
1 Algebraic eigenvalues conjectures

1.1 Algebraic eigenvalues conjecture: the statement

Suppose that � is a (countable discrete) group. Considering the particular case
of the group algebra construction for the �eld C of complex numbers one obtains
the complex group algebra C� of formal �nite linear combinations

�11 + � � �+ �ll
where �i 2 C and i 2 �. The natural action of C� on the Hilbert space `2�
de�nes an inclusion of C� into B

�
`2�
�
. The group ring Z� is the subring of C�

of �nite linear combinations

n11 + � � �+ nll
where ni 2 Z and i 2 �. A conjecture due to Dodziuk, Linnell, Mathai,
Schick, and Yates known as algebraic eigenvalues conjectures asserts that the
eigenvalues of an element x 2 Z� are algebraic integeres. Recall that a complex
number is called an algebraic integer if it is the root of a monic polinomial
with integer coe¢ cients. This conjecture has been settled for so�c groups by
Andreas Thom in [3]. The proof involves the notion of ultraproduct of tracial
von Neumann algebras and can be naturally presented within the framework of
logic for metric structures.

1.2 Logic for tracial von Neumann algebras

In the context of tracial von Neumann algebras a term p (x1; : : : ; xn) in the
variables x1; : : : ; xn is a *-polynomial in x1; : : : ; xn, i.e. a polynomial in the
variables x1; : : : ; xn and x�1; : : : ; x

�
n. A basic formula is an expression of the

form
� (p (x1; : : : ; xn))

where p (x1; : : : ; xn) is a *-polynomial. General formulas can be obtained from
basic formulas composing with continuous complex valued complex functions or
taking the real part and then the sup or inf over norm bounded subsets of the
von Neumann algebra or of the scalars. More formally if '1; : : : ; 'm are fomulas
and f : Cn ! C is a continuous function then

f ('1; : : : ; 'm)

is a formula. Analogously if ' (x1; : : : ; xn; y) is a formula then

sup
kyk�1

Re (' (x1; : : : ; xn; y))

inf
kyk�1

Re (' (x1; : : : ; xn; y))

sup
j�j�1

Re (' (x1; : : : ; xn; �))

inf
j�j�1

Re (' (x1; : : : ; xn; �))
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are formulas. The interpretation of a formula in a tracial von Neumann algebra
is de�ned in the obvious way by recusion on the complexity. By de�nition
a sentence (i.e. a formula with no free variables) holds in a given tracial von
Neumann algebra if its evaluation is zero. For example

(� (x�x))
1
2

is a formula usually abbreviated by kxk2 whose interpretation in a tracial von
Neumann algebra (M; �) is the 2-norm onM associated with the trace � . Anal-
ogously

sup
kxk�1

sup
kyk�1

kx� yk2

is a sentence (i.e. a formula without free variables) that holds in a tracial von
Neumann algebra (M; �) i¤M is abelian. Analogously

sup
kxk�1

inf
j�j�1

kx� �k2

is a sentence which holds in (M; �) i¤M is one-dimensional (i.e. isomorphic to
C).
The notion of ultraproduct of a sequence (Mn; �n)n2N of tracial von Neu-

mann algebra has already been de�ned. The fact that ×os theorem on ultra-
products holds in this context can be seen as an indication that the notion of
formulas just introducts is the right one.

Theorem 1 (×os for tracial von Neumann algebras) Suppose that (Mn; �n)n2N
is a sequence of tracial von Neumann algebras, U is an ultra�lter over N, andQ
UMn is the ultraproduct of the sequence (Mn; �n)n2N. If ' is a sentence (i.e. a

formulas with no free variables) in the language of tracial von Neumann algebras,
then the evaluation of ' in

Q
UMn is the limit according to U of the sequence

of evaluations of ' in the structures Mn.More generally if ' (x1; : : : ; xk) is a
formula with free variables x1; : : : ; xl and a(1); : : : ; a(k) are elements of

Q
UMn

then
'
Q

U Mn

�
a(1); : : : ; a(k)

�
= lim

n!U
'Mn

�
a(1)n ; : : : ; a(k)n

�
where

�
a
(j)
n

�
n2N

is a representative sequence for a(j).

The notion of elementary property and axiomatizable class of tracial von
Neumann algebras are de�ned as in the case of length groups or rank rings. In
particular the previous examples shows that the property of being abelian and
the property of being one-dimensional are elementary. Exercise 5 shows that
the property of being a factor is elementary.
A sequence ('n (x1; : : : ; xk))n2N of formulas with paramters from a tracial

von Neumann algebra (M; �) is

� approximately realized in (M; �) if for every n 2 N there are b(1)n ; : : : ; b
(k)
n 2

M such that for i � m

'i

�
b(1)n ; : : : ; b(k)n

�
<
1

n
;
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� realized in (M; �) if there are b(1); : : : ; b(k) 2M such that for every i 2 N

'i

�
b(1)n ; : : : ; b(k)n

�
<
1

n
.

