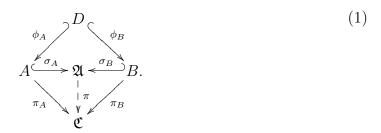
ON EMBEDDINGS OF FULL AMALGAMATED FREE PRODUCT C*-ALGEBRAS

SCOTT ARMSTRONG, KEN DYKEMA, RUY EXEL AND HANFENG LI

ABSTRACT. We examine the question of when the *-homomorphism $\lambda: A*_D B \to \widetilde{A}*_{\widetilde{D}} \widetilde{B}$ of full amalgamated free product C*-algebras, arising from compatible inclusions of C*-algebras $A\subseteq \widetilde{A}, B\subseteq \widetilde{B}$ and $D\subseteq \widetilde{D}$, is an embedding. Results giving sufficient conditions for λ to be injective, as well of classes of examples where λ fails to be injective, are obtained. As an application, we give necessary and sufficient condition for the full amalgamated free product of finite dimensional C*-algebras to be residually finite dimensional.

1. Introduction

Given C*-algebras A, B and D with injective *-homomorphisms $\phi_A: D \to A$ and $\phi_B: D \to B$, the corresponding full amalgamated free product C*-algebra (see [1] or [9, Chapter 5]) is the C*-algebra \mathfrak{A} , equipped with injective *-homomorphisms $\sigma_A: A \to \mathfrak{A}$ and $\sigma_B: B \to \mathfrak{A}$ such that $\sigma_A \circ \phi_A = \sigma_B \circ \phi_B$, such that \mathfrak{A} is generated by $\sigma_A(A) \cup \sigma_B(B)$ and satisfying the universal property that whenever \mathfrak{C} is a C*-algebra and $\pi_A: A \to \mathfrak{C}$ and $\pi_B: B \to \mathfrak{C}$ are *-homomorphisms satisfying $\pi_A \circ \phi_A = \pi_B \circ \phi_B$, there is a *-homomorphism $\pi: \mathfrak{A} \to \mathfrak{C}$ such that $\pi \circ \sigma_A = \pi_A$ and $\pi \circ \sigma_B = \pi_B$. This situation is illustrated by the following commuting diagram:



The full amalgamated free product C*-algebra \mathfrak{A} is commonly denoted by $A *_D B$, although this notation hides the dependence of \mathfrak{A} on the embeddings ϕ_A and ϕ_B .

Date: 17 March, 2003.

The first author was supported in part by an REU stipend from the NSF. The second author was supported in part by NSF grant DMS-0070558. The third author was supported in part by CNPq grant 303968/85-0. The fourth author was supported jointly by the Mathematics Department of the University of Toronto and NSERC Grant 8864-02 of George A. Elliott.

Question 1.1. Let D, A, B, \widetilde{D} , \widetilde{A} and \widetilde{B} be C^* -algebras and suppose there are injective *-homomorphisms making the following diagram commute:

$$\widetilde{A} \stackrel{\phi_{\widetilde{A}}}{\longleftrightarrow} \widetilde{D} \stackrel{\phi_{\widetilde{B}}}{\longleftrightarrow} \widetilde{B}.$$

$$\lambda_{A} \downarrow \qquad \lambda_{D} \downarrow \qquad \lambda_{B} \downarrow \qquad \lambda_{B}$$

Let $A*_D B$ and $\widetilde{A}*_{\widetilde{D}}\widetilde{B}$ be the corresponding full amalgamated free product C^* -algebras and let $\lambda: A*_D B \to \widetilde{A}*_{\widetilde{D}}\widetilde{B}$ be the *-homomorphism arising from λ_A and λ_B via the universal property. When is λ injective?

We prove in §2 that λ is injective when either (i) $D = \widetilde{D}$, (or more precisely, when the *-homomorphism λ_D is surjective), or (ii) there are conditional expectations $E_A : \widetilde{A} \to A$ and $E_B : \widetilde{B} \to B$ that send \widetilde{D} onto D and agree on \widetilde{D} . Injectivity in the case $D = \widetilde{D}$ was previously proved by G.K. Pedersen [10]. (Moreover, earlier results of F. Boca [4] imply that the map λ is injective when $D = \widetilde{D}$ and when there are conditional expectations

$$\widetilde{A} \stackrel{E_A^{\widetilde{A}}}{\to} A \stackrel{E_D^A}{\to} D \stackrel{E_D^B}{\leftarrow} B \stackrel{E_B^{\widetilde{B}}}{\leftarrow} \widetilde{B};$$

an argument for the case $D = \widetilde{D} = \mathbf{C}$, which uses Boca's results, is outlined in [3, 4.7].) However, we include our proof because it is different from that found in [10] and because it contains the main idea of our proof of injectivity in case (ii). In §3, we consider some general conditions and give some concrete examples when λ fails to be injective. Finally, in §4, we apply this embedding result to extend a result from [5] about residual finite dimensionality of full amalgamated free products of finite dimensional C*-algebras.

2. Embeddings of full free products

The following result is of course well known. We include a proof for completeness.

Lemma 2.1. Let A be a C^* -subalgebra of a C^* -algebra \widetilde{A} and let $\pi: A \to B(\mathcal{H})$ be a *-representation. Then there is a Hilbert space \mathcal{K} and a *-representation $\widetilde{\pi}: \widetilde{A} \to B(\mathcal{H} \oplus \mathcal{K})$ such that

$$\tilde{\pi}(a)(h \oplus 0) = (\pi(a)h) \oplus 0, \qquad (a \in A, h \in \mathcal{H}).$$
 (2)

Proof. Since in general π is a direct sum of cyclic representations, we may without loss of generality assume π is a cyclic representation with cyclic vector ξ . Let ϕ be the vector state $\phi(\cdot) = \langle \pi(\cdot)\xi, \xi \rangle$ of A. Then \mathcal{H} is identified with $L^2(A, \phi)$ and π is the associated GNS representation. Let $\tilde{\phi}$ be an extension of ϕ to a state of \tilde{A} and let $\tilde{\mathcal{H}} = L^2(\tilde{A}, \tilde{\phi})$. Then the inclusion $A \hookrightarrow \tilde{A}$ gives rise to an isometry $\mathcal{H} \to \tilde{\mathcal{H}}$, and we may thus write $\tilde{\mathcal{H}} = \mathcal{H} \oplus \mathcal{K}$ for a Hilbert space \mathcal{K} . If $\tilde{\pi} : \tilde{A} \to B(\mathcal{H} \oplus \mathcal{K})$ is the GNS representation associated to $\tilde{\phi}$, then (2) holds.

