
1 Kaplanski conjectures

1.1 Group algebras and the statements of Kaplanski�s con-
jectures

Suppose that � is a group and K is a �eld. The group algebra K� is the
K-algebra of formal �nite linear combinations

k11 + : : :+ knn

of elements of � with coe¢ cients in K. A typical element a of K� can be
denoted by X



a

where the coe¢ cients a 2 K are zero for all but �nitely many  2 �. The
operations on K� are de�ned by X
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Several conjectures concerning K� are attributed to Kaplanski:

� Zero divisors conjecture: K� has no zero divisors;

� Nilpotent elements conjecture: K� has no nilpotent elements;

� Idempotent elements conjecture: the only idempotent elements of K� are
0 and 1;

� Units conjecture: the only units of K� are k for k 2 Kn f0g and  2 �;

� Finiteness conjecture: K� is directly �nite, i.e. ab = 1 for a; b 2 K�
implies ba = 1;

� Values of traces on idempotent elements: if �0 is the trace on K� de�ned
by

�0 (a) = a1�

and b is an idempotent element of K� then �0 (b) belongs to the prime
�eld K0 of K.

Recall that a trace on a K-algebra A is a K-linear functional � : A ! K
such that � (ab) = � (ba) for a, b 2 A.
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1.2 Zalesskii�s theorem

Among the conjectures mentioned, only the one concerning values of traces
on idempotent elemements has been establihed in full generality. This is the
content of a theorem of Zalesskii from [3].

Theorem 1 If p 2 K� is an idempotent element and � is a trace on K�, then
� (p) belongs to the prime �eld K0 of K.

Let us consider the particular case when K is a �nite �eld of characteristic
p. If n � 0 and a 2 K�, de�ne �n (a) to be the sum of the coe¢ cients of a
corresponding to elements of � of order pn. In particular �0 (a) is the coe¢ cient
of a corresponding to the identity element 1� of �.

Exercise 2 Show that �n is a trace on K� for every n � 0, i.e. �n is a K-linear
map such that � (ab) = � (ba).

Lemma 3 Recall that K is supposed to be a �nite �eld of characteristic p. Show
that if � is any trace on K� then

� ((a+ b)
p
) = � (ap) + � (bp)

for every a; b 2 K�. Thus by induction

� (ap) =
X


ap� (
p) .

The latter identities can be referred to as "Frobenius under trace", in anal-
ogy with the corresponding identity for elements of a �eld of characteristic p.
Suppose now that e 2 K� is an idempotent element. We want to show that
� (e) belongs to the prime �eld K0 of K. To this purpose it is enough to show
that � (e)p = � (e). For n � 1 we have

�n (e) = �n (e
p)

=
X


ep�n (
p)

=
X

jj=pn+1
ep

=

0@ X
jj=pn+1

e

1Ap

= �n+1 (e)
p
:
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On the other hand

�0 (e) = �0 (e
p)

=
X


ep�0 (
p)

=
X
jj=1

ep +
X
jj=p

ep

= �0 (e)
p
+ �1 (e)

p
:

From these identities it is easy to prove by induction that

�0 (e) = �0 (e)
p
+ �n (e)

pn

for every n 2 N. Since e has �nite support, there is n 2 N such that �n (e) = 0.
This implies that �0 (e) = �0 (e)

p and hence �0 (e) 2 K0.
The proof of the general case of Zalesskii�s theorem can be inferred from this

particular case. The details can be found in [2].

1.3 The complex case of Kaplanski�s �niteness conjecture

The particular instance of Kaplanski�s �niteness conjecture for the �eld of com-
plex numbers C asserts that for any group � the complex group algebra C� is
directly �nite. This case can be treated by means of functional analysis and
operator algebras. Recall that the complex group algebra C� can be embedded
into the group von Neumann algebra L� of �. Moreover the trace �0 on C�
de�ned by �0 (a) = a1� can be extended to a faithful normalized trace �0 on L�.
Thus the complex case of Kaplanski�s �niteness conjecture is a consequence of
the following result.

