1 First class on sofic and hyperlinear groups

1.1 Definition of sofic groups

A pseudo length function ℓ on a group G is a function $\ell : G \to [0, 1]$ such that for every $x, y \in G$:

- $\ell(xy) \leq \ell(x) + \ell(y);$
- $\ell(xy) = \ell(yx);$
- $\ell(x^{-1}) = \ell(x);$
- $\ell(1) = 0.$

A pseudo length function is called *length function* if moreover $\ell(x) = 0$ implies $x = 1_G$. A group endowed with a length function is called a *length group*. If G is a length group with length function ℓ , then the function $d: G \times G \to [0, 1]$ defined by

$$d(x,y) = \ell(xy^{-1})$$

is a bi-invariant metric on G. This means that d is a metric on G, and left and right translations in G are d-isometries. Conversely any bi-invariant metric don G gives rise to a length function ℓ on G by

$$\ell(x) = d(x, 1_G).$$

This shows that there is a bijective correspondence between length functions and bi-invariant metrics on a group G.

If ℓ_0 is a pseduo length function on a group G, then

$$N_{\ell_0} = \{ x \in G \, | \, \ell_0 \, (x) = 1 \, \}$$

is a normal subgroup of G. The quotient G/N_{ℓ_0} endowed with the length function ℓ defined by

$$\ell\left(xN_{\ell_0}\right) = \ell_0\left(x\right)$$

is called the length quotient of G induced by the pseudo length function ℓ_0 .

If Γ is any group, then the function ℓ_d on Γ defined by $\ell(x) = 1$ if $x \neq 1_G$ and $\ell(1_G) = 0$ is a length function on Γ , called the trivial length function. A (discrete) group can be regarded as a length group endowed with the trivial length function.

Denote for $n \in \mathbb{N}$ by S_n the group of permutations over the set $\{1, \ldots, n\}$. The **Hamming length function** ℓ on S_n is defined by

$$\ell_{S_n}(\sigma) = \frac{1}{n} |\{i \in \{1, \dots, n\} | \sigma(i) \neq i\}|.$$

It is not hard to see that this is indeed a length function on S_n . The corresponding bi-invariant metric on S_n is denoted by d_{S_n} .

Definition 1 A countable discrete group Γ is **sofic** if for every $\varepsilon > 0$ and every finite subset F of $\Gamma \setminus \{1_{\Gamma}\}$ there is a natural number n and a function $\Phi : \Gamma \to S_n$ such that $\Phi(1_{\Gamma}) = 1_{S_n}$ and for every $g, h \in F \setminus \{1\}$:

- $d_{S_n}\left(\Phi\left(gh\right), \Phi\left(g\right)\Phi\left(h\right)\right) < \varepsilon;$
- $\ell_{S_n} \left(\Phi \left(g \right) \right) > 1 \varepsilon.$

This *local approximation property* can be reformulated in terms of embedding into (metric) ultraproduct. The product

$$\prod_{n\in\mathbb{N}}S_n$$

is a group with respect to the coordinatewise multiplication. Fix a free ultrafilter \mathcal{U} over \mathbb{N} . Define the pseudo length function $\ell_{\mathcal{U}}$ on $\prod_{n \in \mathbb{N}} S_n$ by

$$\ell_{\mathcal{U}}\left(\left(\sigma_{n}\right)_{n\in\mathbb{N}}\right)=\lim_{n\to\mathcal{U}}\ell_{S_{n}}\left(\sigma_{n}\right).$$

It is not hard to check that $\ell_{\mathcal{U}}$ is indeed a pseudo length function. The length quotient of $\prod_{n \in \mathbb{N}} S_n$ induced by $\ell_{\mathcal{U}}$ is denoted by $\prod_{\mathcal{U}} S_n$ and called ultraproduct of the sequence of length groups $(S_n)_{n \in \mathbb{N}}$. It is not difficult to reformulate the notion of sofic group in term of existence of an embedding into $\prod_{\mathcal{U}} S_n$.

