1 Higman group

Higman group is the finitely presented group with generators a_{i} for $i \in \mathbb{Z} / 4 \mathbb{Z}$ and relations

$$
a_{i+1} a_{i} a_{i+1}^{-1}=a_{i}^{2}
$$

for $i \in \mathbb{Z} / 4 \mathbb{Z}$.
It was defined by Higman as an example of a finitely presented not resudually finite group.

Consider the system of \mathcal{R} relations $a_{i+1} a_{i} a_{i+1}^{-1}=a_{i i}^{2}$ for $i \in \mathbb{Z} / 4 \mathbb{Z}$.
Lemma 1 If G is a group and $a_{i} \in G$ have finite order and satisfy exactly the system \mathcal{R} then $a_{i}=1$ for every i

Proof. Suppose by contradiction that $a_{i} \neq 1$ for some i. Suppose that p is the minimum prime $p \geq 2$ dividing the order of one of the a_{i}. Suppose wlog that $p \mid$ ord $\left(a_{0}\right)$. Observe that

$$
a_{1} a_{0} a_{1}^{-1}=a_{0}^{2}
$$

and by induction

$$
a_{1}^{n} a_{0} a_{1}^{-n}=a_{0}^{2^{n}}
$$

It follows that $a_{0}^{2^{\operatorname{ord}\left(a_{1}\right)}-1}=1$. Thus $2^{\operatorname{ord}\left(a_{1}\right)}-1$ is a multiple of $\operatorname{ord}\left(a_{0}\right)$ and hence of p. This implies that p is odd. Considering the element $2+p \mathbb{Z}$ in $\mathbb{Z} / p \mathbb{Z}^{\times}$ one sees that $\operatorname{ord}\left(a_{1}\right)$ is a multiple of the order $2+p \mathbb{Z}$ in $\mathbb{Z} / p \mathbb{Z}^{\times}$which is a divisor of $p-1$ (different from 1). It follows that ord $\left(a_{1}\right)$ is divisible by a prime strictly smaller than p, agains our assumption.

Lemma 2 If $n \in \mathbb{N}$ and $a_{i} \in G L_{n}(\mathbb{C})$ satisfy exactly the system \mathcal{R} then $a_{i}=1$ for every i

Proof. It is enough to show that the a_{i} 's have finite order. From

$$
a_{1} a_{0} a_{1}^{-1}=a_{0}^{2}
$$

it follows that a_{0} and a_{0}^{2} have the same eigenvalues and hence the eigenvalues of a_{0} are roots of unity. Consider the Jordan normal form of a_{0}. The fact that the eigenvalues of a_{0} are roots of unity implies that the entries of a_{0}^{n} grow at most polynomially in n. The same holds for the other a_{i}. The identity

$$
a_{1}^{n} a_{0} a_{1}^{-n}=a_{0}^{2^{n}}
$$

implies that also the entries of $a_{0}^{2^{n}}$ grow at most polynomially in n. This implies that a_{0} is diagonalizable and hence unitary of finite order. The same argument as before applies then.

The fact that the Higman group is nontrivial is nontrivial (and 4 generators are the minimal number that works).

If G_{1}, G_{2} are groups groups, the free product $G_{1} * G_{2}$ is the group having the elements of G_{1} and G_{2} as generators and having no relations beyond the ones
already present in G_{1} and G_{2}. Alternatively $G_{1} * G_{2}$ can be described as the group of words $g_{1} \ldots g_{n}$ such that any two consecutive g_{i} and g_{i+1} do not belong to the same G_{i}. The free product is the coproduct in the category of groups. This means that if Γ is any other group and there are morphisms from G_{i} to Γ then there is a morphism from $G_{1} * G_{2}$ to Γ extending the given morphisms.

We the notion of free product of groups relative to a common subgroup H. Suppose that G_{1} and G_{2} are groups with a common subgroup H. The free product of G_{1} and G_{2} amalgamated over H is denote by $G_{1} *_{H} G_{2}$ and has the elements of G_{1} and G_{2} as generators and the relations coming from G_{1} and G_{2} and moreover relations identifying the copy of H in G_{1} and the copy of H in G_{2}. The amalgamated free product has the following universal property: if morphisms from G_{i} to a group Γ agreeing on H are given then there is a morphism from $G_{1} *_{H} G_{2}$ to Γ extending the given ones. Suppose that

$$
G_{1}=\bigcup_{s \in S_{1}} H s
$$

and

$$
G_{2}=\bigcup_{s \in S_{2}} H s
$$

are partitions into left right H cosets. Consider X to be the set of words

$$
h s_{1} \ldots s_{n}
$$

such that $h \in H$ and $s_{i} \in S_{1} \cup S_{2}$ and no two consecutive s_{i} belong to the same S_{i}. One can define an operatation \cdot on X such that $(X, \cdot) \simeq G_{1} *_{H} G_{2}$.

