1 First class on sofic and hyperlinear groups

1.1 Definition of sofic groups

A pseudo length function ℓ on a group G is a function $\ell: G \rightarrow[0,1]$ such that for every $x, y \in G$:

- $\ell(x y) \leq \ell(x)+\ell(y)$;
- $\ell(x y)=\ell(y x)$;
- $\ell\left(x^{-1}\right)=\ell(x)$;
- $\ell(1)=0$.

A pseudo length function is called length function if moreover $\ell(x)=0$ implies $x=1_{G}$. A group endowed with a length function is called a length group. If G is a length group with length function ℓ, then the function $d: G \times G \rightarrow[0,1]$ defined by

$$
d(x, y)=\ell\left(x y^{-1}\right)
$$

is a bi-invariant metric on G. This means that d is a metric on G, and left and right translations in G are d-isometries. Conversely any bi-invariant metric d on G gives rise to a length function ℓ on G by

$$
\ell(x)=d\left(x, 1_{G}\right)
$$

This shows that there is a bijective correspondence between length functions and bi-invariant metrics on a group G.

If ℓ_{0} is a pseduo length function on a group G, then

$$
N_{\ell_{0}}=\left\{x \in G \mid \ell_{0}(x)=1\right\}
$$

is a normal subgroup of G. The quotient $G / N_{\ell_{0}}$ endowed with the length function ℓ defined by

$$
\ell\left(x N_{\ell_{0}}\right)=\ell_{0}(x)
$$

is called the length quotient of G induced by the pseudo length function ℓ_{0}.
If Γ is any group, then the function ℓ_{d} on Γ defined by $\ell(x)=1$ if $x \neq 1_{G}$ and $\ell\left(1_{G}\right)=0$ is a length function on Γ, called the trivial length function. A (discrete) group can be regarded as a length group endowed with the trivial length function.

Denote for $n \in \mathbb{N}$ by S_{n} the group of permutations over the set $\{1, \ldots, n\}$. The Hamming length function ℓ on S_{n} is defined by

$$
\ell_{S_{n}}(\sigma)=\frac{1}{n}|\{i \in\{1, \ldots, n\} \mid \sigma(i) \neq i\}|
$$

It is not hard to see that this is indeed a length function on S_{n}. The corresponding bi-invariant metric on S_{n} is denoted by $d_{S_{n}}$.

Definition 1 A countable discrete group Γ is sofic if for every $\varepsilon>0$ and every finite subset F of $\Gamma \backslash\left\{1_{\Gamma}\right\}$ there is a natural number n and a function $\Phi: \Gamma \rightarrow S_{n}$ such that $\Phi\left(1_{\Gamma}\right)=1_{S_{n}}$ and for every $g, h \in F \backslash\{1\}$:

- $d_{S_{n}}(\Phi(g h), \Phi(g) \Phi(h))<\varepsilon ;$
- $\ell_{S_{n}}(\Phi(g))>1-\varepsilon$.

This local approximation property can be reformulated in terms of embedding into (metric) ultraproduct. The product

$$
\prod_{n \in \mathbb{N}} S_{n}
$$

is a group with respect to the coordinatewise multiplication. Fix a free ultrafilter \mathcal{U} over \mathbb{N}. Define the pseudo length function $\ell_{\mathcal{U}}$ on $\prod_{n \in \mathbb{N}} S_{n}$ by

$$
\ell_{\mathcal{U}}\left(\left(\sigma_{n}\right)_{n \in \mathbb{N}}\right)=\lim _{n \rightarrow \mathcal{U}} \ell_{S_{n}}\left(\sigma_{n}\right)
$$

It is not hard to check that $\ell_{\mathcal{U}}$ is indeed a pseudo length function. The length quotient of $\prod_{n \in \mathbb{N}} S_{n}$ induced by $\ell_{\mathcal{U}}$ is denoted by $\prod_{\mathcal{U}} S_{n}$ and called ultraproduct of the sequence of length groups $\left(S_{n}\right)_{n \in \mathbb{N}}$. It is not difficult to reformulate the notion of sofic group in term of existence of an embedding into $\prod_{\mathcal{U}} S_{n}$.