Exercise 1 Suppose that Γ is a countable discrete group regarded as a length group endowed with the trivial length. Show that the following statements are equivalent:

- 1. Γ is sofic;
- 2. there is an length-preserving homomorphism $\Phi : \Gamma \to \prod_{\mathcal{U}} S_n$ for every free ultrafilter \mathcal{U} over \mathbb{N} ;
- 3. there is an length-preserving homomorphism $\Phi : \Gamma \to \prod_{\mathcal{U}} S_n$ for some free ultrafilter \mathcal{U} over \mathbb{N} .

Hint. For $1 \Rightarrow 2$ observe that the hypothesis implies that there is a sequence $(\Phi_n)_{n\in\mathbb{N}}$ of maps from Γ to S_n such that $\Phi_n(1_{\Gamma}) = 1_{S_n}$ and for every $g, h \in \Gamma \setminus \{1\}$

$$\lim_{n \to +\infty} d_{S_n} \left(\Phi_n \left(gh \right), \Phi_n \left(h \right) \Phi_n \left(g \right) \right) = 0$$

and

$$\lim_{n \to +\infty} \ell_{S_n} \left(\Phi_n \left(g \right) \right) = 1.$$

Define $\Phi: \Gamma \to \prod_{\mathcal{U}} S_n$ sending g to the element of $\prod_{\mathcal{U}} S_n$ having $(\Phi_n(g))_{n \in \mathbb{N}}$ as representative sequence. For $3 \Rightarrow 1$ observe that if $\Phi: \Gamma \to \prod_{\mathcal{U}} S_n$ is a length preserving homomorphism and for every $g \in G$

$$\left(\Phi_n\left(g\right)\right)_{n\in\mathbb{N}}$$

is a representative sequence of $\Phi(g)$ then the maps $\Psi_n = \Phi_n (1_{\Gamma})^{-1} \Phi_n(g)$ satisfy the following properties: $\Psi_n (1_{\Gamma}) = 1_{S_n}$ and for every $g, h \in \Gamma \setminus \{1\}$

$$\lim_{n \to \mathcal{U}} d_{S_n} \left(\Psi_n \left(g h \right), \Psi_n \left(g \right) \Psi_n \left(h \right) \right) = 0$$

and

$$\lim_{n \to \mathcal{U}} \ell_{S_n} \left(\Psi_n \left(g \right) \right) = 1.$$

If $F \subset \Gamma$ is finite and $\varepsilon > 0$ then the maps Φ_n for n large enough witness the condition of soficity of Γ relative to F and $\varepsilon > 0$.

An amplification argument of Elek and Szabo (see [2]) shows that the condition of soficity is equivalent to the an apparently weaker property, which is discussed in Exercise 2.

Exercise 2 Prove that a countable discrete group Γ is sofic if and only if there is a function $r: \Gamma \to (0,1)$ such that for some $\varepsilon > 0$ and every $F \subset \Gamma \setminus \{1_{\Gamma}\}$ finite there is a natural number n and a function $\Phi: \Gamma \to S_n$ such that $\Phi(1_{\Gamma}) = 1_{S_n}$ and for every $g, h \in F$:

- $d_{S_n}\left(\Phi\left(gh\right), \Phi\left(g\right)\Phi\left(h\right)\right) < \varepsilon;$
- $\ell_{S_n}\left(\Phi\left(g\right)\right) > r\left(g\right).$

Hint. If $n, k \in \mathbb{N}$ and $\sigma \in S_n$ consider the permutation $\sigma^{\otimes k}$ of the set $\{1, \ldots, n\}^k$ of k-sequences of elements of $\{1, \ldots, n\}$ defined by

$$\sigma^{\otimes k}\left(i_{1},\ldots,i_{k}
ight)=\left(\sigma\left(i_{1}
ight),\ldots,\sigma\left(i_{k}
ight)
ight).$$

Identifying the group of permutations of $\{1, \ldots, n\}^k$ with S_{n^k} , the function

$$\sigma \mapsto \sigma^{\otimes k}$$

defines a group homomorphism from S_n to S_{n^k} such that

$$1 - \ell_{S_{n^k}} \left(\sigma^{\otimes k} \right) = \left(1 - \ell_{S_n} \left(\sigma \right) \right)^k.$$

Using Exercise 2 one can express the notion of soficity in terms of (not necessarily isometric) embedding into metric ultraproducts of permutations groups.