Lemma 3 If $g_{i} \in G_{i}$ for $i \in\{1,2\}$ generate in G_{i} a free subgroup disjoint from H, then $\left\{g_{1}, g_{2}\right\}$ generates in $G_{1} *_{H} G_{2}$ a free group.

Proof. One can consider as before partions

$$
G_{1}=\bigcup_{s \in S_{1}} H s
$$

and

$$
G_{2}=\bigcup_{s \in S_{2}} H s
$$

of G where S_{1} and S_{2} contain the free subgroups generated by g_{1} and g_{2}. Then in the description of $G_{1} *_{H} G_{2}$ as before any word in g_{1} and g_{2} generate a distinct element of $G_{1} *_{H} G_{2}$.

Example 4 Suppose that G_{1} is the group generated by a_{0}, a_{1} with relation

$$
a_{1} a_{0} a_{1}^{-1}=a_{0}^{2}
$$

Observe that every element can be written uniquely as

$$
a_{1}^{n_{1}} a_{0}^{n_{0}}
$$

for $n_{1}, n_{0} \in \mathbb{Z}$. In particular the cyclic subgroups generated by a_{0} and a_{1} respectively are free. Analogously consider the group G_{2} generated by elements a_{1}, a_{2} with relation

$$
a_{2} a_{1} a_{2}^{-1}=a_{1}^{2}
$$

Observe that the cyclic subgroups generated by a_{1} and a_{2} respectively are free. The amalgamated free product of G_{1} and G_{2} over $\left\langle a_{1}\right\rangle$ is generated by a_{0}, a_{1}, a_{2} with relations

$$
\begin{aligned}
& a_{1} a_{0} a_{1}^{-1}=a_{0}^{2} \\
& a_{2} a_{1} a_{2}^{-1}=a_{1}^{2}
\end{aligned}
$$

Moreover a_{0} and a_{2} generate a free group $\left\langle a_{0}, a_{2}\right\rangle$ in $H_{1}=G_{1} *_{H} G_{2}$ (and a_{1} generates a free group $\left\langle a_{1}\right\rangle$).

Consider now the group H_{2} generated by a_{2}, a_{3}, a_{0} with relations

$$
\begin{aligned}
& a_{3} a_{2} a_{3}^{-1}=a_{2}^{2} \\
& a_{0} a_{3} a_{0}^{-1}=a_{3}^{2}
\end{aligned}
$$

where a_{0}, a_{2} generate a free group $\left\langle a_{0}, a_{2}\right\rangle$ (and a_{3} genreates a free group $\left\langle a_{3}\right\rangle$)
Define

$$
H=H_{1} *_{\left\langle a_{0}, a_{2}\right\rangle} H_{2}
$$

and observe that H has genrators a_{i} and relations

$$
a_{i+1} a_{i} a_{i+1}^{-1}=a_{i}^{2}
$$

for $i \in \mathbb{Z} / 4 \mathbb{Z}$.. Observe that a_{1}, a_{3} generate a free group in H.
Define $[x, y]=x^{-1} y^{-1} x y$
Suppose that G is a finite group with length function ℓ_{G}. Say that ℓ is commutator contractive if

$$
\ell([x, y]) \leq 4 \ell(x) \ell(y)
$$

Observe that

$$
d([g, h],[g, k]) \leq 4 \ell(g) d(h, k)
$$

Observe that if H is a normal subgroup of G then $\ell_{G / H}$ on G / H defined by

$$
\ell_{G / H}(x H)=\min _{h \in H} \ell(x h)
$$

is a length function on G / H which is commutator contractive if ℓ is. Moreover the quotient function is a contraction.

Define

- $\min \ell_{G}=\min \ell_{G}[G \backslash\{1\}]$
- G_{ε} the (necessarily normal) subgroup generated by $\{g \in G \mid \ell(g) \leq \varepsilon\}$
- $\operatorname{gen}(G)=\min \left\{\varepsilon>0 \mid G_{\text {gen }(G)}=G\right\}(G$ is generated by elements of length at most $\operatorname{gen}(G))$

Lemma 5 If $\min \left(\ell_{G}\right)<\frac{1}{4}$ then G is abelian.
Proof. Observe that if $\min \left(\ell_{G}\right)<\frac{1}{4}$ and $\ell(g)=\ell(h)=\min \left(\ell_{G}\right)$ then

$$
\ell([g, h]) \leq 4 \ell(g) \ell(h)<\min \left(\ell_{G}\right)
$$

and hence $[g, h]=1$. This shows that $G_{\min \left(\ell_{G}\right)}$ is abelian.
Suppose in the following that G is a finite group with commutator contractive length function.

