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Abstract. We examine the question of when the ∗–homomorphism λ : A∗D B →
Ã ∗ eD B̃ of full amalgamated free product C∗–algebras, arising from compatible
inclusions of C∗–algebras A ⊆ Ã, B ⊆ B̃ and D ⊆ D̃, is an embedding. Results
giving sufficient conditions for λ to be injective, as well of classes of examples
where λ fails to be injective, are obtained. As an application, we give necessary
and sufficient condition for the full amalgamated free product of finite dimensional
C∗–algebras to be residually finite dimensional.

1. Introduction

Given C∗–algebras A, B and D with injective ∗–homomorphisms φA : D → A and
φB : D → B, the corresponding full amalgamated free product C∗–algebra (see [1]
or [9, Chapter 5]) is the C∗–algebra A, equipped with injective ∗–homomorphisms
σA : A→ A and σB : B → A such that σA◦φA = σB ◦φB, such that A is generated by
σA(A)∪σB(B) and satisfying the universal property that whenever C is a C∗–algebra
and πA : A→ C and πB : B → C are ∗–homomorphisms satisfying πA ◦φA = πB ◦φB,
there is a ∗–homomorphism π : A→ C such that π ◦ σA = πA and π ◦ σB = πB. This
situation is illustrated by the following commuting diagram:
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The full amalgamated free product C∗–algebra A is commonly denoted by A ∗D B,
although this notation hides the dependence of A on the embeddings φA and φB.
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2 Full Free Products

Question 1.1. Let D, A, B, D̃, Ã and B̃ be C∗–algebras and suppose there are
injective ∗–homomorphisms making the following diagram commute:

Ã D̃?
_

φ eAoo � �
φ eB // B̃.

A
?�

λA

OO

D?
_φAoo ?�

λD

OO

� � φB // B
?�

λB

OO

Let A∗DB and Ã∗ eD B̃ be the corresponding full amalgamated free product C∗–algebras

and let λ : A ∗D B → Ã ∗ eD B̃ be the ∗–homomorphism arising from λA and λB via
the universal property. When is λ injective?

We prove in §2 that λ is injective when either (i) D = D̃, (or more precisely, when
the ∗–homomorphism λD is surjective), or (ii) there are conditional expectations

EA : Ã→ A and EB : B̃ → B that send D̃ onto D and agree on D̃. Injectivity in the

case D = D̃ was previously proved by G.K. Pedersen [10]. (Moreover, earlier results

of F. Boca [4] imply that the map λ is injective when D = D̃ and when there are
conditional expectations

Ã
E

eA
A→ A

EA
D→ D

EB
D← B

E
eB

B← B̃;

an argument for the case D = D̃ = C, which uses Boca’s results, is outlined in [3,
4.7].) However, we include our proof because it is different from that found in [10]
and because it contains the main idea of our proof of injectivity in case (ii). In §3,
we consider some general conditions and give some concrete examples when λ fails
to be injective. Finally, in §4, we apply this embedding result to extend a result
from [5] about residual finite dimensionality of full amalgamated free products of
finite dimensional C∗–algebras.

2. Embeddings of full free products

The following result is of course well known. We include a proof for completeness.

Lemma 2.1. Let A be a C∗–subalgebra of a C∗–algebra Ã and let π : A→ B(H) be

a ∗–representation. Then there is a Hilbert space K and a ∗–representation π̃ : Ã→
B(H ⊕K) such that

π̃(a)(h⊕ 0) = (π(a)h)⊕ 0, (a ∈ A, h ∈ H). (2)

Proof. Since in general π is a direct sum of cyclic representations, we may without
loss of generality assume π is a cyclic representation with cyclic vector ξ. Let φ be
the vector state φ(·) = 〈π(·)ξ, ξ〉 of A. Then H is identified with L2(A, φ) and π is

the associated GNS representation. Let φ̃ be an extension of φ to a state of Ã and

let H̃ = L2(Ã, φ̃). Then the inclusion A ↪→ Ã gives rise to an isometry H→ H̃, and

we may thus write H̃ = H ⊕K for a Hilbert space K. If π̃ : Ã → B(H ⊕K) is the

GNS representation associated to φ̃, then (2) holds. �



Armstrong, Dykema, Exel, Li 3

The following result was first proved by G.K. Pedersen [10, Thm. 4.2]. We offer
a new proof, which is perhaps more elementary. This proof contains essentially the
same idea as our proof of Proposition 2.4 below.