Exercise 3 Suppose that Γ is a countable discrete group. Show that the following statements are equivalent:

- Γ is sofic;
- there is an injective homomorphism $\Phi : \Gamma \to \prod_{\mathcal{U}} S_n$ for every free ultrafilter \mathcal{U} over \mathbb{N} ;
- there is an injective homomorphism $\Phi: \Gamma \to \prod_{\mathcal{U}} S_n$ for some free ultrafilter \mathcal{U} over \mathbb{N} .

Hint. Follows the same steps as in the proof of Exercise 3, replacing the condition given in the definition of sofic group with the equivalent condition expressed in Exercise 2. \blacksquare

1.2 Definition of hyperlinear groups

If $n \in \mathbb{N}$ denote by \mathbb{M}_n the tracial von Neumann algebra of $n \times n$ matrices over the complex numbers. The *normalized* trace τ of \mathbb{M}_n is defined by

$$\tau\left(\left(a_{ij}\right)\right) = \frac{1}{n}\sum_{i=1}^{n}a_{ii}.$$

The operator norm ||x|| of an element x of \mathbb{M}_2 is defined by

$$||x|| = \sup \{ ||x\xi|| | \xi \in \mathbb{C}^n, ||\xi|| \le 1 \},\$$

while the Hilbert-Schmidt norm $||x||_2$ is defined by

$$||x||_2 = \tau (x^*x)$$

An element x of \mathbb{M}_n is unitary if $x^*x = xx^* = 1$. The set U_n of unitary elements of \mathbb{M}_n is a group with respect to multiplication. The Hilbert-Schmidt length function on U_n is defined by

$$\ell_{U_n}(u) = \frac{1}{\sqrt{2}} \|u - 1\|_2.$$

Observe that

$$\ell_{U_n} (u)^2 = \frac{1}{2} ||u - 1||_2^2$$

= $\frac{1}{2} \tau ((u - 1)^* (u - 1))$
= $\frac{1}{2} \tau (2 - u - u^*)$
= $1 - \operatorname{Re} \tau (u).$

Exercise 4 Show that ℓ_{U_n} is a length function on U_n .

Hyperlinear groups are defined exactly as sofic groups, where the permutation groups with the Hamming length function are replaced with the unitary groups with the Hilbert-Schmidt length function.

Definition 2 A countable discrete group Γ is hyperlinear if for every $\varepsilon > 0$ and every finite subset F of $\Gamma \setminus \{1_{\Gamma}\}$ there is a natural number n and a function $\Phi : \Gamma \to U_n$ such that $\Phi(1_{\Gamma}) = 1_{U_n}$ and for every $g, h \in F$:

- $d_{U_n}\left(\Phi\left(gh\right), \Phi\left(g\right)\Phi\left(h\right)\right) < \varepsilon;$
- $\ell_{U_n}\left(\Phi\left(g\right)\right) > 1 \varepsilon.$

As before this notion can be equivalently reformulated in terms of embedding into (metric) ultraproducts. If \mathcal{U} is a free ultrafilter over \mathbb{N} the (metric) ultraproduct $\prod_{\mathcal{U}} U_n$ is the length quotient of $\prod_n U_n$ with respect to the pseudo length function

$$\ell_{\mathcal{U}}\left(\left(u_{n}\right)_{n\in\mathbb{N}}\right)=\lim_{n\to\mathcal{U}}\ell_{U_{n}}\left(u_{n}\right).$$

Exercise 5 Suppose that Γ is a countable discrete group regarded as a length group with respect to the trivial length function. Show that the following statements are equivalent:

- Γ is hyperlinear;
- there is a length-preserving homomorphism $\Phi: \Gamma \to \prod_{\mathcal{U}} U_n$ for every free ultrafilter \mathcal{U} over \mathbb{N} ;
- there is a length-preserving homomorphism $\Phi: \Gamma \to \prod_{\mathcal{U}} U_n$ for some free ultrafilter \mathcal{U} over \mathbb{N} .