Exercise 2 If (Mn; �n)n2N is a sequence of von Neumann algebras and U is a
free ultra�lter over N, then the tracial ultraproduct

Q
UMn is countably satu-

rated. This means that any approximately realized sequence is realized.

Hint. For every n 2 N the set�
n 2 N

����8i � n, 'i �b(1;n); : : : ; b(k;n)� < 1

n

�
belongs to U . Use this fact to build sequences

�
b
(1)
n

�
n2N

; : : : ;
�
b
(k)
n

�
n2N

such

that
lim
n!U

'i

�
b(1)n ; : : : ; '

(k)
i

�
= 0

for every i 2 N.

Exercise 3 Deduce from Exercise 2 that the unit ball of
Q
UMn is complete

with respect to the 2-norm.

Hint. Suppose that (xn)n2N is a sequence in the unit ball of
Q
UMn which is

Cauchy with respect to the 2-norm. Consider the sequence of formulas

inf
kyk�1

max fkx1 � yk2 ; : : : ; kxn � ykg

and argue that it is approximately realized, and hence realized.
It is clear that

Q
UMn is a C*-algebra and � is a trace on

Q
UMn. Moreover

the unit ball of
Q
UMn is complete in 2-norm. This shows that

Q
UMn coincides

with the weak closure of its GNS representation and hence it is a von Neumann
algebra.

2 Dixmier averaging trick and elementarity of
factors

Recall that the center Z (M) of a von Neumann algebra M , i.e. the set of
elements that commute with any other elmenent of M , is a closed subalgebra
of M and hence it is itself a von Neumann algebra. A von Neumann algebra M
is called a factor if its center contains only the scalar multiples of the identity.
The unitary group U (M) of M is the mutliplicative group of unitary elements
of M , i.e. elements u satisfying uu� = u�u = 1.

Proposition 4 (Dixmier averaging trick) If x 2M then the closure of the
convex hull of the set

fuxu� ju 2 U (A)g
contains a central element.
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Proof. (as in Blackadar) Suppose x 2 Msa has norm 1. I claim that there are
u 2 U (M) and z 2 Z (M) such thatx+ uxu�2

� y
 � 3

4
kxk .

Suppose that p is the support projection of x+ and choose a central projection
z sucht hat

pz - (1� p) z
and

(1� p) (1� z) - p (1� z)
and partial isometries v; w such that

v�v = pz

and
vv� � (1� p) z

and
w�w = (1� p) (1� z)

and
ww� � p (1� z) .

Then

u = v + v� + w + w� + ((1� p) z � vv�) + (p (1� z)� ww�)

is unitary and

y =
1� 2z
4

works. Finish the proof by iteration.

Exercise 5 Suppose that M is a von Neumann algebra endowed with a faithful
trace � . Dixmier averaging theorem ([1], III.2.5.18.) asserts that for every
x 2 M the closure of the convex Use this fact together with the fact that a von
Neumann algebra is generated by its projections to prove that M is a factor if
and only if for every x 2M

ky � � (y)k2 � sup
y2M1

kxy � yxk2 .

Conclude that the property of being a factor is elementary.

Hint. If M is not a factor then a nontrivial projection p in Z (M) violates 5. If
M is a factor then 5 is a consequence of Dixmier averagin theorem.
A consequence of Exercise 5 and ×os theorem for ultraproducts is that an

ultraproduct of factors is itself a factor. The type classi�cation of factors asserts
that a factor endowed with a faithful normalized trace is either a II1 factor or
it is isomorphic to Mn for some n 2 N. Exercise 6 infers from this that the
property of being a II1 factor is elementary. In particular an ultraproduct of II1
factors is a II1 factor.
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Exercise 6 Fix an irrational number � 2 (0; 1). Using the type classi�cation
for (�nite) factors prove that a factor M is II1 if and only there is a projection
of trace r. Deduce that the property of being a II1 factor is elementary.

Hint. Recall that the trace in a II1 factor attains on projections all the values
between 0 and 1.

3 The complex group algebra of a so�c group

Suppose that � is a discrete group. The complex group algebra C� can be
endowed with a linear involutive map x 7! x� such that

(�)
�
= ��1.

Recall that the trace � on C� is de�ned by

�

 X


�

!
= �1� .

