
1 Second class on so�c and hyperlinear groups

1.1 Logic for length groups

The logic for metric structures is a generalization of usual �rst order logic. It
is a natural framework to study algebraic structures endowed with a nontrivial
metric and their elementary properties (i.e. properties preserved by ultrapowers
or equivalently expressible by formulas). In the following the particular instance
of the logic for metric structures to describe and study groups endowed with a
length functions as de�ned in ... is introduced.
A term t (x1; : : : ; xn) in the language of length groups in the variables

x1; : : : ; xn is a word in the indeterminates x1; : : : ; xn, i.e. an expression of
the form

xn1i1 : : : x
nl
il

for l 2 N and ni 2 Z for i = 1; 2; : : : ; l. For example

xyx�1y�1

is a term in the variables x; y. The empty word will be denoted by 1. If G
is a length group, g1; : : : ; gm are elements of G, and t (x1; : : : ; xn; y1; : : : ; ym)
is a term in the variables x1; : : : ; xn; y1; : : : ; ym, then one can consider the
term t (x1; : : : ; xn; g1; : : : ; gm) with parameters from G, which is obtained from
t (x1; : : : ; xn; y1; : : : ; ym) replacing formally yi with gi for i = 1; 2; : : : ;m. The
evaluation tG in a given length group G of a term t in the variables x1; : : : ; xn
(possibly with parameters from G) is the function from Gn to G de�ned by

(g1; : : : ; gn)! t (g1; : : : ; gn)

where t (g1; : : : ; gn) is the element of G obtained replacing in t every occurrence
of xi with gi for i = 1; 2; : : : ; n. For example the evaluation in a length group
G of the term xyx�1y�1 is the function from G2 to G that associates to every
pair (g; h) of elements of G their commutator ghg�1h�1. The evaluation of the
empty word is the function on G constantly equal to 1G.
A basic formula ' in the free variables x1; : : : ; xn is an expression of the

form
` (t (x1; : : : ; xn))

where t (x1; : : : ; xn) is a term in the free variables x1; : : : ; xn. The evaluation
'G of ' in a length group G is the function from Gn to [0; 1] de�ned by

(g1; : : : ; gn) 7! `G
�
tG (g1; : : : ; gn)

�
where `G is the bi-invariant metric in G. For example

`
�
xyx�1y�1

�
is a basic formula whose interpretation in a length group G is the function
associating to a pair of elements of G the length of their commutator. This
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basic formula can be thought as measuring how much x and y commute. The
evaluation at (g; h) of its interpretation in a length group G will be 0 if and only
if g and h commute.
Finally a formula ' is any expression that can be obtained starting from

basic formulas, composing with continuous functions from [0; 1]n to [0; 1], taking
in�ma and suprema over some variables. Continuous functions serve the role of
logical connectives while in�ma and suprema are the quanti�ers. Having this in
mind, terminology from the usual �rst order logic carry over to this setting: A
formula is quanti�er free if it does not contain any quanti�er; A variable x is
bound if it is preced by a quanti�er over x, i.e. supx or infx, and free otherwise;
a formula with not free variables is called a sentence. The interpretation of a
formula in a length group G is de�ned in the obvious way by recursion on its
complexity. For example

sup
x
sup
y
`
�
xyx�1y�1

�
is a sentence, with bound variables x and y. Its evaluation in a length group G
is the real number

sup
x2G

sup
y2G

`G
�
xyx�1y�1

�
2 [0; 1] :

This sentence can be thought as measuring how much the group G is abelian. Its
interpretation in G is zero if and only if G is abelian. This example enlightens
the fact that the possible truth values of a sentence (i.e. values of its evaluations
in a length group) are all real numbers between 0 and 1. Moreover 0 can be
thought as "true" while strictly postive real numbers as di¤erent degrees of
"false". In this spirit we say that a sentence ' holds in G i¤ its interpretation
in G is zero. Using this terminology we can assert for example that a length
group G is abelian if and only if the formula

sup
x
sup
y
`
�
xyx�1y�1

�
holds in G. Observe that if ' is a sentence, then 1�' is a sentence such that '
holds in G if and only if the interpretation of 1�' in G is 1. Thus 1�' can be
though as a sort of negation of the sentence '. Another example of sentence is

sup
x
min fj` (x)� 1j ; j` (x)jg :

