1 Higman group

Higman group is the finitely presented group with generators a_i for $i \in \mathbb{Z}/4\mathbb{Z}$ and relations

$$a_{i+1}a_ia_{i+1}^{-1} = a_i^2$$

for $i \in \mathbb{Z}/4\mathbb{Z}$.

It was defined by Higman as an example of a finitely presented not resudually finite group.

Consider the system of \mathcal{R} relations $a_{i+1}a_ia_{i+1}^{-1} = a_{ii}^2$ for $i \in \mathbb{Z}/4\mathbb{Z}$.

Lemma 1 If G is a group and $a_i \in G$ have finite order and satisfy exactly the system \mathcal{R} then $a_i = 1$ for every i

Proof. Suppose by contradiction that $a_i \neq 1$ for some *i*. Suppose that *p* is the minimum prime $p \geq 2$ dividing the order of one of the a_i . Suppose wlog that $p | ord(a_0)$. Observe that

$$a_1 a_0 a_1^{-1} = a_0^2$$

and by induction

$$a_1^n a_0 a_1^{-n} = a_0^{2^n}$$

It follows that $a_0^{2^{ord(a_1)}-1} = 1$. Thus $2^{ord(a_1)} - 1$ is a multiple of $ord(a_0)$ and hence of p. This implies that p is odd. Considering the element $2+p\mathbb{Z}$ in $\mathbb{Z}/p\mathbb{Z}^{\times}$ one sees that $ord(a_1)$ is a multiple of the order $2 + p\mathbb{Z}$ in $\mathbb{Z}/p\mathbb{Z}^{\times}$ which is a divisor of p-1 (different from 1). It follows that $ord(a_1)$ is divisible by a prime strictly smaller than p, agains our assumption.

Lemma 2 If $n \in \mathbb{N}$ and $a_i \in GL_n(\mathbb{C})$ satisfy exactly the system \mathcal{R} then $a_i = 1$ for every i

Proof. It is enough to show that the a_i 's have finite order. From

$$a_1 a_0 a_1^{-1} = a_0^2$$

it follows that a_0 and a_0^2 have the same eigenvalues and hence the eigenvalues of a_0 are roots of unity. Consider the Jordan normal form of a_0 . The fact that the eigenvalues of a_0 are roots of unity implies that the entries of a_0^n grow at most polynomially in n. The same holds for the other a_i . The identity

$$a_1^n a_0 a_1^{-n} = a_0^{2^n}$$

implies that also the entries of $a_0^{2^n}$ grow at most polynomially in n. This implies that a_0 is diagonalizable and hence unitary of finite order. The same argument as before applies then.

The fact that the Higman group is nontrivial is nontrivial (and 4 generators are the minimal number that works).

If G_1, G_2 are groups groups, the free product $G_1 * G_2$ is the group having the elements of G_1 and G_2 as generators and having no relations beyond the ones

already present in G_1 and G_2 . Alternatively $G_1 * G_2$ can be described as the group of words $g_1 \ldots g_n$ such that any two consecutive g_i and g_{i+1} do not belong to the same G_i . The free product is the coproduct in the category of groups. This means that if Γ is any other group and there are morphisms from G_i to Γ then there is a morphism from $G_1 * G_2$ to Γ extending the given morphisms.

We the notion of free product of groups relative to a common subgroup H. Suppose that G_1 and G_2 are groups with a common subgroup H. The free product of G_1 and G_2 amalgamated over H is denote by $G_1 *_H G_2$ and has the elements of G_1 and G_2 as generators and the relations coming from G_1 and G_2 and moreover relations identifying the copy of H in G_1 and the copy of H in G_2 . The amalgamated free product has the following universal property: if morphisms from G_i to a group Γ agreeing on H are given then there is a morphism from $G_1 *_H G_2$ to Γ extending the given ones. Suppose that

$$G_1 = \bigcup_{s \in S_1} Hs$$

and

$$G_2 = \bigcup_{s \in S_2} Hs$$

are partitions into left right H cosets. Consider X to be the set of words

$$hs_1 \dots s_n$$

such that $h \in H$ and $s_i \in S_1 \cup S_2$ and no two consecutive s_i belong to the same S_i . One can define an operatation \cdot on X such that $(X, \cdot) \simeq G_1 *_H G_2$.

