K\Gamma$ is an idempotent element. We want to show that $\tau(e)$ belongs to the prime field K_0 of K. To this purpose it is enough to show that $\tau(e)^p = \tau(e)$. For $n \ge 1$ we have

$$\begin{aligned} \tau_n \left(e \right) &= \tau_n \left(e^p \right) \\ &= \sum_{\gamma} e^p_{\gamma} \tau_n \left(\gamma^p \right) \\ &= \sum_{|\gamma| = p^{n+1}} e^p_{\gamma} \\ &= \left(\sum_{|\gamma| = p^{n+1}} e_{\gamma} \right)^p \\ &= \tau_{n+1} \left(e \right)^p. \end{aligned}$$

On the other hand

$$\begin{aligned} \tau_0 \left(e \right) &= \tau_0 \left(e^p \right) \\ &= \sum_{\gamma} e^p_{\gamma} \tau_0 \left(\gamma^p \right) \\ &= \sum_{|\gamma|=1} e^p_{\gamma} + \sum_{|\gamma|=p} e^p_{\gamma} \\ &= \tau_0 \left(e \right)^p + \tau_1 \left(e \right)^p. \end{aligned}$$

From these identities it is easy to prove by induction that

$$\tau_0(e) = \tau_0(e)^p + \tau_n(e)^{p'}$$

for every $n \in \mathbb{N}$. Since e has finite support, there is $n \in \mathbb{N}$ such that $\tau_n(e) = 0$. This implies that $\tau_0(e) = \tau_0(e)^p$ and hence $\tau_0(e) \in K_0$.

The proof of the general case of Zalesskii's theorem can be inferred from this particular case. The details can be found in [2].

1.3 The complex case of Kaplanski's finiteness conjecture

The particular instance of Kaplanski's finiteness conjecture for the field of complex numbers \mathbb{C} asserts that for any group Γ the complex group algebra $\mathbb{C}\Gamma$ is directly finite. This case can be treated by means of functional analysis and operator algebras. Recall that the complex group algebra $\mathbb{C}\Gamma$ can be embedded into the group von Neumann algebra $L\Gamma$ of Γ . Moreover the trace τ_0 on $\mathbb{C}\Gamma$ defined by $\tau_0(a) = a_{1\Gamma}$ can be extended to a faithful normalized trace τ_0 on $L\Gamma$. Thus the complex case of Kaplanski's finiteness conjecture is a consequence of the following result.

Theorem 4 If M is a von Neumann algebra endowed with a faithful finite trace τ , then M is a directly finite algebra.

Assume that M is a von Neumann algebra an τ is a faithful normalized trace on M. If $x, y \in M$ are such that xy = 1 then $yx \in M$ is an idempotent element such that

$$\tau\left(yx\right) = \tau\left(xy\right) = \tau\left(1\right) = 1.$$

It is thus enough to prove that if $e \in M$ is an idempotent element such that $\tau(e) = 1$ then e = 1. This is equivalent to the assertion that if $e \in M$ is an idempotent element such that $\tau(e) = 0$ then e = 0. This assertion is proved in Lemma 5 (cf. Lemma 2.1 in [2]).

Lemma 5 If M is a von Neumann algebra endowed with a faithful finite trace τ and $e \in M$ is an idempotent such that $\tau(e) = 0$, then e = 0.

Proof. The conclusion is obvious if e is a self-adjoint idempotent element (i.e. a projection). In fact in this case

$$\tau\left(e\right) = \tau\left(e^*e\right) = 0$$

implies e = 0 by faithfulness of τ . In order to establish the general case it is enough to show that if $e \in M$ is idempotent, then there is a self-adjoint invertible element z of M such that $f = ee^*z^{-1}$ is a projection and $\tau(e) = \tau(f)$. Define

$$z = 1 + (e^* - e)^* (e^* - e)$$

Observe that z is an invertible element (see [1], II.3.1.4) commuting with e. It is not difficult to check that $f = ee^*z^{-1}$ has the required properties.

