
1 First class on so�c and hyperlinear groups

1.1 De�nition of so�c groups

A pseudo length function ` on a group G is a function ` : G ! [0; 1] such that
for every x; y 2 G:

� ` (xy) � ` (x) + ` (y);

� ` (xy) = ` (yx);

� `
�
x�1

�
= ` (x);

� ` (1) = 0.

A pseudo length function is called length function if moreover ` (x) = 0
implies x = 1G. A group endowed with a length function is called a length group.
If G is a length group with length function `, then the function d : G�G! [0; 1]
de�ned by

d (x; y) = `
�
xy�1

�
is a bi-invariant metric on G. This means that d is a metric on G, and left and
right translations in G are d-isometries. Conversely any bi-invariant metric d
on G gives rise to a length function ` on G by

` (x) = d (x; 1G) .

This shows that there is a bijective correspondence between length functions
and bi-invariant metrics on a group G.
If `0 is a pseduo length function on a group G, then

N`0 = fx 2 G j`0 (x) = 1g

is a normal subgroup of G. The quotient G /N`0 endowed with the length
function ` de�ned by

` (xN`0) = `0 (x)

is called the length quotient of G induced by the pseudo length function `0.
If � is any group, then the function `d on � de�ned by ` (x) = 1 if x 6= 1G

and ` (1G) = 0 is a length function on �, called the trivial length function. A
(discrete) group can be regarded as a length group endowed with the trivial
length function.
Denote for n 2 N by Sn the group of permutations over the set f1; : : : ; ng.

The Hamming length function ` on Sn is de�ned by

`Sn (�) =
1

n
jfi 2 f1; : : : ; ng j� (i) 6= igj .

It is not hard to see that this is indeed a length function on Sn. The corre-
sponding bi-invariant metric on Sn is denoted by dSn .
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De�nition 1 A countable discrete group � is so�c if for every " > 0 and every
�nite subset F of �n f1�g there is a natural number n and a function � : �! Sn
such that � (1�) = 1Sn and for every g; h 2 Fn f1g:

� dSn (� (gh) ;� (g) � (h)) < ";

� `Sn (� (g)) > 1� ".

This local approximation property can be reformulated in terms of embedding
into (metric) ultraproduct. The productY

n2N
Sn

is a group with respect to the coordinatewise multiplication. Fix a free ultra�lter
U over N. De�ne the pseudo length function `U on

Q
n2N Sn by

`U
�
(�n)n2N

�
= lim

n!U
`Sn (�n) .

It is not hard to check that `U is indeed a pseudo length function. The length
quotient of

Q
n2N Sn induced by `U is denoted by

Q
U Sn and called ultraproduct

of the sequence of length groups (Sn)n2N. It is not di¢ cult to reformulate the
notion of so�c group in term of existence of an embedding into

Q
U Sn.

Exercise 1 Suppose that � is a countable discrete group regarded as a length
group endowed with the trivial length. Show that the following statements are
equivalent:

1. � is so�c;

2. there is an length-preserving homomorphism � : �!
Q
U Sn for every free

ultra�lter U over N;

3. there is an length-preserving homomorphism � : �!
Q
U Sn for some free

ultra�lter U over N.

Hint. For 1 ) 2 observe that the hypothesis implies that there is a sequence
(�n)n2N of maps from � to Sn such that �n (1�) = 1Sn and for every g; h 2
�n f1g

lim
n!+1

dSn (�n (gh) ;�n (h)�n (g)) = 0

and
lim

n!+1
`Sn (�n (g)) = 1.

De�ne � : �!
Q
U Sn sending g to the element of

Q
U Sn having (�n (g))n2N as

representative sequence. For 3 ) 1 observe that if � : � !
Q
U Sn is a length

preserving homomorphism and for every g 2 G

(�n (g))n2N
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is a representative sequence of � (g) then the maps 	n = �n (1�)
�1
�n (g)

satisfy the following properties: 	n (1�) = 1Sn and for every g; h 2 �n f1g

lim
n!U

dSn (	n (gh) ;	n (g)	n (h)) = 0

and
lim
n!U

`Sn (	n (g)) = 1.

If F � � is �nite and " > 0 then the maps �n for n large enough witness the
condition of so�city of � relative to F and " > 0.
An ampli�cation argument of Elek and Szabo (see [2]) shows that the con-

dition of so�city is equivalent to the an apparently weaker property, which is
discussed in Exercise 2.