Lemma 3 If $g_i \in G_i$ for $i \in \{1, 2\}$ generate in G_i a free subgroup disjoint from H, then $\{g_1, g_2\}$ generates in $G_1 *_H G_2$ a free group.

Proof. One can consider as before partions

$$G_1 = \bigcup_{s \in S_1} Hs$$

and

$$G_2 = \bigcup_{s \in S_2} Hs$$

of G where S_1 and S_2 contain the free subgroups generated by g_1 and g_2 . Then in the description of $G_1 *_H G_2$ as before any word in g_1 and g_2 generate a distinct element of $G_1 *_H G_2$.

Example 4 Suppose that G_1 is the group generated by a_0, a_1 with relation

$$a_1 a_0 a_1^{-1} = a_0^2$$

Observe that every element can be written uniquely as

$$a_1^{n_1}a_0^{n_0}$$

for $n_1, n_0 \in \mathbb{Z}$. In particular the cyclic subgroups generated by a_0 and a_1 respectively are free. Analogously consider the group G_2 generated by elements a_1, a_2 with relation

$$a_2 a_1 a_2^{-1} = a_1^2$$

Observe that the cyclic subgroups generated by a_1 and a_2 respectively are free. The amalgamated free product of G_1 and G_2 over $\langle a_1 \rangle$ is generated by a_0, a_1, a_2 with relations

$$a_1 a_0 a_1^{-1} = a_0^2$$
$$a_2 a_1 a_2^{-1} = a_1^2$$

Moreover a_0 and a_2 generate a free group $\langle a_0, a_2 \rangle$ in $H_1 = G_1 *_H G_2$ (and a_1 generates a free group $\langle a_1 \rangle$).

Consider now the group H_2 generated by a_2, a_3, a_0 with relations

$$a_3 a_2 a_3^{-1} = a_2^2$$
$$a_0 a_3 a_0^{-1} = a_3^2$$

where a_0, a_2 generate a free group $\langle a_0, a_2 \rangle$ (and a_3 generates a free group $\langle a_3 \rangle$) Define

$$H = H_1 \ast_{\langle a_0, a_2 \rangle} H_2$$

and observe that H has genrators a_i and relations

$$a_{i+1}a_ia_{i+1}^{-1} = a_i^2$$

for $i \in \mathbb{Z}/4\mathbb{Z}$. Observe that a_1, a_3 generate a free group in H.

Define $[x, y] = x^{-1}y^{-1}xy$

Suppose that G is a finite group with length function ℓ_G . Say that ℓ is commutator contractive if

$$\ell\left([x,y]\right) \le 4\ell\left(x\right)\ell\left(y\right)$$

Observe that

$$d\left(\left[g,h\right],\left[g,k\right]\right) \le 4\ell\left(g\right)d\left(h,k\right)$$

Observe that if H is a normal subgroup of G then $\ell_{G/H}$ on G/H defined by

$$\ell_{G/H}(xH) = \min_{h \in H} \ell(xh)$$

is a length function on G/H which is commutator contractive if ℓ is. Moreover the quotient function is a contraction.

Define

- $\min \ell_G = \min \ell_G [G \setminus \{1\}]$
- G_{ε} the (necessarily normal) subgroup generated by $\{g \in G | \ell(g) \le \varepsilon\}$

• $gen(G) = \min \{\varepsilon > 0 | G_{gen(G)} = G\}$ (G is generated by elements of length at most gen(G))

Lemma 5 If $\min(\ell_G) < \frac{1}{4}$ then G is abelian.

Proof. Observe that if $\min(\ell_G) < \frac{1}{4}$ and $\ell(g) = \ell(h) = \min(\ell_G)$ then

 $\ell\left([g,h]\right) \le 4\ell\left(g\right)\ell\left(h\right) < \min\left(\ell_G\right)$

and hence [g,h] = 1. This shows that $G_{\min(\ell_G)}$ is abelian.