The following result was first proved by G.K. Pedersen [10, Thm. 4.2]. We offer a new proof, which is perhaps more elementary. This proof contains essentially the same idea as our proof of Proposition 2.4 below.

Proposition 2.2. Let

$$\widetilde{A} \supset A \supset D \subset B \subset \widetilde{B}$$

be inclusions of C^* -algebras and let $A*_DB$ and $\widetilde{A}*_D\widetilde{B}$ be the corresponding full amalgamated free product C^* -algebras. Let $\lambda: A*_DB \to \widetilde{A}*_D\widetilde{B}$ be the *-homomorphism arising via the universal property from the inclusions $A \hookrightarrow \widetilde{A}$ and $B \hookrightarrow \widetilde{B}$. Then λ is injective.

Proof. Let $\pi: A*_D B \to B(\mathcal{H})$ be a faithful *-homomorphism. We will find a Hilbert space \mathcal{K} and a *-homomorphism $\tilde{\pi}: \widetilde{A}*_D \widetilde{B} \to B(\mathcal{H} \oplus \mathcal{K})$ such that

$$\tilde{\pi}(\lambda(x))(h \oplus 0) = (\pi(x)h) \oplus 0, \qquad (x \in A *_D B, h \in \mathcal{H}).$$
 (3)

This will imply λ is injective.

Let $\pi_A: A \to B(\mathcal{H})$ and $\pi_B: B \to B(\mathcal{H})$ be the *-representations obtained by composing π with the inclusions $A \hookrightarrow A *_D B$ and $B \hookrightarrow A *_D B$. Let

$$\sigma_{A,0}: \widetilde{A} \to B(\mathfrak{H} \oplus \mathfrak{K}_{A,0}),$$

 $\sigma_{B,0}: \widetilde{B} \to B(\mathfrak{H} \oplus \mathfrak{K}_{B,0})$

be *-representations obtained from Lemma 2.1 such that

$$\sigma_{A,0}(a)(h \oplus 0) = (\pi_A(a)h) \oplus 0, \qquad (a \in A, h \in \mathcal{H}),$$

and similarly with A replaced by B. Note that $0 \oplus \mathcal{K}_{A,0}$ is reducing for $\sigma_{A,0}(D)$. Using Lemma 2.1, we find Hilbert spaces $\mathcal{K}_{B,1}$ and $\mathcal{K}_{A,1}$ and *-representations

$$\sigma_{B,1}: \widetilde{B} \to B(\mathfrak{K}_{A,0} \oplus \mathfrak{K}_{B,1})$$

$$\sigma_{A,1}: \widetilde{A} \to B(\mathfrak{K}_{B,0} \oplus \mathfrak{K}_{A,1})$$

such that

$$\sigma_{B,1}(d)(k \oplus 0) = \sigma_{A,0}(d)(0 \oplus k), \qquad (d \in D, k \in \mathcal{K}_{A,0}),
\sigma_{A,1}(d)(k \oplus 0) = \sigma_{B,0}(d)(0 \oplus k), \qquad (d \in D, k \in \mathcal{K}_{B,0}).$$

Proceeding recursively, for every integer $n \ge 2$ we find *-representations

$$\sigma_{B,n}: \widetilde{B} \to B(\mathfrak{K}_{A,n-1} \oplus \mathfrak{K}_{B,n}),$$

 $\sigma_{A,n}: \widetilde{A} \to B(\mathfrak{K}_{B,n-1} \oplus \mathfrak{K}_{A,n})$

such that

$$\sigma_{B,n}(d)(k \oplus 0) = \sigma_{A,n-1}(d)(0 \oplus k), \qquad (d \in D, k \in \mathcal{K}_{A,n-1}),$$

$$\sigma_{A,n}(d)(k \oplus 0) = \sigma_{B,n-1}(d)(0 \oplus k), \qquad (d \in D, k \in \mathcal{K}_{B,n-1}).$$

We now define the Hilbert spaces

$$\widetilde{\mathcal{H}}_{A} = \underbrace{\widetilde{\mathcal{H}} \oplus \mathcal{K}_{A,0}}_{\sigma_{B,0}} \oplus \underbrace{\widetilde{\mathcal{K}}_{B,0} \oplus \mathcal{K}_{A,1}}_{\sigma_{B,1}} \oplus \underbrace{\widetilde{\mathcal{K}}_{B,1} \oplus \mathcal{K}_{A,2}}_{\sigma_{B,2}} \oplus \cdots,$$

$$\widetilde{\mathcal{H}}_{B} = \underbrace{\mathcal{H}} \oplus \underbrace{\mathcal{K}_{B,0}}_{\sigma_{B,0}} \oplus \underbrace{\mathcal{K}_{A,0} \oplus \mathcal{K}_{B,1}}_{\sigma_{B,1}} \oplus \underbrace{\mathcal{K}_{A,1} \oplus \mathcal{K}_{B,2}}_{\sigma_{B,2}} \oplus \cdots,$$

$$(4)$$

where the brackets indicate where the constructed representations act, and we let $\sigma_{\widetilde{A}}: \widetilde{A} \to B(\widetilde{\mathcal{H}}_A)$ and $\sigma_{\widetilde{B}}: \widetilde{B} \to B(\widetilde{\mathcal{H}}_B)$ be the *-representations

$$\sigma_{\widetilde{A}} = \sigma_{A,0} \oplus \sigma_{A,1} \oplus \sigma_{A,2} \oplus \cdots,$$