Exercise 2 Prove that a countable discrete group � is so�c if and only if there is
a function r : �! (0; 1) such that for some " > 0 and every F � �n f1�g �nite
there is a natural number n and a function � : �! Sn such that � (1�) = 1Sn
and for every g; h 2 F :

� dSn (� (gh) ;� (g) � (h)) < ";

� `Sn (� (g)) > r (g).

Hint. If n; k 2 N and � 2 Sn consider the permutation �
k of the set f1; : : : ; ngk
of k-sequences of elements of f1; : : : ; ng de�ned by

�
k (i1; : : : ; ik) = (� (i1) ; : : : ; � (ik)) :

Identifying the group of permutations of f1; : : : ; ngk with Snk , the function

� 7! �
k

de�nes a group homomorphism from Sn to Snk such that

1� `S
nk

�
�
k

�
= (1� `Sn (�))

k .

Using Exercise 2 one can express the notion of so�city in terms of (not neces-
sarily isometric) embedding into metric ultraproducts of permutations groups.

Exercise 3 Suppose that � is a countable discrete group. Show that the follow-
ing statements are equivalent:

� � is so�c;

� there is an injective homomorphism � : � !
Q
U Sn for every free ultra-

�lter U over N;

� there is an injective homomorphism � : �!
Q
U Sn for some free ultra�l-

ter U over N.

Hint. Follows the same steps as in the proof of Exercise 3, replacing the condition
given in the de�nition of so�c group with the equivalent condition expressed in
Exercise 2.
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1.2 De�nition of hyperlinear groups

If n 2 N denote by Mn the tracial von Neumann algebra of n� n matrices over
the complex numbers. The normalized trace � of Mn is de�ned by

� ((aij)) =
1

n

nX
i=1

aii.

The operator norm kxk of an element x of M2 is de�ned by

kxk = sup fkx�k j � 2 Cn, k�k � 1g ,

while the Hilbert-Schmidt norm kxk2 is de�ned by

kxk2 = � (x
�x) .

An element x ofMn is unitary if x�x = xx� = 1. The set Un of unitary elements
of Mn is a group with respect to multiplication. The Hilbert-Schmidt length
function on Un is de�ned by

`Un (u) =
1p
2
ku� 1k2 .

Observe that

`Un (u)
2
=

1

2
ku� 1k22

=
1

2
�
�
(u� 1)� (u� 1)

�
=

1

2
� (2� u� u�)

= 1� Re� (u) .

Exercise 4 Show that `Un is a length function on Un.

Hyperlinear groups are de�ned exactly as so�c groups, where the permuta-
tion groups with the Hamming length function are replaced with the unitary
groups with the Hilbert-Schmidt length function.

De�nition 2 A countable discrete group � is hyperlinear if for every " > 0
and every �nite subset F of �n f1�g there is a natural number n and a function
� : �! Un such that � (1�) = 1Un and for every g; h 2 F :

� dUn (� (gh) ;� (g) � (h)) < ";

� `Un (� (g)) > 1� ".
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As before this notion can be equivalently reformulated in terms of embed-
ding into (metric) ultraproducts. If U is a free ultra�lter over N the (metric)
ultraproduct

Q
U Un is the length quotient of

Q
n Un with respect to the pseudo

length function
`U
�
(un)n2N

�
= lim

n!U
`Un (un) .

Exercise 5 Suppose that � is a countable discrete group regarded as a length
group with respect to the trivial length function. Show that the following state-
ments are equivalent:

� � is hyperlinear;

� there is a length-preserving homomorphism � : �!
Q
U Un for every free

ultra�lter U over N;

� there is a length-preserving homomorphism � : �!
Q
U Un for some free

ultra�lter U over N.

An ampli�cation argument due to Radulescu (see [3]) predating the anal-
ogous argument for permutation groups of Elek and Szabo shows that hyper-
linearity is equivalent to an apparently weaker property. This is discussed in
Exercise 6.

Exercise 6 Prove that a countable discrete group � is hyperlinear if and only
if there is a function r : � ! (0; 1) such that for some " > 0 and every F �
�n f1�g �nite there is a natural number n and a function � : �! Un such that
� (1�) = 1Un and for every g; h 2 F :

� dUn (� (gh) ;� (g) � (h)) < ";

� `Un (� (g)) > r (g).

Hint. If A = (aij) 2Mn and B = (bij) 2Mm de�ne A
B 2Mnm by

A
B =

0BBB@
a11B a12B : : : a1nB
a21B a22B : : : a2nB
...

...
. . .