An amplification argument due to Radulescu (see [3]) predating the analogous argument for permutation groups of Elek and Szabo shows that hyperlinearity is equivalent to an apparently weaker property. This is discussed in Exercise 6.

Exercise 6 Prove that a countable discrete group Γ is hyperlinear if and only if there is a function $r : \Gamma \to (0,1)$ such that for some $\varepsilon > 0$ and every $F \subset \Gamma \setminus \{1_{\Gamma}\}$ finite there is a natural number n and a function $\Phi : \Gamma \to U_n$ such that $\Phi(1_{\Gamma}) = 1_{U_n}$ and for every $g, h \in F$:

- $d_{U_n}\left(\Phi\left(gh\right), \Phi\left(g\right)\Phi\left(h\right)\right) < \varepsilon;$
- $\ell_{U_n}\left(\Phi\left(g\right)\right) > r\left(g\right).$

Hint. If $A = (a_{ij}) \in \mathbb{M}_n$ and $B = (b_{ij}) \in \mathbb{M}_m$ define $A \otimes B \in \mathbb{M}_{nm}$ by

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & \dots & \dots & a_{nn}B \end{pmatrix}$$

Prove the following

- $(A \otimes B) (A' \otimes B') = AA' \otimes BB';$
- $||A \otimes B|| \le ||A|| \, ||B||;$
- $\tau(A \otimes B) = \tau(A) \tau(B);$
- $A \otimes B$ is unitary if both A and B are unitary;

If $u \in U_n$ define recursively $u^{\otimes 1} = u \in U_n$ and $u^{\otimes k} = u^{\otimes (k-1)} \otimes u$ for $k \ge 2$. Observe that the function

$$u \mapsto u^{\otimes k}$$

is a group homomorphism from U_n to U_{n^k} such that

$$\tau\left(u^{\otimes k}\right) = \tau\left(u\right)^{k}.$$

As before Exercise 6 entails a characterization of hyperlinear groups in terms of algebraic embeddings into ultraproducts of unitary groups.

Exercise 7 Suppose that Γ is a countable discrete group. Show that the following statements are equivalent:

- Γ is hyperlinear;
- there is an injective homomorphism $\Phi : \Gamma \to \prod_{\mathcal{U}} U_n$ for every free ultrafilter \mathcal{U} over \mathbb{N} ;
- there is an injective homomorphism $\Phi: \Gamma \to \prod_{\mathcal{U}} U_n$ for some free ultrafilter \mathcal{U} over \mathbb{N} .

If σ is a permutation over n denote by P_{σ} the permutation matrix associated with σ , acting as σ on the canonical basis of \mathbb{C}^n . Observe that P_{σ} is a unitary matrix and the function

$$\sigma \mapsto P_{\sigma}$$

is a homomorphism from S_n to U_n . Moreover

$$\tau \left(P_{\sigma} \right)^2 = 1 - \ell_{S_n} \left(\sigma \right).$$

It is not difficult to deduce from this that any sofic group is hyperlinear. This is the content of Exercise 8.

Exercise 8 Fix a free ultrafilter \mathcal{U} over \mathbb{N} . Show that the function

$$(\sigma_n)_{n\in\mathbb{N}}\mapsto (P_{\sigma_n})_{n\in\mathbb{N}}$$

from $\prod_n S_n$ to $\prod_n U_n$ induces an algebraic embedding of $\prod_{\mathcal{U}} S_n$ into $\prod_{\mathcal{U}} U_n$. Infer from this that any sofic groups is hyperlinear. Kervaire-Laudenbach conjecture for hyperlinear groups

Conjecture 3 (Kervaire-Laudenbach) Suppose that Γ is a group and $a_1, \ldots, a_l \in \Gamma$. Denote by $w(t, a_1, \ldots, a_l)$ the word

$$t^{s_1}a_1\cdots t^{s_l}a_n$$

If $s = \sum_{i=1}^{l} s_i \neq 0$ then there is an element b in some group extending Γ such that

$$w(b, a_1, \dots, a_n) = b^{s_1} a_1 \cdots b^{s_n} a_n = 1$$

In the following we will show that the Kervaire-Laudenbach conjecture holds for hyperlinear groups.