$$\sigma_{\widetilde{B}} = \sigma_{B,0} \oplus \sigma_{B,1} \oplus \sigma_{B,2} \oplus \cdots,$$

where the summands act as indicated by brackets in (4). Consider the unitary $U: \widetilde{\mathcal{H}}_A \to \widetilde{\mathcal{H}}_B$ mapping the summands in $\widetilde{\mathcal{H}}_A$ identically to the corresponding summands in $\widetilde{\mathcal{H}}_B$ as indicated by the arrows below:

$$\widetilde{\mathcal{H}}_{A} = \mathcal{H} \oplus \mathcal{K}_{A,0} \oplus \mathcal{K}_{B,0} \oplus \mathcal{K}_{A,1} \oplus \mathcal{K}_{B,1} \oplus \mathcal{K}_{A,2} \oplus \cdots$$

$$v \Big| \Big| \Big| \Big| \widehat{\mathcal{H}}_{B} = \mathcal{H} \oplus \mathcal{K}_{B,0} \oplus \mathcal{K}_{A,0} \oplus \mathcal{K}_{B,1} \oplus \mathcal{K}_{A,1} \oplus \mathcal{K}_{B,2} \oplus \cdots$$

Let $\mathcal{K} = \mathcal{K}_{A,0} \oplus \mathcal{K}_{B,0} \oplus \mathcal{K}_{A,1} \oplus \mathcal{K}_{B,1} \oplus \cdots$ and identify $\mathcal{H} \oplus \mathcal{K}$ with $\widetilde{\mathcal{H}}_A$. Then we have the *-representations $\tilde{\pi}_{\widetilde{A}} = \sigma_{\widetilde{A}} : \widetilde{A} \to B(\mathcal{H} \oplus \mathcal{K})$ and $\tilde{\pi}_{\widetilde{B}} : \widetilde{B} \to B(\mathcal{H} \oplus \mathcal{K})$, the latter defined by $\tilde{\pi}_{\widetilde{B}}(\cdot) = U^*\sigma_{\widetilde{B}}(\cdot)U$. By construction, the restrictions of $\tilde{\pi}_{\widetilde{A}}$ and $\tilde{\pi}_{\widetilde{B}}$ to D agree, and we have

$$\tilde{\pi}_{\widetilde{A}}(a)(h \oplus 0) = (\pi_A(a)h) \oplus 0, \qquad (a \in A, h \in \mathcal{H}),$$

$$\tilde{\pi}_{\widetilde{B}}(b)(h \oplus 0) = (\pi_B(b)h) \oplus 0, \qquad (b \in B, h \in \mathcal{H}).$$

Letting $\tilde{\pi}: \widetilde{A} *_D \widetilde{B} \to B(\mathcal{H} \oplus \mathcal{K})$ be the *-homomorphism obtained from $\tilde{\pi}_{\widetilde{A}}$ and $\tilde{\pi}_{\widetilde{B}}$ via the universal property, we have that (3) holds.

For a C*-algebra A, unital or not, let A^u denote the unitization of A. Thus, as a vector space, $A^u = A \oplus \mathbf{C}$ with multiplication defined by $(a, \mu) \cdot (a', \mu') = (aa' + \mu a + \mu' a, \mu \mu')$. We identify A with the ideal $A \oplus 0$ of A^u , which has codimension 1.

Lemma 2.3. Let $A \supseteq D \subseteq B$ be inclusions of C^* -algebras. Consider the unitizations and corresponding inclusions

$$A^{u} \longleftrightarrow D^{u} \longleftrightarrow B^{u}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \longleftrightarrow D \longleftrightarrow B$$

Let $\lambda: A *_D B \to A^u *_{D^u} B^u$ be the resulting *-homomorphism between full amalgamated free products. Then there is an isomorphism $\pi: A^u *_{D^u} B^u \to (A *_D B)^u$ such

that $\pi \circ \lambda : A *_D B \to (A *_D B)^u$ is the canonical embedding arising in the definition of the unitization.

Proof. Since any *-representations of A and B that agree on D extend to *-representations of A^u and B^u that agree on D^u , the *-homomorphism λ is injective. Let $e \in A^u *_{D^u} B^u$ be the unit of A^u , which is of course identified with the units of B^u and D^u . Clearly, $A^u *_{D^u} B^u$ is generated by the image of λ together with e. One easily sees

$$(\lambda(x) + \mu e)(\lambda(x') + \mu' e) = \lambda(xx') + \mu\lambda(x') + \mu'\lambda(x) + \mu\mu' e.$$

Moreover, if $\rho: A^u *_{D^u} B^u \to \mathbf{C}$ is the *-homomorphism arising from the unital *-homomorphisms $A^u \to \mathbf{C}$ and $B^u \to \mathbf{C}$, then $\rho(e) = 1$ and $\lambda(A *_D B) \subseteq \ker \rho$. Hence $\lambda(A *_D B)$ has codimension 1 in $A^u *_{D^u} B^u$. Now π can be defined by $\pi(\lambda(x) + \mu e) = (x, \mu)$.

Proposition 2.4. Suppose

$$\widetilde{A} \longleftrightarrow \widetilde{D} \longleftrightarrow \widetilde{B}
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
A \longleftrightarrow D \longleftrightarrow B$$
(5)

is a commuting diagram of inclusions of C^* -algebras. Let $\lambda: A*_D B \to \widetilde{A}*_{\widetilde{D}} \widetilde{B}$ be the resulting *-homomorphism of full free product C^* -algebras. Suppose there are conditional expectations $E_A: \widetilde{A} \to A$, $E_D: \widetilde{D} \to D$ and $E_B: \widetilde{B} \to B$ onto A, D and B, respectively, such that the diagram

$$\widetilde{A} \longleftrightarrow \widetilde{D} \hookrightarrow \widetilde{B}
\downarrow^{E_A} \qquad \downarrow^{E_D} \qquad \downarrow^{E_B}
A \longleftrightarrow D \hookrightarrow B$$
(6)

commutes. Then λ is injective.

