
1 Higman group

Higman group is the �nitely presented group with generators ai for i 2 Z /4Z
and relations

ai+1aia
�1
i+1 = a

2
i

for i 2 Z /4Z .
It was de�ned by Higman as an example of a �nitely presented not resudually

�nite group.
Consider the system of R relations ai+1aia

�1
i+1 = a

2
ii for i 2 Z /4Z .

Lemma 1 If G is a group and ai 2 G have �nite order and satisfy exactly the
system R then ai = 1 for every i

Proof. Suppose by contradiction that ai 6= 1 for some i. Suppose that p is the
minimum prime p � 2 dividing the order of one of the ai. Suppose wlog that
pjord (a0). Observe that

a1a0a
�1
1 = a20

and by induction
an1a0a

�n
1 = a2

n

0

It follows that a2
ord(a1)�1
0 = 1. Thus 2ord(a1) � 1 is a multiple of ord (a0) and

hence of p. This implies that p is odd. Considering the element 2+pZ in Z /pZ�

one sees that ord (a1) is a multiple of the order 2 + pZ in Z /pZ� which is a
divisor of p�1 (di¤erent from 1). It follows that ord (a1) is divisible by a prime
strictly smaller than p, agains our assumption.

Lemma 2 If n 2 N and ai 2 GLn (C) satisfy exactly the system R then ai = 1
for every i

Proof. It is enough to show that the ai�s have �nite order. From

a1a0a
�1
1 = a20

it follows that a0 and a20 have the same eigenvalues and hence the eigenvalues
of a0 are roots of unity. Consider the Jordan normal form of a0. The fact that
the eigenvalues of a0 are roots of unity implies that the entries of an0 grow at
most polynomially in n. The same holds for the other ai. The identity

an1a0a
�n
1 = a2

n

0

implies that also the entries of a2
n

0 grow at most polynomially in n. This implies
that a0 is diagonalizable and hence unitary of �nite order. The same argument
as before applies then.
The fact that the Higman group is nontrivial is nontrivial (and 4 generators

are the minimal number that works).
If G1; G2 are groups groups, the free product G1 �G2 is the group having the

elements of G1 and G2 as generators and having no relations beyond the ones
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already present in G1 and G2. Alternatively G1 � G2 can be described as the
group of words g1 : : : gn such that any two consecutive gi and gi+1 do not belong
to the same Gi. The free product is the coproduct in the category of groups.
This means that if � is any other group and there are morphisms from Gi to �
then there is a morphism from G1 �G2 to � extending the given morphisms.
We the notion of free product of groups relative to a common subgroup

H. Suppose that G1 and G2 are groups with a common subgroup H: The free
product of G1 and G2 amalgamated over H is denote by G1 �H G2 and has
the elements of G1 and G2 as generators and the relations coming from G1 and
G2 and moreover relations identifying the copy of H in G1 and the copy of
H in G2. The amalgamated free product has the following universal property:
if morphisms from Gi to a group � agreeing on H are given then there is a
morphism from G1 �H G2 to � extending the given ones. Suppose that

G1 =
[
s2S1

Hs

and
G2 =

[
s2S2

Hs

are partitions into left right H cosets. Consider X to be the set of words

hs1 : : : sn

such that h 2 H and si 2 S1 [S2 and no two consecutive si belong to the same
Si. One can de�ne an operatation � on X such that (X; �) ' G1 �H G2.

Lemma 3 If gi 2 Gi for i 2 f1; 2g generate in Gi a free subgroup disjoint from
H, then fg1; g2g generates in G1 �H G2 a free group.

Proof. One can consider as before partions

G1 =
[
s2S1

Hs

and
G2 =

[
s2S2

Hs

of G where S1 and S2 contain the free subgroups generated by g1 and g2. Then
in the description of G1�HG2 as before any word in g1 and g2 generate a distinct
element of G1 �H G2.

Example 4 Suppose that G1 is the group generated by a0; a1 with relation

a1a0a
�1
1 = a20

Observe that every element can be written uniquely as

an11 a
n0
0
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for n1; n0 2 Z. In particular the cyclic subgroups generated by a0 and a1 respec-
tively are free. Analogously consider the group G2 generated by elements a1; a2
with relation

a2a1a
�1
2 = a21

Observe that the cyclic subgroups generated by a1 and a2 respectively are free.
The amalgamated free product of G1 and G2 over ha1i is generated by a0; a1; a2
with relations

a1a0a
�1
1 = a20

a2a1a
�1
2 = a21

Moreover a0 and a2 generate a free group ha0; a2i in H1 = G1 �H G2 (and a1
generates a free group ha1i).

Consider now the group H2 generated by a2; a3; a0 with relations

a3a2a
�1
3 = a22

a0a3a
�1
0 = a23

where a0; a2 generate a free group ha0; a2i (and a3 genreates a free group ha3i)
De�ne

H = H1 �ha0;a2i H2
and observe that H has genrators ai and relations

ai+1aia
�1
i+1 = a

2
i

for i 2 Z /4Z .. Observe that a1; a3 generate a free group in H.
De�ne [x; y] = x�1y�1xy
Suppose that G is a �nite group with length function `G. Say that ` is

commutator contractive if

` ([x; y]) � 4` (x) ` (y)

Observe that
d ([g; h] ; [g; k]) � 4` (g) d (h; k)

Observe that if H is a normal subgroup of G then `G/H on G /H de�ned by

`G/H (xH) = min
h2H

` (xh)

is a length function on G /H which is commutator contractive if ` is. Moreover
the quotient function is a contraction.
De�ne

� min `G = min `G [Gn f1g]

� G" the (necessarily normal) subgroup generated by fg 2 G j` (g) � "g
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� gen (G) = min
�
" > 0

��Ggen(G) = G	 (G is generated by elements of length
at most gen (G))

Lemma 5 If min (`G) < 1
4 then G is abelian.