Such sentence holds in a length group G if and only if the length function in G
attains values in f0; 1g, i.e. it is the trivial length function on G. It is worth at
this point observing that for any sentence ' as de�ned in logic for length groups
there is a corresponding formula 'd in the usual �rst order (discrete) logic in
the language of groups such that the evaluation of 'd in a group G coincides
with the evaluation of ' in G endowed with the trivial length function. For
example the (metric) formula expressing that a group is abelian corresponds to
the (discrete) formula

8x8y (xy = yx) :
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Sentences in the language of length groups allow one to determine which
properties of a length group are elementary. A property concerning length
groups is elementary if there is a set � of sentences such that a length group has
the given property if and only if G satis�es all the sentences in �. For example
the property of being abelian is elementary, since a length group is abelian if
and only if it satis�es the sentence supx;y `

�
xyx�1y�1

�
. A class C of length

groups will is axiomatizable if the property of belonging to C is elementary or,
equivalently, there is a set �C of sentences such that a length group G belongs to
C if and only if it satis�es all the sentences in �C . The previous example shows
that the class of abelian length groups is axiomatizable. Elementary properties
and axiomatizable classes are tightly connected with the notion of ultraproduct
of length groups.
Suppose that (Gn)n2N is a sequence of length groups and U is a free ultra�lter

over N. The ultraproduct
Q
U Gn of the sequence (Gn)n2N with respect to the

ultra�lter U is by de�nition the length quotient of
Q
nGn with respect to the

pseudo length function

`U
�
(gn)n2N

�
= lim

n!U
`Gn

(gn) :

This is by de�nition the quotient of
Q
nGn with respect to the normal subgroup

N`U =
n
(gn)n2N 2

Y
n
Gn

��� lim
n!U

` (gn) = 0
o

endowed with the quotient length function. Observe that ultraproducts of the
sequence (Sn)n2N of permutation groups endowed with the Hamming length
function or of the sequence (Un)n2N of unitary groups endowed with the Hilbert-
Schmidt length function are particular cases of this de�nition. In the particular
case when the sequence (Gn)n2N is constantly equal to a �xed length groupG the
ultraproduct

Q
U Gn is called ultraprower of G and denoted by GU . Observe

that the function from G to GU associating with g 2 G the element of GU

corresponding to the sequence constantly equal to g is a length presercing group
homomorpism called diagonal embeeding of G into GU . The group G can be
regarded as a subgroup of GU via the diagonal embedding.
The ultraproduct construction behaves well with respect to interpretation

of formulas. This is the content of a theorem proved in the setting of usual �rst
order logic by ×os in 1955 (see [4]).

Theorem 1 (×os for metric groups) Suppose that ' (x1; : : : ; xn) is a for-
mula with free variables x1; : : : ; xn, (Gn)n2N is a sequence of length groups, and�
g
(n)
1

�
n2N

; : : : ;
�
g
(n)
k

�
n2N

are elements of
Q
nGn. If U is a free ultra�lter over

N and g1; : : : ; gk are the elements of
Q
U Gn having

�
g
(n)
1

�
n2N

; : : : ;
�
g
(n)
k

�
n2N

as representative sequences, then

'
Q

U Gn (g1; : : : ; gk) = lim
n!U

'Gn

�
g
(n)
1 ; : : : ; g

(n)
k

�
.
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In particular if ' is a sentence then

'
Q

U Gn = lim
n!U

'Gn .

In particular a sentence ' has the same evaluation in a length group G and in
any length ultrapower GU of G.