Proof. By appealing to Lemma 2.3, we may without loss of generality assume all the algebras and *-homomorphisms in (5) are unital. Let $\pi: A *_D B \to B(\mathcal{H})$ be a faithful, unital *-representation. As in the proof of Proposition 2.2, in order to show λ is injective, we will find a Hilbert space \mathcal{K} and a *-homomorphism $\tilde{\pi}: \tilde{A}*_{\tilde{D}}\tilde{B} \to B(\mathcal{H} \oplus \mathcal{K})$ such that

$$\tilde{\pi}(\lambda(x))(h \oplus 0) = (\pi(x)h) \oplus 0, \qquad (x \in A *_D B, h \in \mathcal{H}).$$
 (7)

Let $\pi_A: A \to B(\mathcal{H})$ and $\pi_B: B \to B(\mathcal{H})$ be the *-representations obtained by composing π with the inclusions $A \hookrightarrow A *_D B$ and $B \hookrightarrow A *_D B$, and let $\pi_D: D \to B(\mathcal{H})$ be their common restriction to D. Consider the canonical left action of \widetilde{D} on the right Hilbert D-module $L^2(\widetilde{D}, E_D)$, which is obtained from \widetilde{D} by separation and completion with respect to the D-valued inner product $\langle \widetilde{d}_1, \widetilde{d}_2 \rangle = E_D(\widetilde{d}_1^*\widetilde{d}_2)$. Consider the Hilbert space $L^2(\widetilde{D}, E_D) \otimes_D \mathcal{H}$, where the left action of D on \mathcal{H} is via π_D . Since π_D is unital, \mathcal{H} embeds as a subspace, and we can write

$$L^{2}(\widetilde{D}, E_{D}) \otimes_{D} \mathcal{H} = \mathcal{H} \oplus \mathcal{K}_{D}.$$
(8)

Consider the left action of \widetilde{D} on the Hilbert space $\mathcal{H} \oplus \mathcal{K}_D$. The subspace \mathcal{H} is reducing for the restriction of σ_D to D, and we have $\sigma_D(d)(h \oplus 0) = (\pi_D(d)h) \oplus 0$ for every $d \in D$ and $h \in \mathcal{H}$.

In a similar way, consider the Hilbert spaces

$$L^2(\widetilde{A}, E_A) \otimes_A \mathcal{H}, \qquad L^2(\widetilde{B}, E_B) \otimes_B \mathcal{H}$$
 (9)

and the associated left actions $\sigma_{A,0}$ of \widetilde{A} , respectively $\sigma_{B,0}$ of \widetilde{B} . As the diagram (6) commutes, the Hilbert space (8) embeds canonically as a subspace of both spaces (9). We may thus write

$$L^{2}(\widetilde{A}, E_{A}) \otimes_{A} \mathcal{H} = \mathcal{H} \oplus \mathcal{K}_{D} \oplus \mathcal{K}_{A,0}$$

$$L^{2}(\widetilde{B}, E_{B}) \otimes_{B} \mathcal{H} = \mathcal{H} \oplus \mathcal{K}_{D} \oplus \mathcal{K}_{B,0},$$

the subspace $\mathcal{H} \oplus \mathcal{K}_D \oplus 0$ is reducing for the restrictions of $\sigma_{A,0}$ and $\sigma_{B,0}$ to \widetilde{D} , and we have $\sigma_{A,0}(\widetilde{d})(\eta \oplus 0) = (\sigma_D(\widetilde{d})\eta) \oplus 0 = \sigma_{B,0}(\widetilde{d})(\eta \oplus 0)$ for every $\widetilde{d} \in \widetilde{D}$ and $\eta \in \mathcal{H} \oplus \mathcal{K}_D$. Moreover, $\mathcal{H} \oplus 0 \oplus 0$ is reducing for the restrictions of $\sigma_{A,0}$ to A and $\sigma_{B,0}$ to B, and we have

$$\sigma_{A,0}(a)(h \oplus 0 \oplus 0) = (\pi_A(a)h) \oplus 0 \oplus 0 \qquad (a \in A, h \in \mathcal{H})$$

$$\sigma_{B,0}(b)(h \oplus 0 \oplus 0) = (\pi_B(b)h) \oplus 0 \oplus 0 \qquad (b \in B, h \in \mathcal{H}).$$

Let $\sigma_{A,0,\widetilde{D}}$ denote the action of \widetilde{D} on $\mathcal{K}_{A,0}$ obtained by restricting $\sigma_{A,0}$ to \widetilde{D} and compressing, and similarly for $\sigma_{B,0,\widetilde{D}}$.

We now proceed recursively as in the proof of Proposition 2.2. If Hilbert spaces $\mathcal{K}_{A,n-1}$ and $\mathcal{K}_{B,n-1}$ have been constructed with actions $\sigma_{A,n-1,\widetilde{D}}$ and $\sigma_{B,n-1,\widetilde{D}}$, respectively, of \widetilde{D} , use Lemma 2.1 to construct Hilbert spaces $\mathcal{K}_{B,n}$ and $\mathcal{K}_{A,n}$ and *-homomorphisms

$$\sigma_{B,n}: \widetilde{B} \to B(\mathfrak{K}_{A,n-1} \oplus \mathfrak{K}_{B,n})$$

 $\sigma_{A,n}: \widetilde{A} \to B(\mathfrak{K}_{B,n-1} \oplus \mathfrak{K}_{A,n}),$

such that

$$\sigma_{B,n}(\tilde{d})(k \oplus 0) = (\sigma_{A,n-1,\tilde{D}}(\tilde{d})k) \oplus 0 \qquad (\tilde{d} \in \tilde{D}, k \in \mathcal{K}_{A,n-1})$$

$$\sigma_{A,n}(\tilde{d})(k \oplus 0) = (\sigma_{B,n-1,\tilde{D}}(\tilde{d})k) \oplus 0 \qquad (\tilde{d} \in \tilde{D}, k \in \mathcal{K}_{B,n-1}).$$

Then let $\sigma_{B,n,\widetilde{D}}$ be the action of \widetilde{D} on $\mathcal{K}_{B,n}$ obtained from the restriction of $\sigma_{B,n}$ to \widetilde{D} by compressing, and similarly define the action $\sigma_{A,n,\widetilde{D}}$ of \widetilde{D} on $\mathcal{K}_{A,n}$.