Exercise 1 Suppose that Γ is a countable discrete group regarded as a length group endowed with the trivial length. Show that the following statements are equivalent:

1. Γ is sofic;
2. there is an length-preserving homomorphism $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} S_{n}$ for every free ultrafilter \mathcal{U} over \mathbb{N};
3. there is an length-preserving homomorphism $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} S_{n}$ for some free ultrafilter \mathcal{U} over \mathbb{N}.

Hint. For $1 \Rightarrow 2$ observe that the hypothesis implies that there is a sequence $\left(\Phi_{n}\right)_{n \in \mathbb{N}}$ of maps from Γ to S_{n} such that $\Phi_{n}\left(1_{\Gamma}\right)=1_{S_{n}}$ and for every $g, h \in$ $\Gamma \backslash\{1\}$

$$
\lim _{n \rightarrow+\infty} d_{S_{n}}\left(\Phi_{n}(g h), \Phi_{n}(h) \Phi_{n}(g)\right)=0
$$

and

$$
\lim _{n \rightarrow+\infty} \ell_{S_{n}}\left(\Phi_{n}(g)\right)=1
$$

Define $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} S_{n}$ sending g to the element of $\prod_{\mathcal{U}} S_{n}$ having $\left(\Phi_{n}(g)\right)_{n \in \mathbb{N}}$ as representative sequence. For $3 \Rightarrow 1$ observe that if $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} S_{n}$ is a length preserving homomorphism and for every $g \in G$

$$
\left(\Phi_{n}(g)\right)_{n \in \mathbb{N}}
$$

is a representative sequence of $\Phi(g)$ then the maps $\Psi_{n}=\Phi_{n}\left(1_{\Gamma}\right)^{-1} \Phi_{n}(g)$ satisfy the following properties: $\Psi_{n}\left(1_{\Gamma}\right)=1_{S_{n}}$ and for every $g, h \in \Gamma \backslash\{1\}$

$$
\lim _{n \rightarrow \mathcal{U}} d_{S_{n}}\left(\Psi_{n}(g h), \Psi_{n}(g) \Psi_{n}(h)\right)=0
$$

and

$$
\lim _{n \rightarrow \mathcal{U}} \ell_{S_{n}}\left(\Psi_{n}(g)\right)=1
$$

If $F \subset \Gamma$ is finite and $\varepsilon>0$ then the maps Φ_{n} for n large enough witness the condition of soficity of Γ relative to F and $\varepsilon>0$.

An amplification argument of Elek and Szabo (see [2]) shows that the condition of soficity is equivalent to the an apparently weaker property, which is discussed in Exercise 2.

Exercise 2 Prove that a countable discrete group Γ is sofic if and only if there is a function $r: \Gamma \rightarrow(0,1)$ such that for some $\varepsilon>0$ and every $F \subset \Gamma \backslash\left\{1_{\Gamma}\right\}$ finite there is a natural number n and a function $\Phi: \Gamma \rightarrow S_{n}$ such that $\Phi\left(1_{\Gamma}\right)=1_{S_{n}}$ and for every $g, h \in F$:

- $d_{S_{n}}(\Phi(g h), \Phi(g) \Phi(h))<\varepsilon ;$
- $\ell_{S_{n}}(\Phi(g))>r(g)$.

Hint. If $n, k \in \mathbb{N}$ and $\sigma \in S_{n}$ consider the permutation $\sigma^{\otimes k}$ of the set $\{1, \ldots, n\}^{k}$ of k-sequences of elements of $\{1, \ldots, n\}$ defined by

$$
\sigma^{\otimes k}\left(i_{1}, \ldots, i_{k}\right)=\left(\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)\right) .
$$

Identifying the group of permutations of $\{1, \ldots, n\}^{k}$ with $S_{n^{k}}$, the function

$$
\sigma \mapsto \sigma^{\otimes k}
$$

defines a group homomorphism from S_{n} to $S_{n^{k}}$ such that

$$
1-\ell_{S_{n^{k}}}\left(\sigma^{\otimes k}\right)=\left(1-\ell_{S_{n}}(\sigma)\right)^{k}
$$

Using Exercise 2 one can express the notion of soficity in terms of (not necessarily isometric) embedding into metric ultraproducts of permutations groups.