Proposition 2.2. Let

Ã ⊇ A ⊇ D ⊆ B ⊆ B̃

be inclusions of C∗–algebras and let A∗DB and Ã∗D B̃ be the corresponding full amal-

gamated free product C∗–algebras. Let λ : A ∗D B → Ã ∗D B̃ be the ∗–homomorphism

arising via the universal property from the inclusions A ↪→ Ã and B ↪→ B̃. Then λ
is injective.

Proof. Let π : A∗D B → B(H) be a faithful ∗–homomorphism. We will find a Hilbert

space K and a ∗–homomorphism π̃ : Ã ∗D B̃ → B(H ⊕K) such that

π̃(λ(x))(h⊕ 0) = (π(x)h)⊕ 0, (x ∈ A ∗D B, h ∈ H). (3)

This will imply λ is injective.
Let πA : A → B(H) and πB : B → B(H) be the ∗–representations obtained by

composing π with the inclusions A ↪→ A ∗D B and B ↪→ A ∗D B. Let

σA,0 : Ã→ B(H ⊕KA,0),

σB,0 : B̃ → B(H ⊕KB,0)

be ∗–representations obtained from Lemma 2.1 such that

σA,0(a)(h⊕ 0) = (πA(a)h)⊕ 0, (a ∈ A, h ∈ H),

and similarly with A replaced by B. Note that 0 ⊕ KA,0 is reducing for σA,0(D).
Using Lemma 2.1, we find Hilbert spaces KB,1 and KA,1 and ∗–representations

σB,1 :B̃ → B(KA,0 ⊕KB,1)

σA,1 :Ã→ B(KB,0 ⊕KA,1)

such that

σB,1(d)(k ⊕ 0) = σA,0(d)(0⊕ k), (d ∈ D, k ∈ KA,0),

σA,1(d)(k ⊕ 0) = σB,0(d)(0⊕ k), (d ∈ D, k ∈ KB,0).

Proceeding recursively, for every integer n ≥ 2 we find ∗–representations

σB,n : B̃ → B(KA,n−1 ⊕KB,n),

σA,n : Ã→ B(KB,n−1 ⊕KA,n)

such that

σB,n(d)(k ⊕ 0) = σA,n−1(d)(0⊕ k), (d ∈ D, k ∈ KA,n−1),

σA,n(d)(k ⊕ 0) = σB,n−1(d)(0⊕ k), (d ∈ D, k ∈ KB,n−1).



4 Full Free Products

We now define the Hilbert spaces

H̃A =

σA,0︷ ︸︸ ︷
H ⊕KA,0 ⊕

σA,1︷ ︸︸ ︷
KB,0 ⊕KA,1 ⊕

σA,2︷ ︸︸ ︷
KB,1 ⊕KA,2 ⊕ · · · ,

H̃B = H ⊕KB,0︸ ︷︷ ︸
σB,0

⊕KA,0 ⊕KB,1︸ ︷︷ ︸
σB,1

⊕KA,1 ⊕KB,2︸ ︷︷ ︸
σB,2

⊕ · · · ,
(4)

where the brackets indicate where the constructed representations act, and we let

σ eA : Ã→ B(H̃A) and σ eB : B̃ → B(H̃B) be the ∗–representations

σ eA = σA,0 ⊕ σA,1 ⊕ σA,2 ⊕ · · · ,
σ eB = σB,0 ⊕ σB,1 ⊕ σB,2 ⊕ · · · ,

where the summands act as indicated by brackets in (4). Consider the unitary U :

H̃A → H̃B mapping the summands in H̃A identically to the corresponding summands

in H̃B as indicated by the arrows below:

H̃A

U
��

= H

��

⊕ KA,0

  A
AA

AA
AA

A
⊕ KB,0

~~}}
}}

}}
}}

⊕ KA,1

  A
AA

AA
AA

A
⊕ KB,1

~~}}
}}

}}
}}

⊕ KA,2

  @
@@

@@
@@

@@
⊕ · · ·

~~~~
~~

~~
~~

~

H̃B
= H ⊕ KB,0 ⊕ KA,0 ⊕ KB,1 ⊕ KA,1 ⊕ KB,2 ⊕ · · · .

Let K = KA,0 ⊕ KB,0 ⊕ KA,1 ⊕ KB,1 ⊕ · · · and identify H ⊕ K with H̃A. Then we

have the ∗–representations π̃ eA = σ eA : Ã→ B(H ⊕K) and π̃ eB : B̃ → B(H ⊕K), the
latter defined by π̃ eB(·) = U∗σ eB(·)U . By construction, the restrictions of π̃ eA and π̃ eB
to D agree, and we have

π̃ eA(a)(h⊕ 0) = (πA(a)h)⊕ 0, (a ∈ A, h ∈ H),

π̃ eB(b)(h⊕ 0) = (πB(b)h)⊕ 0, (b ∈ B, h ∈ H).

Letting π̃ : Ã ∗D B̃ → B(H⊕K) be the ∗–homomorphism obtained from π̃ eA and π̃ eB
via the universal property, we have that (3) holds. �

For a C∗–algebra A, unital or not, let Au denote the unitization of A. Thus,
as a vector space, Au = A ⊕ C with multiplication defined by (a, µ) · (a′, µ′) =
(aa′+µa+µ′a, µµ′). We identify A with the ideal A⊕0 of Au, which has codimension
1.

Lemma 2.3. Let A ⊇ D ⊆ B be inclusions of C∗–algebras. Consider the unitizations
and corresponding inclusions

Au Du? _oo � � // Bu

A
?�

OO

D?
_oo ?�

OO

� � // B.
?�

OO

Let λ : A ∗D B → Au ∗Du Bu be the resulting ∗–homomorphism between full amalga-
mated free products. Then there is an isomorphism π : Au ∗Du Bu → (A ∗D B)u such
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that π ◦ λ : A ∗D B → (A ∗D B)u is the canonical embedding arising in the definition
of the unitization.

Proof. Since any ∗–representations of A and B that agree on D extend to ∗–rep-
resentations of Au and Bu that agree on Du, the ∗–homomorphism λ is injective. Let
e ∈ Au ∗Du Bu be the unit of Au, which is of course identified with the units of Bu

and Du. Clearly, Au ∗Du Bu is generated by the image of λ together with e. One
easily sees

(λ(x) + µe)(λ(x′) + µ′e) = λ(xx′) + µλ(x′) + µ′λ(x) + µµ′e.

Moreover, if ρ : Au ∗Du Bu → C is the ∗–homomorphism arising from the unital ∗–
homomorphisms Au → C and Bu → C, then ρ(e) = 1 and λ(A ∗D B) ⊆ ker ρ. Hence
λ(A ∗D B) has codimension 1 in Au ∗Du Bu. Now π can be defined by π(λ(x)+µe) =
(x, µ). �

Proposition 2.4. Suppose

Ã D̃?
_oo � � // B̃

A
?�

OO

D?
_oo ?�

OO

� � // B
?�

OO
(5)

is a commuting diagram of inclusions of C∗–algebras. Let λ : A ∗D B → Ã ∗ eD B̃
be the resulting ∗–homomorphism of full free product C∗–algebras. Suppose there are

conditional expectations EA : Ã→ A, ED : D̃ → D and EB : B̃ → B onto A, D and
B, respectively, such that the diagram

Ã

EA

��

D̃

ED

��

? _oo � � // B̃

EB

��
A D?

_oo � � // B

(6)

commutes. Then λ is injective.

Proof. By appealing to Lemma 2.3, we may without loss of generality assume all the
algebras and ∗–homomorphisms in (5) are unital. Let π : A ∗D B → B(H) be a
faithful, unital ∗–representation. As in the proof of Proposition 2.2, in order to show

λ is injective, we will find a Hilbert space K and a ∗–homomorphism π̃ : Ã ∗ eD B̃ →
B(H ⊕K) such that

π̃(λ(x))(h⊕ 0) = (π(x)h)⊕ 0, (x ∈ A ∗D B, h ∈ H). (7)

Let πA : A → B(H) and πB : B → B(H) be the ∗–representations obtained by