We may now define the Hilbert spaces

$$\widetilde{\mathcal{H}}_{A} = \underbrace{\widetilde{\mathcal{H}} \oplus \mathcal{K}_{D} \oplus \mathcal{K}_{A,0}}_{\sigma_{D}} \oplus \underbrace{\widetilde{\mathcal{K}}_{B,0} \oplus \mathcal{K}_{A,1}}_{\sigma_{A,1}} \oplus \underbrace{\widetilde{\mathcal{K}}_{B,1} \oplus \mathcal{K}_{A,2}}_{\sigma_{B,1}} \oplus \cdots ,$$

$$\widetilde{\mathcal{H}}_{B} = \underbrace{\mathcal{H}} \oplus \underbrace{\mathcal{K}_{D}}_{\sigma_{D}} \oplus \underbrace{\mathcal{K}_{B,0}}_{\sigma_{B,0}} \oplus \underbrace{\mathcal{K}_{A,0} \oplus \mathcal{K}_{B,1}}_{\sigma_{B,1}} \oplus \underbrace{\mathcal{K}_{A,1} \oplus \mathcal{K}_{B,2}}_{\sigma_{B,2}} \oplus \cdots ,$$

$$(10)$$

where the brackets indicate where the constructed representations act. We let $\sigma_{\widetilde{A}}$: $\widetilde{A} \to B(\widetilde{\mathcal{H}}_A)$ and $\sigma_{\widetilde{B}} : \widetilde{B} \to B(\widetilde{\mathcal{H}}_B)$ be the *-representations

$$\sigma_{\widetilde{A}} = \sigma_{A,0} \oplus \sigma_{A,1} \oplus \sigma_{A,2} \oplus \cdots ,$$

$$\sigma_{\widetilde{B}} = \sigma_{B,0} \oplus \sigma_{B,1} \oplus \sigma_{B,2} \oplus \cdots ,$$

where the summands act as indicated by brackets in (10). Consider the unitary $U: \widetilde{\mathcal{H}}_A \to \widetilde{\mathcal{H}}_B$ mapping the summands in $\widetilde{\mathcal{H}}_A$ identically to the corresponding summands in $\widetilde{\mathcal{H}}_B$ as indicated by the arrows below:

Let $\mathcal{K} = \mathcal{K}_D \oplus \mathcal{K}_{A,0} \oplus \mathcal{K}_{B,0} \oplus \mathcal{K}_{A,1} \oplus \mathcal{K}_{B,1} \oplus \cdots$ and identify $\mathcal{H} \oplus \mathcal{K}$ with $\widetilde{\mathcal{H}}_A$. Then we have the *-representations $\widetilde{\pi}_{\widetilde{A}} = \sigma_{\widetilde{A}} : \widetilde{A} \to B(\mathcal{H} \oplus \mathcal{K})$ and $\widetilde{\pi}_{\widetilde{B}} : \widetilde{B} \to B(\mathcal{H} \oplus \mathcal{K})$, the latter defined by $\widetilde{\pi}_{\widetilde{B}}(\cdot) = U^*\sigma_{\widetilde{B}}(\cdot)U$. By construction, the restrictions of $\widetilde{\pi}_{\widetilde{A}}$ and $\widetilde{\pi}_{\widetilde{B}}$ to \widetilde{D} agree, and we have

$$\tilde{\pi}_{\widetilde{A}}(a)(h \oplus 0) = (\pi_A(a)h) \oplus 0 \qquad (a \in A, h \in \mathcal{H})$$

$$\tilde{\pi}_{\widetilde{B}}(b)(h \oplus 0) = (\pi_B(b)h) \oplus 0 \qquad (b \in B, h \in \mathcal{H}).$$

Letting $\tilde{\pi}: \widetilde{A} *_{\widetilde{D}} \widetilde{B} \to B(\mathcal{H} \oplus \mathcal{K})$ be the *-homomorphism obtained from $\tilde{\pi}_{\widetilde{A}}$ and $\tilde{\pi}_{\widetilde{B}}$ via the universal property, we have that (7) holds.

3. Examples of non-embedding

In this section, we give some examples when the map λ of Question 1.1 fails to be injective. (In contrast, it is known [2] that in the more stringent situation of reduced amalgamated free products, the map analogous to λ is always injective.)

We begin with a trivial class of examples.

Examples 3.1. Let A and B be C^* -subalgebras of a C^* -algebra E with $A \nsubseteq B$ and $B \nsubseteq A$. Let $D = A \cap B$, $\widetilde{A} = E$ and $\widetilde{D} = \widetilde{B} = B$, equipped with the natural inclusions. Then the map $\lambda : A*_D B \to \widetilde{A}*_{\widetilde{D}} \widetilde{B} = E$ is injective if and only if $A*_D B$ is exactly the C^* -subalgebra of E generated by A and B. This doesn't hold in general. Notice that in these examples, $B \cap \widetilde{D} = B \supsetneq D$.

Proposition 3.2. Suppose

$$\widetilde{A} \longleftrightarrow \widetilde{D} \longleftrightarrow \widetilde{B}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \longleftrightarrow D \longleftrightarrow B$$

is a commuting diagram of inclusions of C*-algebras and let $\lambda: A*_D B \to \widetilde{A}*_{\widetilde{D}} \widetilde{B}$ be the resulting *-homomorphism of full free product C*-algebras. Suppose there are conditional expectations $E_D^A: A \to D$ and $E_D^B: B \to D$ with E_D^B faithful. Suppose there are $\widetilde{d} \in \widetilde{D}$, $a \in A$ and $b \in B$ satisfying $a\widetilde{d} \in A$, $\widetilde{d}b \in B$,

$$D(\tilde{d}b) \cap Db = \{0\} \tag{11}$$

$$E_D^A(\tilde{d}^*a^*ad)b \neq 0. \tag{12}$$

Then λ is not injective.