Exercise 3 Suppose that Γ is a countable discrete group. Show that the following statements are equivalent:

- Γ is sofic;
- there is an injective homomorphism $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} S_{n}$ for every free ultrafilter \mathcal{U} over \mathbb{N};
- there is an injective homomorphism $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} S_{n}$ for some free ultrafilter \mathcal{U} over \mathbb{N}.

Hint. Follows the same steps as in the proof of Exercise 3, replacing the condition given in the definition of sofic group with the equivalent condition expressed in Exercise 2.

1.2 Definition of hyperlinear groups

If $n \in \mathbb{N}$ denote by \mathbb{M}_{n} the tracial von Neumann algebra of $n \times n$ matrices over the complex numbers. The normalized trace τ of \mathbb{M}_{n} is defined by

$$
\tau\left(\left(a_{i j}\right)\right)=\frac{1}{n} \sum_{i=1}^{n} a_{i i} .
$$

The operator norm $\|x\|$ of an element x of \mathbb{M}_{2} is defined by

$$
\|x\|=\sup \left\{\|x \xi\| \mid \xi \in \mathbb{C}^{n},\|\xi\| \leq 1\right\}
$$

while the Hilbert-Schmidt norm $\|x\|_{2}$ is defined by

$$
\|x\|_{2}=\tau\left(x^{*} x\right) .
$$

An element x of \mathbb{M}_{n} is unitary if $x^{*} x=x x^{*}=1$. The set U_{n} of unitary elements of \mathbb{M}_{n} is a group with respect to multiplication. The Hilbert-Schmidt length function on U_{n} is defined by

$$
\ell_{U_{n}}(u)=\frac{1}{\sqrt{2}}\|u-1\|_{2} .
$$

Observe that

$$
\begin{aligned}
\ell_{U_{n}}(u)^{2} & =\frac{1}{2}\|u-1\|_{2}^{2} \\
& =\frac{1}{2} \tau\left((u-1)^{*}(u-1)\right) \\
& =\frac{1}{2} \tau\left(2-u-u^{*}\right) \\
& =1-\operatorname{Re} \tau(u) .
\end{aligned}
$$

Exercise 4 Show that $\ell_{U_{n}}$ is a length function on U_{n}.
Hyperlinear groups are defined exactly as sofic groups, where the permutation groups with the Hamming length function are replaced with the unitary groups with the Hilbert-Schmidt length function.

Definition $2 A$ countable discrete group Γ is hyperlinear if for every $\varepsilon>0$ and every finite subset F of $\Gamma \backslash\left\{1_{\Gamma}\right\}$ there is a natural number n and a function $\Phi: \Gamma \rightarrow U_{n}$ such that $\Phi\left(1_{\Gamma}\right)=1_{U_{n}}$ and for every $g, h \in F$:

- $d_{U_{n}}(\Phi(g h), \Phi(g) \Phi(h))<\varepsilon ;$
- $\ell_{U_{n}}(\Phi(g))>1-\varepsilon$.

As before this notion can be equivalently reformulated in terms of embedding into (metric) ultraproducts. If \mathcal{U} is a free ultrafilter over \mathbb{N} the (metric) ultraproduct $\prod_{\mathcal{U}} U_{n}$ is the length quotient of $\prod_{n} U_{n}$ with respect to the pseudo length function

$$
\ell_{\mathcal{U}}\left(\left(u_{n}\right)_{n \in \mathbb{N}}\right)=\lim _{n \rightarrow \mathcal{U}} \ell_{U_{n}}\left(u_{n}\right) .
$$

Exercise 5 Suppose that Γ is a countable discrete group regarded as a length group with respect to the trivial length function. Show that the following statements are equivalent:

- Γ is hyperlinear;
- there is a length-preserving homomorphism $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} U_{n}$ for every free ultrafilter \mathcal{U} over \mathbb{N};
- there is a length-preserving homomorphism $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} U_{n}$ for some free ultrafilter \mathcal{U} over \mathbb{N}.

An amplification argument due to Radulescu (see [3]) predating the analogous argument for permutation groups of Elek and Szabo shows that hyperlinearity is equivalent to an apparently weaker property. This is discussed in Exercise 6.