Suppose in the following that G is a finite group with commutator contractive length function.

Lemma 6 If $G_{\varepsilon} \subsetneq G$ then $\min(\ell_{G/G_{\varepsilon}}) > \varepsilon$

Proof. Suppose by contradiction that $\min(\ell_{G/G_{\varepsilon}}) \leq \varepsilon$. Pick a nonidentity elment hG_{ε} of G/G_{ε} such that $\ell_{G/G_{\varepsilon}}(hG_{\varepsilon}) \leq \varepsilon$. Thus for some $k \in G_{\varepsilon}$ one has $\ell(hk) \leq \varepsilon$ and hence $h = (hk) k^{-1} \in G_{\varepsilon}$ contradiction the fact that hG_{ε} is a nonidentity element of hG_{ε} .

Lemma 7 If $gen(G) > \varepsilon$ then

$$gen\left(G/G_{\varepsilon}\right) = gen\left(G\right)$$

Proof. Since the quotient map is length-reducing

$$gen(G/G_{\varepsilon}) \leq gen(G)$$

Observe that G/G_{ε} is generated by elements of length at most $gen(G/G_{\varepsilon})$. It follows that G is generated by elements of length at most max $\{\varepsilon, gen(G/G_{\varepsilon})\}$. This implies that

$$gen(G) \le \max \{\varepsilon, gen(G/G_{\varepsilon})\} \le gen(G)$$

Since $\varepsilon < gen(G)$ it follows that

$$gen(G) = \max \{\varepsilon, gen(G/G_{\varepsilon})\} = gen(G/G_{\varepsilon})$$

Observe that $gen(G_{\varepsilon}) \leq \varepsilon$. Moreover $\min(\ell_{G_{\varepsilon}}) = \min(\ell_G)$ if $\min(\ell_G) \leq \varepsilon$.

Lemma 8 If G is a group with commutator contractive length function and $a_i \in G$ for $i \in \mathbb{Z}/4\mathbb{Z}$ satisfy up to ε such that $4\varepsilon \leq \frac{3}{16}$ the system \mathcal{R} . Either $\ell(a_i) < 4\varepsilon$ for every $i \in \mathbb{Z}/4\mathbb{Z}$ or $\ell(a_i) \geq \frac{3}{16}$ for every i.

Proof. Suppose that $\ell(a_i) \ge 4\varepsilon$ for some *i* and wlog i = 0. Observe that since equation

$$[a_1, a_0] = a_0$$

is in \mathcal{R} and the a_i satisfy \mathcal{R} up to ε we have

$$\ell(a_0) - \varepsilon \le \ell([a_1, a_0]) \le 4\ell(a_0)\,\ell(a_1)$$

abd hence

$$\ell(a_1) \ge \frac{\ell(a_0) - \varepsilon}{4\ell(a_0)} \ge \frac{3}{16} \ge 4\varepsilon$$

The conclusion follows completing the cycle. \blacksquare

Lemma 9 Suppose that G is a finite group with commutator contractive length function and $a_i \in G$ for $i \in \mathbb{Z}/4\mathbb{Z}$ satisfy up to ε such that $33\varepsilon < \frac{3}{16}$ (i.e. $\varepsilon < \frac{1}{176}$) the system \mathcal{R} . Then $\ell(a_i) < 4\varepsilon$ for every $i \in \mathbb{Z}/4\mathbb{Z}$.

Proof. If $\min(\ell_G) \geq \varepsilon$ then the a_i satisfy \mathcal{R} exactly and hence $a_i = 1$ since the system \mathcal{R} has no nontrivial exact realization in a finite group. Suppose that $\min(\ell_G) < \varepsilon$. Assume by contradiction that $\ell(a_i) \geq 4\varepsilon$ for some *i*. Define n = |G|. Suppose wlog that $\min(\ell_G) < \varepsilon$ is maximal among all groups *G* of order at most *n* having elements a_i satisfying \mathcal{R} up to ε such that $\ell(a_i) \geq 4\varepsilon$ for some *i*. Assume first that $G_{\min(\ell_G)} \neq G$. Thus