Proof. Letting

$$\sigma_{A}: A \hookrightarrow A *_{D} B, \qquad \sigma_{B}: B \hookrightarrow A *_{D} B,
\sigma_{\widetilde{A}}: \widetilde{A} \hookrightarrow \widetilde{A} *_{\widetilde{D}} \widetilde{B}, \qquad \sigma_{\widetilde{B}}: \widetilde{B} \hookrightarrow \widetilde{A} *_{\widetilde{D}} \widetilde{B} \tag{13}$$

be the embeddings as in (1), we have

$$\lambda(\sigma_A(a\tilde{d})\sigma_B(b)) = \sigma_{\widetilde{A}}(a\tilde{d})\sigma_{\widetilde{B}}(b) = \sigma_{\widetilde{A}}(a)\sigma_{\widetilde{B}}(\tilde{d}b) = \lambda(\sigma_A(a)\sigma_B(\tilde{d}b)).$$

Thus we need only show

$$\sigma_A(a\tilde{d})\sigma_B(b) \neq \sigma_A(a)\sigma_B(\tilde{d}b).$$
 (14)

We consider the reduced amalgamated free product of C*-algebras (see [11] or [12]),

$$(A *_D^{\text{red}} B, E_D) = (A, E_D^A) *_D (B, E_D^B)$$

and the natural quotient *-homomorphism $A*_D B \to A*_D^{\mathrm{red}} B$. Let $L^2(A*_D^{\mathrm{red}} B, E_D)$ be the right Hilbert D-module obtained by separation and completion from $A*_D^{\mathrm{red}} B$ with respect to the D-valued inner product $\langle x,y\rangle = E_D(x^*y)$, and given $x\in A*_D^{\mathrm{red}} B$, let \hat{x} denote the corresponding element in $L^2(A*_D^{\mathrm{red}} B, E_D)$. Let $\mathcal{H}_A = L^2(A, E_D^A)$ and $\mathcal{H}_B = L^2(B, E_D^B)$ be similarly defined. Then in $L^2(A*_D^{\mathrm{red}} B, E_D)$, the closure of the subspace spanned by elements of the form $(ab)^{\hat{}}$ for $a\in A$ and $b\in B$ is isomorphic to the tensor product $\mathcal{H}_A\otimes_D\mathcal{H}_B$ of Hilbert D-modules. In order to show (14), it will suffice to show

$$(a\tilde{d})^{\hat{}} \otimes \hat{b} \neq \hat{a} \otimes (\tilde{d}b)^{\hat{}}$$

in $\mathcal{H}_A \otimes_D \mathcal{H}_B$. Let $\zeta_B \in \mathcal{H}_B$. Then

$$\langle (a\tilde{d})^{\hat{}} \otimes \zeta_B, (a\tilde{d})^{\hat{}} \otimes \hat{b} \rangle = \langle \zeta_B, (E_D^A(\tilde{d}^*a^*a\tilde{d})b)^{\hat{}} \rangle$$
(15)

$$\langle (a\tilde{d})^{\hat{}} \otimes \zeta_B, \hat{a} \otimes (\tilde{d}b)^{\hat{}} \rangle = \langle \zeta_B, (E_D^A(\tilde{d}^*a^*a)\tilde{d}b)^{\hat{}} \rangle.$$
 (16)

From assumptions (11) and (12), we obtain $E_D^A(\tilde{d}^*a^*a\tilde{d})b \neq E_D^A(\tilde{d}^*a^*a)\tilde{d}b$. Since E_D^B is faithful, there is $\zeta_B \in \mathcal{H}_B$ such that the right-hand-sides of (15) and (16) are not equal.

Remark 3.3. From the above proof, one sees that the hypotheses of Proposition 3.2 can be weakened as follows: Assumptions (11) and (12) can be dropped, and E_D^B need not be assumed faithful, but instead one must assume

$$E_D^B \left(b^* \left(E_D^A (\tilde{d}^* a^* a \tilde{d}) - E_D^A (\tilde{d}^* a^* a) \tilde{d} - \tilde{d}^* E_D^A (a^* a \tilde{d}) + \tilde{d}^* E_D^A (a^* a) \tilde{d} \right) b^* \right) \neq 0. \tag{17}$$

Note that the LHS of (17) is nothing other than

$$\langle (a\tilde{d})\hat{\otimes} \hat{b} - \hat{a} \otimes (\tilde{d}b)\hat{\otimes}, (a\tilde{d})\hat{\otimes} \hat{b} - \hat{a} \otimes (\tilde{d}b)\hat{\otimes} \rangle.$$

Corollary 3.4. Suppose

$$\widetilde{A} \longleftrightarrow \widetilde{D} \longleftrightarrow \widetilde{B}
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
A \longleftrightarrow D \longleftrightarrow B$$
(18)

is a commuting diagram of inclusions of C^* -algebras and let $\lambda: A*_D B \to \widetilde{A}*_{\widetilde{D}} \widetilde{B}$ be the resulting *-homomorphism of full free product C^* -algebras. Suppose one of the following holds:

- (i) D = 0
- (ii) $D = \mathbb{C}$, A and B are unital and the inclusions $D \hookrightarrow A$ and $D \hookrightarrow B$ are unital.

Suppose there are $\tilde{d} \in \widetilde{D}$, $a \in A$ and $b \in B$ such that $a\tilde{d} \in A \setminus \{0\}$, $\tilde{d}b \in B$ and $\tilde{d}b \notin Cb$. Then λ is not injective.

Proof. We can reduce to the case in which (ii) holds by application of Lemma 2.3. We may without loss of generality assume A and B are separable. Letting $E_D^A: A \to \mathbf{C}$ and $E_D^B: B \to \mathbf{C}$ be faithful states, we find the hypotheses of Proposition 3.2 are satisfied.