...
an1B : : : : : : annB

1CCCA
Prove the following

� (A
B) (A0 
B0) = AA0 
BB0;

� kA
Bk � kAk kBk;

� � (A
B) = � (A) � (B);

� A
B is unitary if both A and B are unitary;
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If u 2 Un de�ne recursively u
1 = u 2 Un and u
k = u
(k�1) 
 u for k � 2.
Observe that the function

u 7! u
k

is a group homomorphism from Un to Unk such that

�
�
u
k

�
= � (u)

k .

As before Exercise 6 entails a characterization of hyperlinear groups in terms
of algebraic embeddings into ultraproducts of unitary groups.

Exercise 7 Suppose that � is a countable discrete group. Show that the follow-
ing statements are equivalent:

� � is hyperlinear;

� there is an injective homomorphism � : � !
Q
U Un for every free ultra-

�lter U over N;

� there is an injective homomorphism � : � !
Q
U Un for some free ultra-

�lter U over N.

If � is a permutation over n denote by P� the permutation matrix associated
with �, acting as � on the canonical basis of Cn. Observe that P� is a unitary
matrix and the function

� 7! P�

is a homomorphism from Sn to Un. Moreover

� (P�)
2
= 1� `Sn (�) .

It is not di¢ cult to deduce from this that any so�c group is hyperlinear. This
is the content of Exercise 8.

Exercise 8 Fix a free ultra�lter U over N. Show that the function

(�n)n2N 7! (P�n)n2N

from
Q
n Sn to

Q
n Un induces an algebraic embedding of

Q
U Sn into

Q
U Un.

Infer from this that any so�c groups is hyperlinear.Kervaire-Laudenbach conjec-
ture for hyperlinear groups

Conjecture 3 (Kervaire-Laudenbach) Suppose that � is a group and a1; : : : ; al 2
�. Denote by w (t; a1; : : : ; al) the word

ts1a1 � � � tslan.

If s =
Pl

i=1 si 6= 0 then there is an element b in some group extending � such
that

w (b; a1; : : : ; an) = b
s1a1 � � � bsnan = 1
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In the following we will show that the Kervaire-Laudenbach conjecture holds
for hyperlinear groups.

Theorem 4 (Gerstenhaber-Rothaus, 1962) Suppose that n 2 N and Un is
the group of unitary matrices of rank n. Assume that a1; : : : ; ; an 2 Un and
w (t; a1; : : : ; al) denotes the word

ts1a1 � � � tslal.

If s =
Pl

i=1 si 6= 0 then there is an element b of Un such that

w (b; a1; : : : ; an) = 1.

Observe that we are able to �nd b already in Un, and not just in some group
extending Un.
Proof. Consider the map

f : Un ! Un

de�ned by
b 7! w (b; a1; : : : ; an)

We just need to prove that f is onto. Recall that Un is a compact manifold of
dimension n2. Thus the homology group Hn2 (Un) is an in�nite cyclic group.
Being continuous (and in fact smooth) f induces a map

f� : Hn2 (Un)! Hn2 (Un) .

If e is a generator of Hn2 (Un) then

f� (e) = de

for some d 2 Z called the degree of f . In order to show that f is onto, it is enough
to show that its degree is nonzero. I claim that d = sn where s =

Pn
i=1 si. Since

Un is connected, the map f is homotopy equivalent to the map

fs : Un ! Un

de�ned by
b 7! bs.

Since the degree of a map is homotopy invariant, f and fs have the same degree.
Therefore we just have to show that fs has degree sn. The facts that the generic
element of Un has sn s-roots of unity, and the degree of a map can be computed
locally, shows that the degree of fs is sn.
Gerstenhaber and Rothaus proved in fact in [1] a more general version of

Theorem 4, where Un is replaced by any compact Lie group. Moreover they
consider systems of equations in possibly more than one variable.
Observe that the conclusion of Theorem 4 can be expressed by a formula.

The following corollary follows immediately using ×os theorem for ultraproducts.
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Corollary 5 If V is an ultra�lter over N then the universal hyperlinear group
UV =

QV
n Un has the followin property: Suppose that a1; : : : ; al 2 UV and

w (t; a1; : : : ; al) is the word
ts1a1 � � � tslal.

If s =
Pl

i=1 si 6= 0 then there is b 2 UV such that

w (b; a1; : : : ; al) = 1.

In particular any universal hyperlinear group UV satis�es the Kervaire-
Laudenbach conjecture. Obviously the Kervaire-Laudenbach conjecture holds
for any subgroup of a group that satis�es the Kervaire-Laudenbach conjecture.
It follows that all countable hyperlinear groups satisfy the Kervaire-Laudenbach
conjecture.
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