Lemma 6 If $G_{\varepsilon} \nsubseteq G$ then $\min \left(\ell_{G / G_{\varepsilon}}\right)>\varepsilon$
Proof. Suppose by contradiction that $\min \left(\ell_{G / G_{\varepsilon}}\right) \leq \varepsilon$. Pick a nonidentity elment $h G_{\varepsilon}$ of G / G_{ε} such that $\ell_{G / G_{\varepsilon}}\left(h G_{\varepsilon}\right) \leq \varepsilon$. Thus for some $k \in G_{\varepsilon}$ one has $\ell(h k) \leq \varepsilon$ and hence $h=(h k) k^{-1} \in G_{\varepsilon}$ contradiction the fact that $h G_{\varepsilon}$ is a nonidentity element of $h G_{\varepsilon}$.

Lemma 7 If gen $(G)>\varepsilon$ then

$$
\operatorname{gen}\left(G / G_{\varepsilon}\right)=\operatorname{gen}(G)
$$

Proof. Since the quotient map is length-reducing

$$
\operatorname{gen}\left(G / G_{\varepsilon}\right) \leq \operatorname{gen}(G)
$$

Observe that G / G_{ε} is generated by elements of length at most $\operatorname{gen}\left(G / G_{\varepsilon}\right)$. It follows that G is generated by elements of length at $\operatorname{most} \max \left\{\varepsilon, \operatorname{gen}\left(G / G_{\varepsilon}\right)\right\}$. This implies that

$$
\operatorname{gen}(G) \leq \max \left\{\varepsilon, \operatorname{gen}\left(G / G_{\varepsilon}\right)\right\} \leq \operatorname{gen}(G)
$$

Since $\varepsilon<\operatorname{gen}(G)$ it follows that

$$
\operatorname{gen}(G)=\max \left\{\varepsilon, \operatorname{gen}\left(G / G_{\varepsilon}\right)\right\}=\operatorname{gen}\left(G / G_{\varepsilon}\right)
$$

Observe that $\operatorname{gen}\left(G_{\varepsilon}\right) \leq \varepsilon$. Moreover $\min \left(\ell_{G_{\varepsilon}}\right)=\min \left(\ell_{G}\right)$ if $\min \left(\ell_{G}\right) \leq \varepsilon$.

Lemma 8 If G is a group with commutator contractive length function and $a_{i} \in G$ for $i \in \mathbb{Z} / 4 \mathbb{Z}$ satisfy up to ε such that $4 \varepsilon \leq \frac{3}{16}$ the system \mathcal{R}. Either $\ell\left(a_{i}\right)<4 \varepsilon$ for every $i \in \mathbb{Z} / 4 \mathbb{Z}$ or $\ell\left(a_{i}\right) \geq \frac{3}{16}$ for every i.

Proof. Suppose that $\ell\left(a_{i}\right) \geq 4 \varepsilon$ for some i and wlog $i=0$. Observe that since equation

$$
\left[a_{1}, a_{0}\right]=a_{0}
$$

is in \mathcal{R} and the a_{i} satisfy \mathcal{R} up to ε we have

$$
\ell\left(a_{0}\right)-\varepsilon \leq \ell\left(\left[a_{1}, a_{0}\right]\right) \leq 4 \ell\left(a_{0}\right) \ell\left(a_{1}\right)
$$

abd hence

$$
\ell\left(a_{1}\right) \geq \frac{\ell\left(a_{0}\right)-\varepsilon}{4 \ell\left(a_{0}\right)} \geq \frac{3}{16} \geq 4 \varepsilon
$$

The conclusion follows completing the cycle.
Lemma 9 Suppose that G is a finite group with commutator contractive length function and $a_{i} \in G$ for $i \in \mathbb{Z} / 4 \mathbb{Z}$ satisfy up to ε such that $33 \varepsilon<\frac{3}{16}$ (i.e. $\left.\varepsilon<\frac{1}{176}\right)$ the system \mathcal{R}. Then $\ell\left(a_{i}\right)<4 \varepsilon$ for every $i \in \mathbb{Z} / 4 \mathbb{Z}$.