From this corollary, we have the following class of concrete examples, which shows that λ may be non–injective even if

$$B \cap \widetilde{D} = D = A \cap \widetilde{D}. \tag{19}$$

Example 3.5. Let \mathcal{H} be an infinite dimensional, separable Hilbert space. Inside $B(\mathcal{H})$, let $D = \mathbb{C}1$ and let $A = B = D + K(\mathcal{H})$, where $K(\mathcal{H})$ is the compact operators. Let $u \in B(\mathcal{H})$ be a unitary operator that does not belong to D and let $\widetilde{D} = C^*(u)$, $\widetilde{A} = \widetilde{B} = \widetilde{D} + K(\mathcal{H})$. Let $\lambda : A *_D B \to \widetilde{A} *_{\widetilde{D}} \widetilde{B}$ be the *-homomorphism arising from the inclusions (18). Then λ is not injective.

Proof. Take $\tilde{d} = u$ and $a \in K(\mathcal{H}) \setminus \{0\}$. Since $u \notin \mathbb{C}1$, there is $b \in K(\mathcal{H})$ such that $ub \notin \mathbb{C}b$. Now apply Corollary 3.4. One can choose u so that $C^*(u) \cap (\mathbb{C}1 + K(\mathcal{H})) = \mathbb{C}1$, in order to get (19).

Proposition 3.6. Suppose

$$\widetilde{A} \longleftrightarrow \widetilde{D} \longleftrightarrow \widetilde{B}$$

$$A \longleftrightarrow D \longleftrightarrow B$$
(20)

is a commuting diagram of inclusions of C^* -algebras and let $\lambda: A*_D B \to \widetilde{A}*_{\widetilde{D}} \widetilde{B}$ be the resulting *-homomorphism of full free product C^* -algebras. Suppose one of the following holds:

- (i) D = 0
- (ii) $D = \mathbb{C}$, A and B are unital and the inclusions $D \hookrightarrow A$ and $D \hookrightarrow B$ are unital.

Suppose there are $\tilde{d} \in \tilde{D}$, $a_1, a_2 \in A$ and $b \in B \setminus D$ such that $a_1\tilde{d}, \tilde{d}a_2 \in A$, $a_1\tilde{d} \notin \mathbf{C}$ and $\tilde{d}b = b\tilde{d}$. Then λ is not injective.

Proof. We can reduce to the case in which (ii) holds by application of Lemma 2.3. We use the same notation as in (13). We have

$$\lambda(\sigma_A(a_1\tilde{d})\sigma_B(b)\sigma_A(a_2)) = \sigma_{\tilde{A}}(a_1\tilde{d})\sigma_{\tilde{B}}(b)\sigma_{\tilde{A}}(a_2)$$
$$= \sigma_{\tilde{A}}(a_1)\sigma_{\tilde{B}}(b)\sigma_{\tilde{A}}(\tilde{d}a_2) = \lambda(\sigma_A(a_1)\sigma_B(b)\sigma_A(\tilde{d}a_2)),$$

and we must only show

$$\sigma_A(a_1\tilde{d})\sigma_B(b)\sigma_A(a_2) \neq \sigma_A(a_1)\sigma_B(b)\sigma_A(\tilde{d}a_2). \tag{21}$$

Without loss of generality, assume A and B are separable. Let $\phi_A : A \to \mathbb{C}$ and $\phi_B : B \to \mathbb{C}$ be faithful states. By adding a scalar multiple of the identity, if necessary, we may without loss of generality assume $\phi_B(b) = 0$. Let

$$(A *_{\mathbf{C}}^{\text{red}} B, \phi) = (A, \phi_A) *_{\mathbf{C}} (B, \phi_B)$$

be the reduced free product of C*-algebras. Using arguments and notation as in the proof of Proposition 3.2, the closure of the subspace of $L^2(A *_{\mathbf{C}}^{\mathrm{red}} B, \phi)$ spanned by elements of the form $(aba')^{\hat{}}$ for $a, a' \in A$ is isomorphic to $\mathcal{H}_A \otimes (\mathbf{C}\hat{b}) \otimes \mathcal{H}_A$. To show (21), it will suffice to show

$$(a_1\tilde{d})$$
 $\otimes \hat{b} \otimes \hat{a}_2 \neq \hat{a}_1 \otimes \hat{b} \otimes (\tilde{d}a_2)$

in $\mathcal{H}_A \otimes (\mathbf{C}\hat{b}) \otimes \mathcal{H}_A$. However, this follows from the assumptions.

From the above proposition, we get the following example, which requires only "bad" relations between A and \widetilde{D} , not between B and \widetilde{D} .

Example 3.7. Let D, \widetilde{D} , A and \widetilde{A} be as in Example 3.5. Let B be any unital C*-algebra of dimension greater than 1 and let $\widetilde{B} = B \otimes \widetilde{D}$, (for the unique C*-tensor norm). Then the *-homomorphism $\lambda : A *_D B \to \widetilde{A} *_{\widetilde{D}} \widetilde{B}$ arising from the inclusions (20) is not injective.

Remark 3.8. The problem with injectivity of λ in Examples 3.5 and 3.7 arises already at the algebraic level

$$A *_{D}^{\text{alg}} B \to \widetilde{A} *_{\widetilde{D}}^{\text{alg}} \widetilde{B}. \tag{22}$$

On the other hand, in Examples 3.1, we can arrange that the map between algebras (22) is injective, while λ fails to be injective, e.g. by taking E to be a reduced free product. However, we do not know of an example where λ fails to be injective and where the algebraic map (22) is injective, but where $A \cap \widetilde{D} = D = B \cap \widetilde{D}$.

4. An application to residual finite dimensionality

A C*-algebra is said to be residually finite dimensional (r.f.d.) if it has a separating family of finite dimensional *-representations. The first result linking full free products and residual finite dimensionality was M.-D. Choi's proof [6] that the full group C*-algebras of nonabelian free groups are r.f.d. In [7], Exel and Loring proved that the full free product of any two r.f.d. C*-algebras A and B with amalgamation over either the zero C*-algebra or over the scalar multiples of the identity (if A and B are unital) is r.f.d. In [5], N. Brown and Dykema proved that a full amalgamated free product of matrix algebras $M_k(\mathbf{C}) *_D M_\ell(\mathbf{C})$ over a unital subalgebra D is r.f.d. provided that the normalized traces on $M_k(\mathbf{C})$ and $M_\ell(\mathbf{C})$ restrict to the same trace on D. In this section, we observe that by applying Proposition 2.2, one obtains (as a corollary of the result from [5]) the analogous result for full amalgamated free products of finite dimensional algebras.