Proof. Observe that if min (`G) < 1
4 and ` (g) = ` (h) = min (`G) then

` ([g; h]) � 4` (g) ` (h) < min (`G)

and hence [g; h] = 1. This shows that Gmin(`G) is abelian.
Suppose in the following thatG is a �nite group with commutator contractive

length function.

Lemma 6 If G"  G then min
�
`G/G"

�
> "

Proof. Suppose by contradiction that min
�
`G/G"

�
� ". Pick a nonidentity

elment hG" of G /G" such that `G/G"
(hG") � ". Thus for some k 2 G" one

has ` (hk) � " and hence h = (hk) k�1 2 G" contradiction the fact that hG" is
a nonidentity element of hG".

Lemma 7 If gen (G) > " then

gen (G /G" ) = gen (G)

Proof. Since the quotient map is length-reducing

gen (G /G" ) � gen (G)

Observe that G /G" is generated by elements of length at most gen (G /G" ). It
follows that G is generated by elements of length at most max f"; gen (G /G" )g.
This implies that

gen (G) � max f"; gen (G /G" )g � gen (G)

Since " < gen (G) it follows that

gen (G) = max f"; gen (G /G" )g = gen (G /G" )

Observe that gen (G") � ". Moreover min (`G"
) = min (`G) if min (`G) � ".

Lemma 8 If G is a group with commutator contractive length function and
ai 2 G for i 2 Z /4Z satisfy up to " such that 4" � 3

16 the system R. Either
` (ai) < 4" for every i 2 Z /4Z or ` (ai) � 3

16 for every i.
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Proof. Suppose that ` (ai) � 4" for some i and wlog i = 0. Observe that since
equation

[a1; a0] = a0

is in R and the ai satisfy R up to " we have

` (a0)� " � ` ([a1; a0]) � 4` (a0) ` (a1)

abd hence

` (a1) �
` (a0)� "
4` (a0)

� 3

16
� 4"

The conclusion follows completing the cycle.

Lemma 9 Suppose that G is a �nite group with commutator contractive length
function and ai 2 G for i 2 Z /4Z satisfy up to " such that 33" < 3

16 (i.e.
" < 1

176) the system R. Then ` (ai) < 4" for every i 2 Z /4Z .

Proof. If min (`G) � " then the ai satisfy R exactly and hence ai = 1 since
the system R has no nontrivial exact realization in a �nite group. Suppose that
min (`G) < ". Assume by contradiction that ` (ai) � 4" for some i. De�ne
n = jGj. Suppose wlog that min (`G) < " is maximal among all groups G of
order at most n having elements ai satisfying R up to " such that ` (ai) � 4"
for some i. Assume �rst that Gmin(`G) 6= G. Thus

min

�
`
G
.
Gmin(`G)

�
> min (`G)

Observe that the aiGmin(`G) in G
�
Gmin(`G) satisfy R up to ". By maximality

of G one of the conditions must to be violated, and hence `
�
aiG�(G)

�
< 4" for

every i. Thus there are eai 2 Gmin(`G) for every i such that
d (ai;eai) = ` �aiea�1i �

< 4"

Obviously the same is true if Gmin(`G) = G. Since min (`G) � " < 1
4 we know

that Gmin(`G) is abelian. We have

d ([ai+1; ai] ; [ai+1;eai]) � 4` (ai+1) d (ai;eai)
< 16"` (ai+1)

and

` ([ai+1;eai]) = d ([eai+1;eai] ; [ai+1;eai])
� 4d (eai+1; ai+1) ` (eai)
< 16"` (eai)
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Therefore

` (ai) � ` ([ai+1; ai]) + "

< ` ([ai+1; eai]) + 16"` (ai+1) + "
< (16` (eai) + 16` (ai+1) + 1) "
� 33"

<
3

16

It follows from the previous lemma that ` (ai) < 4".
Suppose that ai for i 2 Z /4Z belong to a �nite group with commutator

contractive length function. I claim that

max
i2Z/4Z

d (ai; 1) � 176 max
i2Z/4Z

d ([ai+1; ai] ; ai)

In fact this is clear ifmaxi2Z/4Z d ([ai+1; ai] ; ai) � 1
176 . Suppose thatmaxi2Z/4Z d ([ai+1; ai] ; ai) <

1
176 . It follows from the previous lemma that

max
i2Z/4Z

d (ai; 1) � 4 max
i2Z/4Z

d ([ai+1; ai] ; ai) � 176 max
i2Z/4Z

d ([ai+1; ai] ; ai)

Consider the metric formula ' de�ned by

sup
x0;x1;x2;x3

max

�
max
i2Z/4Z

d (xi; 1)� 176 max
i2Z/4Z

d ([ai+1; ai] ; ai) ; 0

�
and observe that 'G = 0 for every �nite group G endwed with commutator
contractive length function. On the other hand 'H = 1 where H is the Higman
group.
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