Theorem 4 IfM is a von Neumann algebra endowed with a faithful �nite trace
� , then M is a directly �nite algebra.

Assume thatM is a von Neumann algebra an � is a faithful normalized trace
on M . If x; y 2M are such that xy = 1 then yx 2M is an idempotent element
such that

� (yx) = � (xy) = � (1) = 1:

It is thus enough to prove that if e 2 M is an idempotent element such that
� (e) = 1 then e = 1. This is equivalent to the assertion that if e 2 M is an
idempotent element such that � (e) = 0 then e = 0. This assertion is proved in
Lemma 5 (cf. Lemma 2.1 in [2]).

Lemma 5 If M is a von Neumann algebra endowed with a faithful �nite trace
� and e 2M is an idempotent such that � (e) = 0, then e = 0.

Proof. The conclusion is obvious if e is a self-adjoint idempotent element (i.e.
a projection). In fact in this case

� (e) = � (e�e) = 0
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implies e = 0 by faithfulness of � . In order to establish the general case it is
enough to show that if e 2M is idempotent, then there is a self-adjoint invertible
element z of M such that f = ee�z�1 is a projection and � (e) = � (f). De�ne

z = 1 + (e� � e)� (e� � e) :

Observe that z is an invertible element (see [1], II.3.1.4) commuting with e. It
is not di¢ cult to check that f = ee�z�1 has the required properties.

1.4 Kaplanski�s �niteness conjecture for �nite �elds and
Gottschalk�s conjecture

Suppose that � is a group and A is a �nite set. Denote by A� the set of �-
sequences of elements of A. The product topology on A� with respect to the
discrete topology on A is compact metrizable. The Bernoulli shift of � with
alphabet A is the left action of � on A� de�ned by

� � (a)2� =
�
a��1

�
2� :

A continuous function f : A� ! A� is equivariant if it preserves the Bernoulli
action, i.e. f (� � x) = � � f (x) for every x 2 A�. Gottschalk�s surjunctivity
conjecture asserts that if f : A� ! A� is a continuous injective equivariant
function, then f is surjective.
Gottschalk�s surjunctivity conjecture implies Kaplanski�s �niteness conjec-

ture for �nite groups. Suppose that � is a group and K is a �nite �eld. Consider
the Bernoulli action of � with alphabet K. Denote the element (a)2� of K

�

by
P

 a . Observe that the group algebra K� can be regarded as a subset of
K�. De�ning  X
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for
P

 a 2 K� and
P

 b 2 K� gives a right action of K� on K� extending
the multiplication operation in K� and commuting with the left action of � on
K�. Suppose that a, b 2 K� are such that ab = 1�. De�ne the continuous
equivariant map f : K� ! K� by f (x) = x � a. Observe that for every x 2 K�

x = x � ab = (x � a) � b = f (x) � b:

It follows that f is injective. Gottschalk�s conjecture for � implies that f is also
surjective. In particular there is x0 2 K� such that x0 � a = f (x0) = 1�. In
particular

b = 1� � b = (x0 � a) � b = x0 � (ab) = x0 � 1� = x0:

Therefore
1� = x0 � a = ba:
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1.5 Kervaire-Laudenbach conjecture

Suppose 1; : : : ; l 2 � and de�ne the monomial

w (x) = xn11 : : : x
nll

where ni 2 Z for i = 1; 2; : : : ; l. Consider the following problem: Determine if
the equation

w (x) = 1

has a solution in some group extending �. The answer in general is "no".
Consider for example the equation

xax�1b�1 = 1

If a and b are di¤erent orders then clearly this equation hsa no solution in any
group extending �. Assuming that the sum

Pl
i=1 ni of the exponents of x in

w (x) is nonzero is a way to rule out this obstruction. A conjecture attributed to
Kervaire and Laudenbach asserts that this is enough to guarantee the existence
of a solution of the equation w (x) = 1 in some group extending �.
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