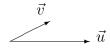
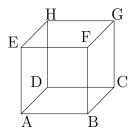
EXERCÍCIOS

Capítulo 1

- 1. Dados os vetores \vec{u} e \vec{v} da figura, mostrar num gráfico, um representante do vetor:
 - a) $\vec{u} \vec{v}$
 - b) $\vec{v} 2\vec{u}$
 - c) $\vec{u} 3\vec{v}$



- 2. Na figura abaixo, representa-se um cubo. Desenhe a flecha de origem H que representa
 - a) (E F) + (B D) + (C D);
 - b) -(G-B) + (B-A).

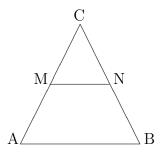


3. Sabendo que o ângulo entre os vetores \vec{u} e \vec{v} é de 60°, determinar o ângulo formado pelos vetores $-\vec{u}$ e $2\vec{v}$.

Capítulo 2: Vetores no \Re^2 e no \Re^3

(Operações com vetores)

- 4. Dados os vetores $\vec{u}=(4,1)$ e $\vec{v}=(2,6)$, calcular $\vec{u}+\vec{v}$ e $2\vec{u}$. Fazer a representação geométrica desses vetores.
- 5. Demonstre a propriedade $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (comutativa).
- 6. Dados os vetores $\vec{u} = (3, -1)$ e $\vec{v} = (-1, 2)$, determinar o vetor \vec{w} tal que $4(\vec{u} \vec{v}) + \vec{w} = \vec{u} 2\vec{w}$. (Vetor definido por dois pontos)
- 7. Dados os pontos A(2,-1), B(-1,3) e C(4,-2), determinar D(x,y) de modo que $\vec{CD}=3\vec{AB}$. (Decomposição no espaço)
- 8. Dados os vetores $\vec{u} = (-2, 3, -4)$ e $\vec{v} = (-4, 3, -8)$, verificar se são paralelos.
- 9. Determinar a e b de modo que sejam colineares os pontos A(3, a, b), B(1, 5, 1) e C(-3, 13, 7). (Outros)
- 10. Dar as expressões das coordenadas do ponto médio do segmento da reta de extremidades $A(x_1, y_1)$ e $B(x_2, y_2)$.
- 11. Na figura abaixo tem-se $CM = \frac{CA}{3}$, $CN = \frac{CB}{3}$. Prove que os segmentos MN e AB são paralelos, e que o comprimento do primeiro é $\frac{1}{3}$ do comprimento do segundo.



Capítulo 3: Produtos de vetores

(Distância entre dois pontos)

- 12. Dados os vetores $\vec{a}=2\vec{i}-3\vec{j}+5\vec{k}$ e $\vec{b}=\vec{i}-2\vec{j}$. Determine $\vec{a}\cdot\vec{b}$.
- 13. Dados os vetores $\vec{u}=(4,\alpha,-1)$ e $\vec{v}=(\alpha,2,3)$ e os pontos A(4,-1,2) e B(3,2,-1), determinar o valor de α tal que $\vec{AB}\cdot(\vec{u}+\vec{v})=5$.
- 14. Determine o módulo do vetor \vec{v} do exercício 13.
- 15. Determine o versor do vetor \vec{v} do exercício 13.
- 16. Sabendo que a distância entre os pontos A(-1,2,3) e B(1,-1,m) é 7, calcular m.
- 17. Determinar α para que o vetor $\vec{u} = (\frac{\sqrt{11}}{4}, -\frac{1}{2}, \alpha)$ seja unitário. (Propriedades do produto escalar)
- 18. Provar que $|\vec{u} \vec{v}|^2 = |\vec{u}|^2 2\vec{u} \cdot \vec{v} + |\vec{v}|^2$. (Ângulo de dois vetores)
- 19. Determinar os ângulos do triângulo de vértices $A(2,1,3),\,B(1,0,-1)$ e C(-1,2,1).
- 20. Provar que os pontos A(5,1,5), B(4,3,2) e C(-3,-2,1) são vértices de um triângulo retângulo. (Ângulos diretores e cossenos diretores)
- 21. Os ângulos diretores de um vetor podem ser de 45° , 60° e 90° ? (Projeção de um vetor em termos do produto escalar)
- 22. Qual o comprimento do vetor projeção de $\vec{u} = (3, 5, 2)$ sobre o eixo dos y?
- 23. Calcule m para que $\operatorname{proj}_{\vec{v}}\vec{u} = \frac{1}{2}\vec{v}$, sendo $\vec{u} = (m, 2, 0)$ e $\vec{v} = (2, m, 0)$ na base ortonormal. (Produto vetorial)
- 24. Se $\vec{u} = 2\vec{i} + 3\vec{j} + 4\vec{k}$ e $\vec{v} = -\vec{i} + \vec{k}$, determine $\vec{u} \times \vec{v}$ e $\vec{v} \times \vec{u}$. (Interpretação geométrica do módulo do produto vetorial)
- 25. Calcular a área do triângulo de vértices A(2,3,-1), B(3,1,-2) e C(-1,0,2).

- 26. Calcular a área do paralelogramo que tem um vértice no ponto A(3,2,1) e uma diagonal de extremidades B(1,1,-1) e C(0,1,2).
- 27. Mostre que se $3\vec{u} 2\vec{v} + 17\vec{w} = \vec{0}$ então $3\vec{u} \times \vec{v} = 17\vec{v} \times \vec{w}$. (Duplo produto vetorial)
- 28. Dado os vetores $\vec{u} = (2, -1, 1)$, $\vec{v} = (1, -1, 0)$ e $\vec{w} = (-1, 2, 2)$, calcular $\vec{u} \times (\vec{v} \times \vec{w})$ e $\vec{w} \times (\vec{u} \times \vec{v})$. (Propriedades do produto misto)
- 29. Verificar se são coplanares os pontos A(2,1,3), B(3,2,4), C(-1,-1,-1) e D(0,1,-1).
- 30. Determinar o valor de k para que os seguintes vetores sejam coplanares: $\vec{a}=(2,k,1)$, $\vec{b}=(1,2,k)$ e $\vec{c}=(3,0,-3)$. (Volume do tetraedro)
- 31. Os vetores $\vec{a}=(3,-1,-3),$ $\vec{b}=(-1,1,-4)$ e $\vec{c}=(m+1,m,-1)$ determinam um paralelepípedo de volume 42. Calcular m. (Outros)
- 32. Determinar $\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$, sabendo que $\vec{u} + \vec{v} + \vec{w} = \vec{0}$, $|\vec{u}| = 2$, $|\vec{v}| = 3$ e $|\vec{w}| = \sqrt{5}$.
- 33. O vetor \vec{v} é ortogonal aos vetores $\vec{a} = (1, 2, 0)$ e $\vec{b} = (1, 4, 3)$ e forma ângulo agudo com o eixo dos x. Determinar \vec{v} , sabendo que $|\vec{v}| = 14$.
- 34. Sendo \vec{u} e \vec{v} vetores do espaço, com $\vec{v} \neq \vec{0}$:
 - a) determinar o número real r tal que $\vec{u} r\vec{v}$ seja ortogonal a \vec{v} e
 - b) mostrar que $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v}) = 2\vec{v} \times \vec{u}$.