Lemma 4.1. Let $S = \{x \in \mathbb{R}^n \mid Ax = 0\}$, where A is an $m \times n$ matrix having only rational entries. Then vectors having only rational entries are dense in S.

Proof. By considering the reduced row–echelon form of A, we see that there is a basis for S consisting of rational vectors.

Theorem 4.2. Consider unital inclusions of C^* -algebras $A \supseteq D \subseteq B$ with A and B finite dimensional. Let $A *_D B$ be the corresponding full amalgamated free product. Then $A *_D B$ is residually finite dimensional if and only if there are faithful tracial states τ_A on A and τ_B on B whose restrictions to D agree.

Proof. Since every separable r.f.d. C*-algebra has a faithful tracial state, the necessity of the existence of τ_A and τ_B is clear.

Let us recall some well known facts about a unital inclusion $D \subseteq A$ of finite dimensional C*-algebras (see e.g. Chapter 2 of [8]). Let p_1, \ldots, p_m be the minimal central projections of A and q_1, \ldots, q_n the minimal central projections of D. Then the inclusion matrix Λ_D^A is a $m \times n$ integer matrix whose (i, j)th entry is rank $(q_j p_i A q_j)/\text{rank}(q_j D)$, where the rank of a matrix algebra $M_k(\mathbf{C})$ is k. To a trace τ on A, we associate the column vector s of length m whose ith entry is the trace of a minimal projection in $p_i A$. Then the restriction of τ to D has associated column vector $(\Lambda_D^A)^t s$, where the superscript t indicates transpose.

Thus, given $A \supseteq D \subseteq B$ as in the statement of the theorem, the existence of faithful tracial states τ_A and τ_B agreeing on D is equivalent to the existence of column vectors s_A and s_B , none of whose components are zero, such that $(\Lambda_D^A)^t s_A = (\Lambda_D^B)^t s_B$, i.e.

$$\left[\begin{array}{cc} (\Lambda_D^A)^t, & -(\Lambda_D^B)^t \end{array} \right] \left[\begin{array}{c} s_A \\ s_B \end{array} \right] = 0. \tag{23}$$

Supposing now that such traces τ_A and τ_B exist, by Lemma 4.1 there is a solution $\begin{bmatrix} s_A \\ s_B \end{bmatrix}$ to (23) whose entries are all strictly positive and rational. Therefore, the traces τ_A and τ_B agreeing on D can be chosen to take only rational values on minimal projections of A and, respectively, B. Hence there are unital inclusions into matrix algebras,

$$M_k(\mathbf{C}) \supseteq A \supseteq D \subseteq B \subseteq M_\ell(\mathbf{C}),$$

so that τ_A is the restriction of the tracial state on $M_k(\mathbf{C})$ to A and τ_B is the restriction of the tracial state on $M_\ell(\mathbf{C})$ to B. By Proposition 2.2, $A*_D B$ is a subalgebra of $M_k(\mathbf{C})*_D M_\ell(\mathbf{C})$. By Theorem 2.3 of [5], $M_k(\mathbf{C})*_D M_\ell(\mathbf{C})$ is r.f.d. Therefore, $A*_D B$ is r.f.d.

References

- [1] B. Blackadar, Weak expectations and nuclear C*-algebras, Indiana Univ. Math. J. 27 (1978), 1021-1026.
- [2] E. Blanchard and K. Dykema, Embeddings of reduced free products of operator algebras, Pacific J. Math. 199 (2001), 1-19.
- [3] D. Blecher and V. Paulsen, Explicit construction of universal operator algebras and applications to polynomial factorization, Proc. Amer. Math. Soc. 112 (1991), 839-850.
- [4] F. Boca, Free products of completely positive maps and spectral sets, J. Funct. Anal. 97 (1991), 251-263.
- [5] N.P. Brown and K. Dykema, Popa algebras in free group factors, preprint.
- [6] M.-D. Choi, The full C*-algebra of the free group on two generators, Pacific J. Math. 87 (1980), 41-48.
- [7] R. Exel and T. Loring, Finite-dimensional representations of free product C*-algebras, Internat. J. Math. 3 (1992), 469-476.
- [8] F.M. Goodman, P. de la Harpe and V.F.R. Jones, *Coxeter graphs and towers of algebras*, MSRI Publications, vol. 14, Springer-Verlag, New York, 1987.
- [9] T. Loring, Lifting solutions to perturbing problems in C*-algebras, Fields Institute Monographs vol. 8, American Mathematical Society, Providence, 1997.
- [10] G.K. Pedersen, Pullback and pushout constructions in C*-algebra theory, J. Funct. Anal. 167 (1999), 243-344.
- [11] D. Voiculescu, Symmetries of some reduced free product C^* -algebras, Operator Algebras and Their Connections with Topology and Ergodic Theory, Lecture Notes in Mathematics, Volume 1132, Springer-Verlag, 1985, 556–588.
- [12] D.V. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, CRM Monograph Series 1, American Mathematical Society, 1992.

SCOTT ARMSTRONG, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY CA 94720, USA

E-mail address: sarm@math.berkeley.edu

KEN DYKEMA, DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION TX 77843–3368, USA

E-mail address: Ken.Dykema@math.tamu.edu

RUY EXEL, DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE FEDERAL DE SANTA CATARINA, 88040-900 FLORIANOPOLIS SC, BRAZIL

E-mail address: exel@mtm.ufsc.br

Hanfeng Li, Department of Mathematics, University of Toronto, Toronto ON M5S 3G3, CANADA

E-mail address: hli@fields.toronto.edu