composing π with the inclusions A ↪→ A ∗D B and B ↪→ A ∗D B, and let πD : D →
B(H) be their common restriction to D. Consider the canonical left action of D̃

on the right Hilbert D–module L2(D̃, ED), which is obtained from D̃ by separation

and completion with respect to the D–valued inner product 〈d̃1, d̃2〉 = ED(d̃∗1d̃2).

Consider the Hilbert space L2(D̃, ED)⊗D H, where the left action of D on H is via
πD. Since πD is unital, H embeds as a subspace, and we can write

L2(D̃, ED)⊗D H = H ⊕KD. (8)
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Consider the left action of D̃ on the Hilbert space H ⊕ KD. The subspace H is
reducing for the restriction of σD to D, and we have σD(d)(h⊕ 0) = (πD(d)h)⊕ 0 for
every d ∈ D and h ∈ H.

In a similar way, consider the Hilbert spaces

L2(Ã, EA)⊗A H, L2(B̃, EB)⊗B H (9)

and the associated left actions σA,0 of Ã, respectively σB,0 of B̃. As the diagram (6)
commutes, the Hilbert space (8) embeds canonically as a subspace of both spaces (9).
We may thus write

L2(Ã, EA)⊗A H = H ⊕KD ⊕KA,0

L2(B̃, EB)⊗B H = H ⊕KD ⊕KB,0,

the subspace H⊕KD⊕0 is reducing for the restrictions of σA,0 and σB,0 to D̃, and we

have σA,0(d̃)(η⊕0) = (σD(d̃)η)⊕0 = σB,0(d̃)(η⊕0) for every d̃ ∈ D̃ and η ∈ H⊕KD.
Moreover, H ⊕ 0⊕ 0 is reducing for the restrictions of σA,0 to A and σB,0 to B, and
we have

σA,0(a)(h⊕ 0⊕ 0) = (πA(a)h)⊕ 0⊕ 0 (a ∈ A, h ∈ H)

σB,0(b)(h⊕ 0⊕ 0) = (πB(b)h)⊕ 0⊕ 0 (b ∈ B, h ∈ H).

Let σA,0, eD denote the action of D̃ on KA,0 obtained by restricting σA,0 to D̃ and
compressing, and similarly for σB,0, eD.

We now proceed recursively as in the proof of Proposition 2.2. If Hilbert spaces
KA,n−1 and KB,n−1 have been constructed with actions σA,n−1, eD and σB,n−1, eD, re-

spectively, of D̃, use Lemma 2.1 to construct Hilbert spaces KB,n and KA,n and
∗–homomorphisms

σB,n : B̃ → B(KA,n−1 ⊕KB,n)

σA,n : Ã→ B(KB,n−1 ⊕KA,n),

such that

σB,n(d̃)(k ⊕ 0) = (σA,n−1, eD(d̃)k)⊕ 0 (d̃ ∈ D̃, k ∈ KA,n−1)

σA,n(d̃)(k ⊕ 0) = (σB,n−1, eD(d̃)k)⊕ 0 (d̃ ∈ D̃, k ∈ KB,n−1).

Then let σB,n, eD be the action of D̃ on KB,n obtained from the restriction of σB,n to

D̃ by compressing, and similarly define the action σA,n, eD of D̃ on KA,n.
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We may now define the Hilbert spaces

H̃A =

σA,0︷ ︸︸ ︷
σD︷ ︸︸ ︷

H ⊕KD ⊕KA,0 ⊕
σA,1︷ ︸︸ ︷

KB,0 ⊕KA,1 ⊕
σA,2︷ ︸︸ ︷

KB,1 ⊕KA,2 ⊕ · · · ,

H̃B = H ⊕KD︸ ︷︷ ︸
σD

⊕KB,0︸ ︷︷ ︸
σB,0

⊕KA,0 ⊕KB,1︸ ︷︷ ︸
σB,1

⊕KA,1 ⊕KB,2︸ ︷︷ ︸
σB,2

⊕ · · · ,
(10)

where the brackets indicate where the constructed representations act. We let σ eA :

Ã→ B(H̃A) and σ eB : B̃ → B(H̃B) be the ∗–representations

σ eA = σA,0 ⊕ σA,1 ⊕ σA,2 ⊕ · · · ,
σ eB = σB,0 ⊕ σB,1 ⊕ σB,2 ⊕ · · · ,

where the summands act as indicated by brackets in (10). Consider the unitary

U : H̃A → H̃B mapping the summands in H̃A identically to the corresponding

summands in H̃B as indicated by the arrows below:

H̃A

U
��

= H

��

⊕ KD

��

⊕ KA,0

  A
AA

AA
AA

A
⊕ KB,0

~~}}
}}

}}
}}

⊕ KA,1

  A
AA

AA
AA

A
⊕ KB,1

~~}}
}}

}}
}}

⊕ KA,2

  @
@@

@@
@@

@@
⊕ · · ·

