1 Kaplanski conjectures

1.1 Group algebras and the statements of Kaplanski's conjectures

Suppose that Γ is a group and K is a field. The group algebra $K \Gamma$ is the K-algebra of formal finite linear combinations

$$
k_{1} \gamma_{1}+\ldots+k_{n} \gamma_{n}
$$

of elements of Γ with coefficients in K. A typical element a of $K \Gamma$ can be denoted by

$$
\sum_{\gamma} a_{\gamma} \gamma
$$

where the coefficients $a_{\gamma} \in K$ are zero for all but finitely many $\gamma \in \Gamma$. The operations on $K \Gamma$ are defined by

$$
\left(\sum_{\gamma} a_{\gamma} \gamma\right)+\left(\sum_{\gamma} b_{\gamma} \gamma\right)=\sum_{\gamma}\left(a_{\gamma}+b_{\gamma}\right) \gamma
$$

and

$$
\left(\sum_{\gamma} a_{\gamma} \gamma\right)\left(\sum_{\gamma} b_{\gamma} \gamma\right)=\sum_{\gamma}\left(\sum_{\rho \rho^{\prime}=\gamma} a_{\rho} b_{\rho^{\prime}}\right) \gamma
$$

Several conjectures concerning $K \Gamma$ are attributed to Kaplanski:

- Zero divisors conjecture: $K \Gamma$ has no zero divisors;
- Nilpotent elements conjecture: $K \Gamma$ has no nilpotent elements;
- Idempotent elements conjecture: the only idempotent elements of $K \Gamma$ are 0 and 1;
- Units conjecture: the only units of $K \Gamma$ are $k \gamma$ for $k \in K \backslash\{0\}$ and $\gamma \in \Gamma$;
- Finiteness conjecture: $K \Gamma$ is directly finite, i.e. $a b=1$ for $a, b \in K \Gamma$ implies $b a=1$;
- Values of traces on idempotent elements: if τ_{0} is the trace on $K \Gamma$ defined by

$$
\tau_{0}(a)=a_{1_{\Gamma}}
$$

and b is an idempotent element of $K \Gamma$ then $\tau_{0}(b)$ belongs to the prime field K_{0} of K.

Recall that a trace on a K-algebra A is a K-linear functional $\tau: A \rightarrow K$ such that $\tau(a b)=\tau(b a)$ for $a, b \in A$.

1.2 Zalesskii's theorem

Among the conjectures mentioned, only the one concerning values of traces on idempotent elemements has been establihed in full generality. This is the content of a theorem of Zalesskii from [3].

Theorem 1 If $p \in K \Gamma$ is an idempotent element and τ is a trace on $K \Gamma$, then $\tau(p)$ belongs to the prime field K_{0} of K.

Let us consider the particular case when K is a finite field of characteristic p. If $n \geq 0$ and $a \in K \Gamma$, define $\tau_{n}(a)$ to be the sum of the coefficients of a corresponding to elements of Γ of order p^{n}. In particular $\tau_{0}(a)$ is the coefficient of a corresponding to the identity element 1_{Γ} of Γ.

Exercise 2 Show that τ_{n} is a trace on $K \Gamma$ for every $n \geq 0$, i.e. τ_{n} is a K-linear map such that $\tau(a b)=\tau(b a)$.

Lemma 3 Recall that K is supposed to be a finite field of characteristic p. Show that if τ is any trace on $K \Gamma$ then

$$
\tau\left((a+b)^{p}\right)=\tau\left(a^{p}\right)+\tau\left(b^{p}\right)
$$

for every $a, b \in K \Gamma$. Thus by induction

$$
\tau\left(a^{p}\right)=\sum_{\gamma} a_{\gamma}^{p} \tau\left(\gamma^{p}\right)
$$