Exercise 6 Prove that a countable discrete group Γ is hyperlinear if and only if there is a function $r: \Gamma \rightarrow(0,1)$ such that for some $\varepsilon>0$ and every $F \subset$ $\Gamma \backslash\left\{1_{\Gamma}\right\}$ finite there is a natural number n and a function $\Phi: \Gamma \rightarrow U_{n}$ such that $\Phi\left(1_{\Gamma}\right)=1_{U_{n}}$ and for every $g, h \in F$:

- $d_{U_{n}}(\Phi(g h), \Phi(g) \Phi(h))<\varepsilon ;$
- $\ell_{U_{n}}(\Phi(g))>r(g)$.

Hint. If $A=\left(a_{i j}\right) \in \mathbb{M}_{n}$ and $B=\left(b_{i j}\right) \in \mathbb{M}_{m}$ define $A \otimes B \in \mathbb{M}_{n m}$ by

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 n} B \\
a_{21} B & a_{22} B & \ldots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} B & \ldots & \ldots & a_{n n} B
\end{array}\right)
$$

Prove the following

- $(A \otimes B)\left(A^{\prime} \otimes B^{\prime}\right)=A A^{\prime} \otimes B B^{\prime} ;$
- $\|A \otimes B\| \leq\|A\|\|B\| ;$
- $\tau(A \otimes B)=\tau(A) \tau(B)$;
- $A \otimes B$ is unitary if both A and B are unitary;

If $u \in U_{n}$ define recursively $u^{\otimes 1}=u \in U_{n}$ and $u^{\otimes k}=u^{\otimes(k-1)} \otimes u$ for $k \geq 2$. Observe that the function

$$
u \mapsto u^{\otimes k}
$$

is a group homomorphism from U_{n} to $U_{n^{k}}$ such that

$$
\tau\left(u^{\otimes k}\right)=\tau(u)^{k}
$$

As before Exercise 6 entails a characterization of hyperlinear groups in terms of algebraic embeddings into ultraproducts of unitary groups.

Exercise 7 Suppose that Γ is a countable discrete group. Show that the following statements are equivalent:

- Γ is hyperlinear;
- there is an injective homomorphism $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} U_{n}$ for every free ultrafilter \mathcal{U} over \mathbb{N};
- there is an injective homomorphism $\Phi: \Gamma \rightarrow \prod_{\mathcal{U}} U_{n}$ for some free ultrafilter \mathcal{U} over \mathbb{N}.

If σ is a permutation over n denote by P_{σ} the permutation matrix associated with σ, acting as σ on the canonical basis of \mathbb{C}^{n}. Observe that P_{σ} is a unitary matrix and the function

$$
\sigma \mapsto P_{\sigma}
$$

is a homomorphism from S_{n} to U_{n}. Moreover

$$
\tau\left(P_{\sigma}\right)^{2}=1-\ell_{S_{n}}(\sigma)
$$

It is not difficult to deduce from this that any sofic group is hyperlinear. This is the content of Exercise 8.

Exercise 8 Fix a free ultrafilter \mathcal{U} over \mathbb{N}. Show that the function

$$
\left(\sigma_{n}\right)_{n \in \mathbb{N}} \mapsto\left(P_{\sigma_{n}}\right)_{n \in \mathbb{N}}
$$

from $\prod_{n} S_{n}$ to $\prod_{n} U_{n}$ induces an algebraic embedding of $\prod_{\mathcal{U}} S_{n}$ into $\prod_{\mathcal{U}} U_{n}$. Infer from this that any sofic groups is hyperlinear. Kervaire-Laudenbach conjecture for hyperlinear groups

Conjecture 3 (Kervaire-Laudenbach) Suppose that Γ is a group and $a_{1}, \ldots, a_{l} \in$ Γ. Denote by $w\left(t, a_{1}, \ldots, a_{l}\right)$ the word

$$
t^{s_{1}} a_{1} \cdots t^{s_{l}} a_{n}
$$

If $s=\sum_{i=1}^{l} s_{i} \neq 0$ then there is an element b in some group extending Γ such that

$$
w\left(b, a_{1}, \ldots, a_{n}\right)=b^{s_{1}} a_{1} \cdots b^{s_{n}} a_{n}=1
$$

In the following we will show that the Kervaire-Laudenbach conjecture holds for hyperlinear groups.