1.4 Kaplanski's finiteness conjecture for finite fields and Gottschalk's conjecture

Suppose that Γ is a group and A is a finite set. Denote by A^{Γ} the set of Γ -sequences of elements of A. The product topology on A^{Γ} with respect to the discrete topology on A is compact metrizable. The *Bernoulli shift* of Γ with alphabet A is the left action of Γ on A^{Γ} defined by

$$\rho \cdot \left(a_{\gamma}\right)_{\gamma \in \Gamma} = \left(a_{\rho^{-1}\gamma}\right)_{\gamma \in \Gamma}.$$

A continuous function $f: A^{\Gamma} \to A^{\Gamma}$ is *equivariant* if it preserves the Bernoulli action, i.e. $f(\rho \cdot x) = \rho \cdot f(x)$ for every $x \in A^{\Gamma}$. **Gottschalk's surjunctivity conjecture** asserts that if $f: A^{\Gamma} \to A^{\Gamma}$ is a continuous injective equivariant function, then f is surjective.

Gottschalk's surjunctivity conjecture implies Kaplanski's finiteness conjecture for finite groups. Suppose that Γ is a group and K is a *finite* field. Consider the Bernoulli action of Γ with alphabet K. Denote the element $(a_{\gamma})_{\gamma \in \Gamma}$ of K^{Γ} by $\sum_{\gamma} a_{\gamma}$. Observe that the group algebra $K\Gamma$ can be regarded as a subset of K^{Γ} . Defining

$$\left(\sum_{\gamma} a_{\gamma} \gamma\right) \cdot \left(\sum_{\gamma} b_{\gamma} \gamma\right) = \sum_{\gamma} \left(\sum_{\rho \rho' = \gamma} a_{\rho} b_{\rho'}\right) \gamma$$

for $\sum_{\gamma} a_{\gamma} \gamma \in K^{\Gamma}$ and $\sum_{\gamma} b_{\gamma} \gamma \in K\Gamma$ gives a right action of $K\Gamma$ on K^{Γ} extending the multiplication operation in $K\Gamma$ and commuting with the left action of Γ on $K\Gamma$. Suppose that $a, b \in K\Gamma$ are such that $ab = 1_{\Gamma}$. Define the continuous equivariant map $f: K^{\Gamma} \to K^{\Gamma}$ by $f(x) = x \cdot a$. Observe that for every $x \in K^{\Gamma}$

$$x = x \cdot ab = (x \cdot a) \cdot b = f(x) \cdot b.$$

It follows that f is injective. Gottschalk's conjecture for Γ implies that f is also surjective. In particular there is $x_0 \in K^{\Gamma}$ such that $x_0 \cdot a = f(x_0) = 1_{\Gamma}$. In particular

$$b = 1_{\Gamma} \cdot b = (x_0 \cdot a) \cdot b = x_0 \cdot (ab) = x_0 \cdot 1_{\Gamma} = x_0.$$

Therefore

$$1_{\Gamma} = x_0 \cdot a = ba$$

1.5 Kervaire-Laudenbach conjecture

Suppose $\gamma_1, \ldots, \gamma_l \in \Gamma$ and define the monomial

$$w\left(x\right) = x^{n_1}\gamma_1\dots x^{n_l}\gamma_l$$

where $n_i \in \mathbb{Z}$ for i = 1, 2, ..., l. Consider the following problem: Determine if the equation

$$w\left(x\right) = 1$$

has a solution in some group extending Γ . The answer in general is "no". Consider for example the equation

$$xax^{-1}b^{-1} = 1$$

If a and b are different orders then clearly this equation has no solution in any group extending Γ . Assuming that the sum $\sum_{i=1}^{l} n_i$ of the exponents of x in w(x) is nonzero is a way to rule out this obstruction. A conjecture attributed to Kervaire and Laudenbach asserts that this is enough to guarantee the existence of a solution of the equation w(x) = 1 in some group extending Γ .

References

- B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006, Theory of C*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III
- [2] M. Burger and A. Valette, Idempotents in complex group rings: theorems of Zalesskii and Bass revisited, Journal of Lie Theory, Volume 8 (1998)
- [3] A. Zalesskii, On a problem of Kaplansky, Dokl. Akad. Nauk SSSR 203 (1972)