~~~~
~~

~~
~~

~

H̃B
= H ⊕ KD ⊕ KB,0 ⊕ KA,0 ⊕ KB,1 ⊕ KA,1 ⊕ KB,2 ⊕ · · · .

Let K = KD ⊕KA,0 ⊕KB,0 ⊕KA,1 ⊕KB,1 ⊕ · · · and identify H⊕K with H̃A. Then

we have the ∗–representations π̃ eA = σ eA : Ã→ B(H ⊕K) and π̃ eB : B̃ → B(H ⊕K),
the latter defined by π̃ eB(·) = U∗σ eB(·)U . By construction, the restrictions of π̃ eA and

π̃ eB to D̃ agree, and we have

π̃ eA(a)(h⊕ 0) = (πA(a)h)⊕ 0 (a ∈ A, h ∈ H)

π̃ eB(b)(h⊕ 0) = (πB(b)h)⊕ 0 (b ∈ B, h ∈ H).

Letting π̃ : Ã ∗ eD B̃ → B(H⊕K) be the ∗–homomorphism obtained from π̃ eA and π̃ eB
via the universal property, we have that (7) holds. �

3. Examples of non–embedding

In this section, we give some examples when the map λ of Question 1.1 fails to be
injective. (In contrast, it is known [2] that in the more stringent situation of reduced
amalgamated free products, the map analogous to λ is always injective.)

We begin with a trivial class of examples.

Examples 3.1. Let A and B be C∗-subalgebras of a C∗-algebra E with A * B

and B * A. Let D = A ∩ B, Ã = E and D̃ = B̃ = B, equipped with the natural

inclusions. Then the map λ : A∗DB → Ã∗ eD B̃ = E is injective if and only if A∗DB is
exactly the C∗-subalgebra of E generated by A and B. This doesn’t hold in general.

Notice that in these examples, B ∩ D̃ = B % D.
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Proposition 3.2. Suppose

Ã D̃?
_oo � � // B̃

A
?�

OO

D?
_oo ?�

OO

� � // B
?�

OO

is a commuting diagram of inclusions of C∗–algebras and let λ : A ∗D B → Ã ∗ eD B̃
be the resulting ∗–homomorphism of full free product C∗–algebras. Suppose there are
conditional expectations EA

D : A → D and EB
D : B → D with EB

D faithful. Suppose

there are d̃ ∈ D̃, a ∈ A and b ∈ B satisfying ad̃ ∈ A, d̃b ∈ B,

D(d̃b) ∩Db = {0} (11)

EA
D(d̃∗a∗ad)b 6= 0. (12)

Then λ is not injective.

Proof. Letting
σA : A ↪→ A ∗D B, σB : B ↪→ A ∗D B,

σ eA : Ã ↪→ Ã ∗ eD B̃, σ eB : B̃ ↪→ Ã ∗ eD B̃
(13)

be the embeddings as in (1), we have

λ(σA(ad̃)σB(b)) = σ eA(ad̃)σ eB(b) = σ eA(a)σ eB(d̃b) = λ(σA(a)σB(d̃b)).