Theorem 4 (Gerstenhaber-Rothaus, 1962) Suppose that $n \in \mathbb{N}$ and U_{n} is the group of unitary matrices of rank n. Assume that $a_{1}, \ldots, a_{n} \in U_{n}$ and $w\left(t, a_{1}, \ldots, a_{l}\right)$ denotes the word

$$
t^{s_{1}} a_{1} \cdots t^{s_{l}} a_{l}
$$

If $s=\sum_{i=1}^{l} s_{i} \neq 0$ then there is an element b of U_{n} such that

$$
w\left(b, a_{1}, \ldots, a_{n}\right)=1
$$

Observe that we are able to find b already in U_{n}, and not just in some group extending U_{n}.
Proof. Consider the map

$$
f: U_{n} \rightarrow U_{n}
$$

defined by

$$
b \mapsto w\left(b, a_{1}, \ldots, a_{n}\right)
$$

We just need to prove that f is onto. Recall that U_{n} is a compact manifold of dimension n^{2}. Thus the homology group $H_{n^{2}}\left(U_{n}\right)$ is an infinite cyclic group. Being continuous (and in fact smooth) f induces a map

$$
f_{*}: H_{n^{2}}\left(U_{n}\right) \rightarrow H_{n^{2}}\left(U_{n}\right)
$$

If e is a generator of $H_{n^{2}}\left(U_{n}\right)$ then

$$
f_{*}(e)=d e
$$

for some $d \in \mathbb{Z}$ called the degree of f. In order to show that f is onto, it is enough to show that its degree is nonzero. I claim that $d=s^{n}$ where $s=\sum_{i=1}^{n} s_{i}$. Since U_{n} is connected, the map f is homotopy equivalent to the map

$$
f_{s}: U_{n} \rightarrow U_{n}
$$

defined by

$$
b \mapsto b^{s}
$$

Since the degree of a map is homotopy invariant, f and f_{s} have the same degree. Therefore we just have to show that f_{s} has degree s^{n}. The facts that the generic element of U_{n} has $s^{n} s$-roots of unity, and the degree of a map can be computed locally, shows that the degree of f_{s} is s^{n}.

Gerstenhaber and Rothaus proved in fact in [1] a more general version of Theorem 4, where U_{n} is replaced by any compact Lie group. Moreover they consider systems of equations in possibly more than one variable.

Observe that the conclusion of Theorem 4 can be expressed by a formula. The following corollary follows immediately using Łos theorem for ultraproducts.

Corollary 5 If \mathcal{V} is an ultrafilter over \mathbb{N} then the universal hyperlinear group $U_{\mathcal{V}}=\prod_{n}^{\mathcal{V}} U_{n}$ has the followin property: Suppose that $a_{1}, \ldots, a_{l} \in U_{\mathcal{V}}$ and $w\left(t, a_{1}, \ldots, a_{l}\right)$ is the word

$$
t^{s_{1}} a_{1} \cdots t^{s_{l}} a_{l}
$$

If $s=\sum_{i=1}^{l} s_{i} \neq 0$ then there is $b \in U_{\mathcal{V}}$ such that

$$
w\left(b, a_{1}, \ldots, a_{l}\right)=1
$$

In particular any universal hyperlinear group $U_{\mathcal{V}}$ satisfies the KervaireLaudenbach conjecture. Obviously the Kervaire-Laudenbach conjecture holds for any subgroup of a group that satisfies the Kervaire-Laudenbach conjecture. It follows that all countable hyperlinear groups satisfy the Kervaire-Laudenbach conjecture.

References

[1] M. Gerstenhaber, O. S. Rothaus, The solution of sets of equations in groups, Proc. Nat. Acad. Sci. U.S.A. 481962 1531-1533.
[2] G. Elek, E. Szabo, Hyperlinearity, essentially free actions and L^{2}-invariants. The sofic property. Math. Ann. 332 (2005), no. 2, 421-441.
[3] F. Radulescu, The von Neumann algebra of the non-residually finite Baumslag group $\left\langle a, b \mid a b^{3} a^{-1}=b^{2}\right\rangle$ embeds into R^{ω}, Hot topics in operator theory, 173-185, Theta Ser. Adv. Math., 9, Theta, Bucharest, 2008.