The weak closure L� of C� in B
�
`2�
�
is a von Neumann algebra containing

C� as a *-subalgebra. The trace of C� admits a unique extension to a faithful
normalized trace � on L�. Moreover C� is dense in the unit ball of L� with
respect to the 2-norm of L� de�ned by kxk2 = � (x�x).
In the rest of the section the matrix algebra Mn (C) of n� n matrices with

complex coe¢ cients is regarded as a tracial von Nemann algebra endowed with
the (unique) canonical normalized trace �n. If U is an ultra�lter over N thenQ
UMn (C) denotes here the ultraproduct of Mn (C) as tracial von Neumann

algebras. Observe that this is di¤erent from the ultraproduct of Mn (C) as
rank rings, for example. Denote by

Q
UMn (Z) the closed self-adjoint subalge-

bra of
Q
UMn (C) consisting of elements admitting representative sequences of

matrices with integer coe¢ cients. Recall that Un denotes the group of unitary
elements of Mn (C). If � is a permutation over n, then the associated permu-
tation matrix P� is a unitary element of Mn (C) such that � (P�) = 1 � ` (�).
This fact has been used in ... to prove that any so�c group is hyperlinear. An
analogous argument can be used to solve Exercise 7.

Exercise 7 Supppose that � is a so�c group and U is a nonprincipal ultra�lter
over N. Show that there is a trace preserving homomorphism of *-algebras from
C� to

Q
UMn (C) (ultraproduct as tracial von Neumann algebras) sending Z�

into
Q
UMn (Z). Infer that there is a trace preserving embedding of L� intoQ

UMn (C) sending Z� into
Q
UMn (Z).

Suppose thatM � B (H) is a von Neumann algebra, and x is an operator in
M . A complex number � is an eigenvalue for x if and only if Ker (x� �I) 6= f0g.
Considering the orthogonal projection p 2M on Ker (x� �I) shows that this is
equivalent to the existence of a nonzero projection p 2M such that (x� �) p =
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0. In particular if 	 : M ! N is an embedding of von Neumann algebra,
then x 2 M has the same eigenvalues as 	(x). This observation together
with exercise 7 allows one to conclude that in order to establish the algebraic
eigenvalues conjecture for so�c groups it is enough to show that the elements
of
Q
UMn (Z) have algebraic eigenvalues. This is shown in section ... using ×os

theorem on ultraproducts together with a characterization of algebraic integers
due to Thom.

4 Algebraic eigenvalues

Suppose in the following that � 2 C is not an algebraic integer.

Theorem 8 If " is a strictly positive real number and N is a natural number,
then there is a natural number M (N; ") such that for every monic polynomial p
with integer coe¢ cients such that all the zeroes of p have absolute value at most
N the proportion of zeroes of p at distance at most 1

M(N;") from � is at most ".

Corollary 9 For every positive real number " and every natural number N 2 N
there is a natural number M (N; ") such that for every �nite rank matrix with
integer coe¢ cients A of operator norm at most N there is a complex matrix B
of the same size of operator norm at most M (N; ") such that

kB (��A)� Ik2 � ".

Observe that M does not depend from the size of the matrix A.
Proof. Fix " > 0 and N 2 N. Suppose that M is obtained from " and N
applying Theorem 8. If A is a �nite rank matrix with integer coe¢ cients of norm
at most N , then the minimal polynomial pA of A is a monic polynomial with
integer coe¢ cients whose zeroes have all absolute value at most N . Moreover
since � is not an algebraic integer, pA does not have � as a root. In particular
� � A is an invertible matrix. Moreover by the choice of M the proportion of
zeroes of p at distance at least 1

M from � is at least 1 � ". This means that if
p is the projection on the eigenspace corresponding to these eigenvalues, then
� (p) > 1 � ". De�ne B = p (��A)�1. Observe that B has operator norm at
most M and

kB (��A)� 1k2 = k1� pk2 = � (1� p) � ".

Corollary 9 shows that elements of Mn (C) with integer coe¢ cients having
operator norm at most N satisfy the formula 'N;" (x) de�ned by

inf
kyk�M(N;")

max fky (�� x)� 1k2 � "; 0g

By ×os theorem on ultraproducts if x 2
Q
UMn (Z) and " > 0 then there is

y 2
Q
UMn (C) such that ky (�� x)� 1k2 � ". This implies that � is not an
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eigenvalue of x. In fact if p 2
Q
UMn (C) is a projection such that (x� �) p = 0

then

kpk2 � k(y (x� �)� 1) pk2 + ky (x� �) pk
� ky (x� �)� 1k2
� ".

Being this true for every " > 0, p = 0. This shows that � is not and eigenvalue
of x.
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