The latter identities can be referred to as "Frobenius under trace", in analogy with the corresponding identity for elements of a field of characteristic p. Suppose now that $e \in K \Gamma$ is an idempotent element. We want to show that $\tau(e)$ belongs to the prime field K_{0} of K. To this purpose it is enough to show that $\tau(e)^{p}=\tau(e)$. For $n \geq 1$ we have

$$
\begin{aligned}
\tau_{n}(e) & =\tau_{n}\left(e^{p}\right) \\
& =\sum_{\gamma} e_{\gamma}^{p} \tau_{n}\left(\gamma^{p}\right) \\
& =\sum_{|\gamma|=p^{n+1}} e_{\gamma}^{p} \\
& =\left(\sum_{|\gamma|=p^{n+1}} e_{\gamma}\right)^{p} \\
& =\tau_{n+1}(e)^{p}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\tau_{0}(e) & =\tau_{0}\left(e^{p}\right) \\
& =\sum_{\gamma} e_{\gamma}^{p} \tau_{0}\left(\gamma^{p}\right) \\
& =\sum_{|\gamma|=1} e_{\gamma}^{p}+\sum_{|\gamma|=p} e_{\gamma}^{p} \\
& =\tau_{0}(e)^{p}+\tau_{1}(e)^{p} .
\end{aligned}
$$

From these identities it is easy to prove by induction that

$$
\tau_{0}(e)=\tau_{0}(e)^{p}+\tau_{n}(e)^{p^{n}}
$$

for every $n \in \mathbb{N}$. Since e has finite support, there is $n \in \mathbb{N}$ such that $\tau_{n}(e)=0$. This implies that $\tau_{0}(e)=\tau_{0}(e)^{p}$ and hence $\tau_{0}(e) \in K_{0}$.

The proof of the general case of Zalesskii's theorem can be inferred from this particular case. The details can be found in [2].

1.3 The complex case of Kaplanski's finiteness conjecture

The particular instance of Kaplanski's finiteness conjecture for the field of complex numbers \mathbb{C} asserts that for any group Γ the complex group algebra $\mathbb{C} \Gamma$ is directly finite. This case can be treated by means of functional analysis and operator algebras. Recall that the complex group algebra $\mathbb{C} \Gamma$ can be embedded into the group von Neumann algebra $L \Gamma$ of Γ. Moreover the trace τ_{0} on $\mathbb{C} \Gamma$ defined by $\tau_{0}(a)=a_{1_{\Gamma}}$ can be extended to a faithful normalized trace τ_{0} on $L \Gamma$. Thus the complex case of Kaplanski's finiteness conjecture is a consequence of the following result.

Theorem 4 If M is a von Neumann algebra endowed with a faithful finite trace τ, then M is a directly finite algebra.

Assume that M is a von Neumann algebra an τ is a faithful normalized trace on M. If $x, y \in M$ are such that $x y=1$ then $y x \in M$ is an idempotent element such that

$$
\tau(y x)=\tau(x y)=\tau(1)=1
$$

It is thus enough to prove that if $e \in M$ is an idempotent element such that $\tau(e)=1$ then $e=1$. This is equivalent to the assertion that if $e \in M$ is an idempotent element such that $\tau(e)=0$ then $e=0$. This assertion is proved in Lemma 5 (cf. Lemma 2.1 in [2]).

Lemma 5 If M is a von Neumann algebra endowed with a faithful finite trace τ and $e \in M$ is an idempotent such that $\tau(e)=0$, then $e=0$.

Proof. The conclusion is obvious if e is a self-adjoint idempotent element (i.e. a projection). In fact in this case

$$
\tau(e)=\tau\left(e^{*} e\right)=0
$$

implies $e=0$ by faithfulness of τ. In order to establish the general case it is enough to show that if $e \in M$ is idempotent, then there is a self-adjoint invertible element z of M such that $f=e e^{*} z^{-1}$ is a projection and $\tau(e)=\tau(f)$. Define

$$
z=1+\left(e^{*}-e\right)^{*}\left(e^{*}-e\right) .
$$

Observe that z is an invertible element (see [1], II.3.1.4) commuting with e. It is not difficult to check that $f=e e^{*} z^{-1}$ has the required properties.