Theorem 4 (Gerstenhaber-Rothaus, 1962) Suppose that $n \in \mathbb{N}$ and U_n is the group of unitary matrices of rank n. Assume that $a_1, \ldots, a_n \in U_n$ and $w(t, a_1, \ldots, a_l)$ denotes the word

$$t^{s_1}a_1\cdots t^{s_l}a_l$$

If $s = \sum_{i=1}^{l} s_i \neq 0$ then there is an element b of U_n such that

$$w\left(b,a_1,\ldots,a_n\right)=1.$$

Observe that we are able to find b already in U_n , and not just in some group extending U_n .

Proof. Consider the map

$$f: U_n \to U_n$$

defined by

 $b \mapsto w (b, a_1, \ldots, a_n)$

We just need to prove that f is onto. Recall that U_n is a compact manifold of dimension n^2 . Thus the homology group $H_{n^2}(U_n)$ is an infinite cyclic group. Being continuous (and in fact smooth) f induces a map

$$f_*: H_{n^2}\left(U_n\right) \to H_{n^2}\left(U_n\right).$$

If e is a generator of $H_{n^2}(U_n)$ then

$$f_*(e) = de$$

for some $d \in \mathbb{Z}$ called the degree of f. In order to show that f is onto, it is enough to show that its degree is nonzero. I claim that $d = s^n$ where $s = \sum_{i=1}^n s_i$. Since U_n is connected, the map f is homotopy equivalent to the map

$$f_s: U_n \to U_n$$

defined by

 $b \mapsto b^s$.

Since the degree of a map is homotopy invariant, f and f_s have the same degree. Therefore we just have to show that f_s has degree s^n . The facts that the generic element of U_n has s^n s-roots of unity, and the degree of a map can be computed locally, shows that the degree of f_s is s^n .

Gerstenhaber and Rothaus proved in fact in [1] a more general version of Theorem 4, where U_n is replaced by any compact Lie group. Moreover they consider systems of equations in possibly more than one variable.

Observe that the conclusion of Theorem 4 can be expressed by a formula. The following corollary follows immediately using Los theorem for ultraproducts. **Corollary 5** If \mathcal{V} is an ultrafilter over \mathbb{N} then the universal hyperlinear group $U_{\mathcal{V}} = \prod_{n=1}^{\mathcal{V}} U_n$ has the followin property: Suppose that $a_1, \ldots, a_l \in U_{\mathcal{V}}$ and $w(t, a_1, \ldots, a_l)$ is the word

 $t^{s_1}a_1\cdots t^{s_l}a_l.$

If $s = \sum_{i=1}^{l} s_i \neq 0$ then there is $b \in U_{\mathcal{V}}$ such that

$$w\left(b,a_1,\ldots,a_l\right)=1.$$

In particular any universal hyperlinear group $U_{\mathcal{V}}$ satisfies the Kervaire-Laudenbach conjecture. Obviously the Kervaire-Laudenbach conjecture holds for any subgroup of a group that satisfies the Kervaire-Laudenbach conjecture. It follows that all countable hyperlinear groups satisfy the Kervaire-Laudenbach conjecture.

References

- M. Gerstenhaber, O. S. Rothaus, The solution of sets of equations in groups, Proc. Nat. Acad. Sci. U.S.A. 48 1962 1531–1533.
- [2] G. Elek, E. Szabo, Hyperlinearity, essentially free actions and L^2 -invariants. The sofic property. Math. Ann. 332 (2005), no. 2, 421–441.
- [3] F. Radulescu, The von Neumann algebra of the non-residually finite Baumslag group $\langle a, b | ab^3a^{-1} = b^2 \rangle$ embeds into R^{ω} , Hot topics in operator theory, 173–185, Theta Ser. Adv. Math., 9, Theta, Bucharest, 2008.