Proof. This �rst statement is proved by induction on the complexity of the
formula '.
The ultraproduct construction in fact allows one to characterize elementary

properties or, equivalently, axiomatizable classes of length groups. It is obvious
that if C is an axiomatizable class then any length group isometrically isomorphic
to an element of C belongs to C. Moreover by Theorem 1 C is closed with respect
to ultraproduct and ultraroot, i.e. ultraproducts of elements of C belong to C
and if some ultrapower of a length group G is in C then G belongs to C. It
is a theorem due to Keisler in the setting of usual �rst order logic that these
conditions are in fact su¢ cient to characterize axiomatizable classes (see [3]).

Theorem 2 (Keisler for metric groups) A class C of length groups is ax-
iomatizable if and only if it is closed with respect to isomorphisms, ultraproducts,
and ultraroots.

1.2 Model theoretic characterization of so�c and hyper-
linear groups

In order to formulate the result of this sections, it is convenient to introduce
the following terminology. Suppose that G;H are length groups, F is a subset
of H, and " is a nonnegative real number. A function � : H ! G is an (F; ")-
approximate morphism if for every h1; h2 2 F the following holds:

� `G
�
� (h1h2) � (h2)

�1
� (h1)

�1
�
< ";

� `G (� (1H)) < ";

� j`H (h1)� `G (� (h1))j < ".

An (H; ")-approximate morphism will be simply called an "-approximate
morphism. A sequence (Gn)n2N is approximately directed if for every n 2 N and
" > 0 for all but �nitely many m 2 N there is an "-approximate morphism from
Gn to Gm. A universal sentence is a sentence of the form

sup
x1

sup
x2

: : : sup
xn

' (x1; : : : ; xn)

where ' (x1; : : : ; xn) is a quanti�er-free formula. Analogously an existential
sentence is a sentence of the form

inf
x1
inf
x2
: : : inf

xn
' (x1; : : : ; xn)

4



where ' (x1; : : : ; xn) is a quanti�er-free formula. Interpretations of universal
and existential formulas in approximately directed sequences have asymptotic
values, as shown in Exercise 3.

Exercise 3 Suppose that (Gn)n2N is an approximately directed sequence. Show
that if ' is an existential sequence, then the sequence�

'Gn
�
n2N

of interpretations of ' in the elements of such sequence is convergent. Infer that
the same is true if ' is a universal sequence.

It is obvious that if a length group H isometrically embeds in a length group
G, then the interpretation of a universal sentence in H is smaller than or equal
to the interpretation in H, and the interpretation of an existential sentence in
H is greater than or equal to the interpetation in G. In particular any universal
sentence that holds in G also holds in H, while an existential sentence that
holds in H also holds in G. By Theorem 1 the same is true if H just embeds in
an ultrapower GU of G. Exercise 4 shows that if H is separable (i.e. it has a
countable dense subset) this condition is also necessary.

Exercise 4 Suppose that H and G are length groups, where H is separable.
Show that the following statements are equivalent:

1. H isometrically embeds in the ultrapower GU for some free ultra�lter U
over N;

2. H isometrically embeds in the ultrapower GU for every free ultra�lter U
over N ;

3. every universal sentence holding in G holds in H;

4. for every F � H �nite and every " > 0 there is an (F; ")-approximate
morphism from H to G.

Hint. To prove the equivalence of 3 and 4 and the equivalence of 4 and 5 oserve
that if ' is a universal formula then 1 � ' is an existential formula (or more
precisely it has the same interepretation as a suitable existential formula) and
viceversa. To prove that 5 implies 6 write a suitable existential formula to build
the map �. Finally to prove that 6 implies 1 use the hypothesis to build a
sequence of approximate isometric embeddings from H to G that induce an
isometric embedding from H to G.
The characterization of length groups isometrically embeddable into an ul-

trapower of a length group G can be generalized to a characterization of length
groups embeddable in a ultraproduct of an approximately directed sequence of
length groups (Gn)n2N.

Exercise 5 Suppose that H is a separable length group and that (Gn)n2N is
an approximately directed sequence of length groups. Show that the following
statements are equivalent:
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1. H isometrically embeds in the ultraproduct
Q
U Gn for some free ultra�lter

U over N;

2. H isometrically embeds in the ultraproduct
Q
U Gn for every free ultra�lter

U over N;

3. every universal sentence ' such that limn!+1 '
Gn = 0 holds in H;

4. for every F � H �nite and every " > 0 there is n 2 N and an (F; ")-
approximate morphism from H to Gn.