1.4 Kaplanski's finiteness conjecture for finite fields and Gottschalk's conjecture

Suppose that Γ is a group and A is a finite set. Denote by A^{Γ} the set of Γ sequences of elements of A. The product topology on A^{Γ} with respect to the discrete topology on A is compact metrizable. The Bernoulli shift of Γ with alphabet A is the left action of Γ on A^{Γ} defined by

$$
\rho \cdot\left(a_{\gamma}\right)_{\gamma \in \Gamma}=\left(a_{\rho^{-1} \gamma}\right)_{\gamma \in \Gamma}
$$

A continuous function $f: A^{\Gamma} \rightarrow A^{\Gamma}$ is equivariant if it preserves the Bernoulli action, i.e. $f(\rho \cdot x)=\rho \cdot f(x)$ for every $x \in A^{\Gamma}$. Gottschalk's surjunctivity conjecture asserts that if $f: A^{\Gamma} \rightarrow A^{\Gamma}$ is a continuous injective equivariant function, then f is surjective.

Gottschalk's surjunctivity conjecture implies Kaplanski's finiteness conjecture for finite groups. Suppose that Γ is a group and K is a finite field. Consider the Bernoulli action of Γ with alphabet K. Denote the element $\left(a_{\gamma}\right)_{\gamma \in \Gamma}$ of K^{Γ} by $\sum_{\gamma} a_{\gamma}$. Observe that the group algebra $K \Gamma$ can be regarded as a subset of K^{Γ}. Defining

$$
\left(\sum_{\gamma} a_{\gamma} \gamma\right) \cdot\left(\sum_{\gamma} b_{\gamma} \gamma\right)=\sum_{\gamma}\left(\sum_{\rho \rho^{\prime}=\gamma} a_{\rho} b_{\rho^{\prime}}\right) \gamma
$$

for $\sum_{\gamma} a_{\gamma} \gamma \in K^{\Gamma}$ and $\sum_{\gamma} b_{\gamma} \gamma \in K \Gamma$ gives a right action of $K \Gamma$ on K^{Γ} extending the multiplication operation in $K \Gamma$ and commuting with the left action of Γ on $K \Gamma$. Suppose that $a, b \in K \Gamma$ are such that $a b=1_{\Gamma}$. Define the continuous equivariant map $f: K^{\Gamma} \rightarrow K^{\Gamma}$ by $f(x)=x \cdot a$. Observe that for every $x \in K^{\Gamma}$

$$
x=x \cdot a b=(x \cdot a) \cdot b=f(x) \cdot b
$$

It follows that f is injective. Gottschalk's conjecture for Γ implies that f is also surjective. In particular there is $x_{0} \in K^{\Gamma}$ such that $x_{0} \cdot a=f\left(x_{0}\right)=1_{\Gamma}$. In particular

$$
b=1_{\Gamma} \cdot b=\left(x_{0} \cdot a\right) \cdot b=x_{0} \cdot(a b)=x_{0} \cdot 1_{\Gamma}=x_{0} .
$$

Therefore

$$
1_{\Gamma}=x_{0} \cdot a=b a
$$

1.5 Kervaire-Laudenbach conjecture

Suppose $\gamma_{1}, \ldots, \gamma_{l} \in \Gamma$ and define the monomial

$$
w(x)=x^{n_{1}} \gamma_{1} \ldots x^{n_{l}} \gamma_{l}
$$

where $n_{i} \in \mathbb{Z}$ for $i=1,2, \ldots, l$. Consider the following problem: Determine if the equation

$$
w(x)=1
$$

has a solution in some group extending Γ. The answer in general is "no". Consider for example the equation

$$
x a x^{-1} b^{-1}=1
$$

If a and b are different orders then clearly this equation hsa no solution in any group extending Γ. Assuming that the sum $\sum_{i=1}^{l} n_{i}$ of the exponents of x in $w(x)$ is nonzero is a way to rule out this obstruction. A conjecture attributed to Kervaire and Laudenbach asserts that this is enough to guarantee the existence of a solution of the equation $w(x)=1$ in some group extending Γ.

References

[1] B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006, Theory of C*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III
[2] M. Burger and A. Valette, Idempotents in complex group rings: theorems of Zalesskii and Bass revisited, Journal of Lie Theory, Volume 8 (1998)
[3] A. Zalesskiï, On a problem of Kaplansky, Dokl. Akad. Nauk SSSR 203 (1972)