Thus we need only show

σA(ad̃)σB(b) 6= σA(a)σB(d̃b). (14)

We consider the reduced amalgamated free product of C∗–algebras (see [11] or [12]),

(A ∗redD B, ED) = (A, EA
D) ∗D (B, EB

D)

and the natural quotient ∗–homomorphism A ∗D B → A ∗redD B. Let L2(A ∗redD B, ED)
be the right Hilbert D–module obtained by separation and completion from A ∗redD B
with respect to the D–valued inner product 〈x, y〉 = ED(x∗y), and given x ∈ A∗redD B,
let x̂ denote the corresponding element in L2(A∗redD B, ED). Let HA = L2(A, EA

D) and
HB = L2(B, EB

D) be similarly defined. Then in L2(A ∗redD B, ED), the closure of the
subspace spanned by elements of the form (ab)̂ for a ∈ A and b ∈ B is isomorphic to
the tensor product HA ⊗D HB of Hilbert D–modules. In order to show (14), it will
suffice to show

(ad̃)̂ ⊗ b̂ 6= â⊗ (d̃b)̂

in HA ⊗D HB. Let ζB ∈ HB. Then

〈(ad̃)̂ ⊗ ζB, (ad̃)̂ ⊗ b̂〉 = 〈ζB, (EA
D(d̃∗a∗ad̃)b)̂ 〉 (15)

〈(ad̃)̂ ⊗ ζB, â⊗ (d̃b)̂ 〉 = 〈ζB, (EA
D(d̃∗a∗a)d̃b)̂ 〉. (16)

From assumptions (11) and (12), we obtain EA
D(d̃∗a∗ad̃)b 6= EA

D(d̃∗a∗a)d̃b. Since EB
D

is faithful, there is ζB ∈ HB such that the right–hand–sides of (15) and (16) are not
equal. �
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Remark 3.3. From the above proof, one sees that the hypotheses of Proposition 3.2
can be weakened as follows: Assumptions (11) and (12) can be dropped, and EB

D

need not be assumed faithful, but instead one must assume

EB
D

(
b∗

(
EA

D(d̃∗a∗ad̃)− EA
D(d̃∗a∗a)d̃− d̃∗EA

D(a∗ad̃) + d̃∗EA
D(a∗a)d̃

)
b∗

)
6= 0. (17)

Note that the LHS of (17) is nothing other than

〈(ad̃)̂ ⊗ b̂− â⊗ (d̃b)̂ , (ad̃)̂ ⊗ b̂− â⊗ (d̃b)̂ 〉.

Corollary 3.4. Suppose

Ã D̃?
_oo � � // B̃

A
?�

OO

D?
_oo ?�

OO

� � // B
?�

OO
(18)

is a commuting diagram of inclusions of C∗–algebras and let λ : A ∗D B → Ã ∗ eD B̃ be
the resulting ∗–homomorphism of full free product C∗–algebras. Suppose one of the
following holds:

(i) D = 0
(ii) D = C, A and B are unital and the inclusions D ↪→ A and D ↪→ B are

unital.

Suppose there are d̃ ∈ D̃, a ∈ A and b ∈ B such that ad̃ ∈ A\{0}, d̃b ∈ B and

d̃b /∈ Cb. Then λ is not injective.

Proof. We can reduce to the case in which (ii) holds by application of Lemma 2.3. We
may without loss of generality assume A and B are separable. Letting EA

D : A→ C
and EB

D : B → C be faithful states, we find the hypotheses of Proposition 3.2 are
satisfied. �

From this corollary, we have the following class of concrete examples, which shows
that λ may be non–injective even if

B ∩ D̃ = D = A ∩ D̃. (19)

Example 3.5. Let H be an infinite dimensional, separable Hilbert space. Inside
B(H), let D = C1 and let A = B = D + K(H), where K(H) is the compact
operators. Let u ∈ B(H) be a unitary operator that does not belong to D and let

D̃ = C∗(u), Ã = B̃ = D̃ +K(H). Let λ : A ∗D B → Ã ∗ eD B̃ be the ∗–homomorphism
arising from the inclusions (18). Then λ is not injective.