Proof. If $\min \left(\ell_{G}\right) \geq \varepsilon$ then the a_{i} satisfy \mathcal{R} exactly and hence $a_{i}=1$ since the system \mathcal{R} has no nontrivial exact realization in a finite group. Suppose that $\min \left(\ell_{G}\right)<\varepsilon$. Assume by contradiction that $\ell\left(a_{i}\right) \geq 4 \varepsilon$ for some i. Define $n=|G|$. Suppose wlog that $\min \left(\ell_{G}\right)<\varepsilon$ is maximal among all groups G of order at most n having elements a_{i} satisfying \mathcal{R} up to ε such that $\ell\left(a_{i}\right) \geq 4 \varepsilon$ for some i. Assume first that $G_{\min \left(\ell_{G}\right)} \neq G$. Thus

$$
\min \left(\ell_{G / G_{\min \left(\ell_{G}\right)}}\right)>\min \left(\ell_{G}\right)
$$

Observe that the $a_{i} G_{\min \left(\ell_{G}\right)}$ in $G / G_{\min \left(\ell_{G}\right)}$ satisfy \mathcal{R} up to ε. By maximality of G one of the conditions must to be violated, and hence $\ell\left(a_{i} G_{\delta(G)}\right)<4 \varepsilon$ for every i. Thus there are $\widetilde{a}_{i} \in G_{\min \left(\ell_{G}\right)}$ for every i such that

$$
d\left(a_{i}, \widetilde{a}_{i}\right)=\ell\left(a_{i} \tilde{a}_{i}^{-1}\right)<4 \varepsilon
$$

Obviously the same is true if $G_{\min \left(\ell_{G}\right)}=G$. Since $\min \left(\ell_{G}\right) \leq \varepsilon<\frac{1}{4}$ we know that $G_{\min \left(\ell_{G}\right)}$ is abelian. We have

$$
\begin{aligned}
d\left(\left[a_{i+1}, a_{i}\right],\left[a_{i+1}, \widetilde{a}_{i}\right]\right) & \leq 4 \ell\left(a_{i+1}\right) d\left(a_{i}, \widetilde{a}_{i}\right) \\
& <16 \varepsilon \ell\left(a_{i+1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\ell\left(\left[a_{i+1}, \widetilde{a}_{i}\right]\right) & =d\left(\left[\widetilde{a}_{i+1}, \widetilde{a}_{i}\right],\left[a_{i+1}, \widetilde{a}_{i}\right]\right) \\
& \leq 4 d\left(\widetilde{a}_{i+1}, a_{i+1}\right) \ell\left(\widetilde{a}_{i}\right) \\
& <16 \varepsilon \ell\left(\widetilde{a}_{i}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\ell\left(a_{i}\right) & \leq \ell\left(\left[a_{i+1}, a_{i}\right]\right)+\varepsilon \\
& <\ell\left(\left[a_{i+1}, \widetilde{a_{i}}\right]\right)+16 \varepsilon \ell\left(a_{i+1}\right)+\varepsilon \\
& <\left(16 \ell\left(\widetilde{a}_{i}\right)+16 \ell\left(a_{i+1}\right)+1\right) \varepsilon \\
& \leq 33 \varepsilon \\
& <\frac{3}{16}
\end{aligned}
$$

It follows from the previous lemma that $\ell\left(a_{i}\right)<4 \varepsilon$.
Suppose that a_{i} for $i \in \mathbb{Z} / 4 \mathbb{Z}$ belong to a finite group with commutator contractive length function. I claim that

$$
\max _{i \in \mathbb{Z} / 4 \mathbb{Z}} d\left(a_{i}, 1\right) \leq 176 \max _{i \in \mathbb{Z} / 4 \mathbb{Z}} d\left(\left[a_{i+1}, a_{i}\right], a_{i}\right)
$$

In fact this is clear if $\max _{i \in \mathbb{Z} / 4 \mathbb{Z}} d\left(\left[a_{i+1}, a_{i}\right], a_{i}\right) \geq \frac{1}{176}$. Suppose that $\max _{i \in \mathbb{Z} / 4 \mathbb{Z}} d\left(\left[a_{i+1}, a_{i}\right], a_{i}\right)<$ $\frac{1}{176}$. It follows from the previous lemma that

$$
\max _{i \in \mathbb{Z} / 4 \mathbb{Z}} d\left(a_{i}, 1\right) \leq 4 \max _{i \in \mathbb{Z} / 4 \mathbb{Z}} d\left(\left[a_{i+1}, a_{i}\right], a_{i}\right) \leq 176 \max _{i \in \mathbb{Z} / 4 \mathbb{Z}} d\left(\left[a_{i+1}, a_{i}\right], a_{i}\right)
$$

Consider the metric formula φ defined by

$$
\sup _{x_{0}, x_{1}, x_{2}, x_{3}} \max \left\{\max _{i \in \mathbb{Z} / 4 \mathbb{Z}} d\left(x_{i}, 1\right)-176 \max _{i \in \mathbb{Z} / 4 \mathbb{Z}} d\left(\left[a_{i+1}, a_{i}\right], a_{i}\right), 0\right\}
$$

and observe that $\varphi^{G}=0$ for every finite group G endwed with commutator contractive length function. On the other hand $\varphi^{H}=1$ where H is the Higman group.