Recall that a countable discrete group � is so�c if, regarded as a length
group endowed with the trivial discrete metric, it isometrically embeds into an
ultraproduct

Q
U Sn of the sequence of permutation groups endowed with the

Hamming length. The following characterization of countable so�c groups can
be inferred from Exercise 5.

Proposition 6 Suppose that � is a countable discrete group. The following
statements are equivalent:

1. � is so�c;

2. if q (x1; : : : ; xl) is a quanti�er free formula such that

lim
n!+1

�
sup

�1;:::;�l2Sn
q (�1; : : : ; �n)

�
= 0

then for every. 1; : : : ; l 2 �

q� (1; : : : ; l) = 0:

An analgous characterization for hyperlinear groups can be obtained replac-
ing the permutation groups Sn with the unitary groups Un.

1.3 Classes of so�c and hyperlinear groups

A classicaly theorem of Cayley (see [1]) asserts that any �nite group is isomor-
phic to a group of permutations with no �xed points on a �nite set. To see
this just let the group act on itself by left translation. This observation implies
in particular that �nite groups are so�c. This argument can be generalized to
prove that amenable groups are so�c.
Recall that a countable discrete group � is amenable if for every �nite subset

F of � and for every " > 0 there is a �nite subset K of � such that K is (H; ")-
invariant, i.e.

jhK 4Kj < " jKj
for every h 2 H. Suppose that � is amenable, F is a �nite subset of �, and "
is a positive real number. Fix a �nite

�
H [H�1; "

�
-invariant subset K of �. If

 2 F then de�ne
� (x) = x
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when x 2 �1K\K and extended � arbitrarily to a permutation ofK. Observe
that this de�nes an (F; 2")-approximate morphism from G to the group SK of
permutations of K endowed with the Hamming length (which is isomorphic to
the Sn where n = jKj). This concludes the proof that � is so�c.
The classes of so�c and hyperlinear groups have nice closure properties. For

example direct product of so�c groups are so�c. Recall that if �0; �1 are elements
of Sn and Sm respectively then �0 
 �1 2 Snm is de�ned by

(�0 
 �1) (im+ j) = �0 (i)m+ �1 (j)

for i 2 n and j 2 m. Suppose that �0;�1 are so�c groups and F0; F1 are �nite
subsets of �0 and �1 respectively. If �0 is an (F0; ")-approximate morphism
from �0 to Sn and �1 is an (F1; ")-approximate morphism from �1 to Sm then
the map

�0 
 �1 : �0 � �1 ! Snm

de�ned by
(�0 
 �1) (0; 1) = �0 (0)
 �1 (1)

is an (F0 � F1; 2")-approximate morphism. This observation is su¢ cient to
conclude that a direct product of so�c groups is so�c.
If C is a class of (countable, discrete) groups, then a group � is locally

embeddable into elements of C if for every �nite subset F of �n f1g there is a
function � from F to a group T that belongs to C such that � is nontrivial and
preserves the operation on F , i.e. for every g; h 2 F

� (gh) = � (g) � (h)

and
� (g) 6= 1:

The group � is residually in C if moreover � is required to be a surjective
homomorphism.
It is clear from the very de�nition that so�city and hyperlineratity are local

properties. This is made precise in Exercise 7.

Exercise 7 Show that a group that is locally embeddable into so�c groups is
so�c. The same is true for hyperlinear groups.

Groups that are locally embeddable into �nite groups were introduced and
studied in [2] under the name of LEF groups. Since �nite groups are so�c, Ex-
ercise 7 implies that LEF groups are so�c. In particular residually �nite groups
are so�c. More generally groups that are locally embeddable into amenable
groups (and in particular residually amenable groups) are so�c.
It is a standard result in group theory that free groups are residually �nite

(see [6]). Therefore the previous discussion implies that free groups are so�c.
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