$$\min\left(\ell_G / G_{\min(\ell_G)}\right) > \min\left(\ell_G\right)$$

Observe that the $a_i G_{\min(\ell_G)}$ in $G/G_{\min(\ell_G)}$ satisfy \mathcal{R} up to ε . By maximality of G one of the conditions must to be violated, and hence $\ell(a_i G_{\delta(G)}) < 4\varepsilon$ for every i. Thus there are $\tilde{a}_i \in G_{\min(\ell_G)}$ for every i such that

$$d\left(a_{i},\widetilde{a}_{i}\right) = \ell\left(a_{i}\widetilde{a}_{i}^{-1}\right) < 4\varepsilon$$

Obviously the same is true if $G_{\min(\ell_G)} = G$. Since $\min(\ell_G) \leq \varepsilon < \frac{1}{4}$ we know that $G_{\min(\ell_G)}$ is abelian. We have

$$d\left(\left[a_{i+1}, a_{i}\right], \left[a_{i+1}, \widetilde{a}_{i}\right]\right) \leq 4\ell\left(a_{i+1}\right) d\left(a_{i}, \widetilde{a}_{i}\right) \\ < 16\varepsilon \ell\left(a_{i+1}\right)$$

and

$$\ell\left([a_{i+1}, \widetilde{a}_i]\right) = d\left([\widetilde{a}_{i+1}, \widetilde{a}_i], [a_{i+1}, \widetilde{a}_i]\right)$$

$$\leq 4d\left(\widetilde{a}_{i+1}, a_{i+1}\right)\ell\left(\widetilde{a}_i\right)$$

$$< 16\varepsilon \ell\left(\widetilde{a}_i\right)$$

Therefore

$$\begin{array}{rcl} \ell\left(a_{i}\right) & \leq & \ell\left(\left[a_{i+1}, a_{i}\right]\right) + \varepsilon \\ & < & \ell\left(\left[a_{i+1}, \widetilde{a_{i}}\right]\right) + 16\varepsilon\ell\left(a_{i+1}\right) + \varepsilon \\ & < & \left(16\ell\left(\widetilde{a}_{i}\right) + 16\ell\left(a_{i+1}\right) + 1\right)\varepsilon \\ & \leq & 33\varepsilon \\ & < & \frac{3}{16} \end{array}$$

It follows from the previous lemma that $\ell(a_i) < 4\varepsilon$.

Suppose that a_i for $i \in \mathbb{Z}/4\mathbb{Z}$ belong to a finite group with commutator contractive length function. I claim that

$$\max_{i \in \mathbb{Z}/4\mathbb{Z}} d\left(a_{i}, 1\right) \leq 176 \max_{i \in \mathbb{Z}/4\mathbb{Z}} d\left(\left[a_{i+1}, a_{i}\right], a_{i}\right)$$

In fact this is clear if $\max_{i \in \mathbb{Z}/4\mathbb{Z}} d\left(\left[a_{i+1}, a_i\right], a_i\right) \geq \frac{1}{176}$. Suppose that $\max_{i \in \mathbb{Z}/4\mathbb{Z}} d\left(\left[a_{i+1}, a_i\right], a_i\right) < \frac{1}{176}$. It follows from the previous lemma that

$$\max_{i \in \mathbb{Z}/4\mathbb{Z}} d(a_i, 1) \le 4 \max_{i \in \mathbb{Z}/4\mathbb{Z}} d([a_{i+1}, a_i], a_i) \le 176 \max_{i \in \mathbb{Z}/4\mathbb{Z}} d([a_{i+1}, a_i], a_i)$$

Consider the metric formula φ defined by

$$\sup_{x_{0},x_{1},x_{2},x_{3}} \max\left\{ \max_{i \in \mathbb{Z}/4\mathbb{Z}} d\left(x_{i},1\right) - 176 \max_{i \in \mathbb{Z}/4\mathbb{Z}} d\left(\left[a_{i+1},a_{i}\right],a_{i}\right),0 \right\}$$

and observe that $\varphi^G = 0$ for every finite group G endwed with commutator contractive length function. On the other hand $\varphi^H = 1$ where H is the Higman group.