Proof. Take d̃ = u and a ∈ K(H)\{0}. Since u /∈ C1, there is b ∈ K(H) such that
ub /∈ Cb. Now apply Corollary 3.4. One can choose u so that C∗(u)∩(C1+K(H)) =
C1, in order to get (19). �

Proposition 3.6. Suppose

Ã D̃?
_oo � � // B̃

A
?�

OO

D?
_oo ?�

OO

� � // B
?�

OO
(20)



10 Full Free Products

is a commuting diagram of inclusions of C∗–algebras and let λ : A ∗D B → Ã ∗ eD B̃ be
the resulting ∗–homomorphism of full free product C∗–algebras. Suppose one of the
following holds:

(i) D = 0
(ii) D = C, A and B are unital and the inclusions D ↪→ A and D ↪→ B are

unital.

Suppose there are d̃ ∈ D̃, a1, a2 ∈ A and b ∈ B\D such that a1d̃, d̃a2 ∈ A, a1d̃ /∈ C

and d̃b = bd̃. Then λ is not injective.

Proof. We can reduce to the case in which (ii) holds by application of Lemma 2.3.
We use the same notation as in (13). We have

λ(σA(a1d̃)σB(b)σA(a2)) = σ eA(a1d̃)σ eB(b)σ eA(a2)

= σ eA(a1)σ eB(b)σ eA(d̃a2) = λ(σA(a1)σB(b)σA(d̃a2)),

and we must only show

σA(a1d̃)σB(b)σA(a2) 6= σA(a1)σB(b)σA(d̃a2). (21)

Without loss of generality, assume A and B are separable. Let φA : A → C and
φB : B → C be faithful states. By adding a scalar multiple of the identity, if
necessary, we may without loss of generality assume φB(b) = 0. Let

(A ∗redC B, φ) = (A, φA) ∗C (B, φB)

be the reduced free product of C∗–algebras. Using arguments and notation as in the
proof of Proposition 3.2, the closure of the subspace of L2(A ∗redC B, φ) spanned by

elements of the form (aba′)̂ for a, a′ ∈ A is isomorphic to HA ⊗ (Cb̂) ⊗ HA. To
show (21), it will suffice to show

(a1d̃)̂ ⊗ b̂⊗ â2 6= â1 ⊗ b̂⊗ (d̃a2)̂

in HA ⊗ (Cb̂)⊗HA. However, this follows from the assumptions. �

From the above proposition, we get the following example, which requires only

“bad” relations between A and D̃, not between B and D̃.

Example 3.7. Let D, D̃, A and Ã be as in Example 3.5. Let B be any unital

C∗–algebra of dimension greater than 1 and let B̃ = B ⊗ D̃, (for the unique C∗–

tensor norm). Then the ∗–homomorphism λ : A ∗D B → Ã ∗ eD B̃ arising from the
inclusions (20) is not injective.

Remark 3.8. The problem with injectivity of λ in Examples 3.5 and 3.7 arises
already at the algebraic level

A ∗algD B → Ã ∗algeD B̃. (22)

On the other hand, in Examples 3.1, we can arrange that the map between alge-
bras (22) is injective, while λ fails to be injective, e.g. by taking E to be a reduced
free product. However, we do not know of an example where λ fails to be injective

and where the algebraic map (22) is injective, but where A ∩ D̃ = D = B ∩ D̃.
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4. An application to residual finite dimensionality

A C∗–algebra is said to be residually finite dimensional (r.f.d.) if it has a separat-
ing family of finite dimensional ∗–representations. The first result linking full free
products and residual finite dimensionality was M.-D. Choi’s proof [6] that the full
group C∗–algebras of nonabelian free groups are r.f.d. In [7], Exel and Loring proved
that the full free product of any two r.f.d. C∗–algebras A and B with amalgamation
over either the zero C∗–algebra or over the scalar multiples of the identity (if A and
B are unital) is r.f.d. In [5], N. Brown and Dykema proved that a full amalgamated
free product of matrix algebras Mk(C) ∗D M`(C) over a unital subalgebra D is r.f.d.
provided that the normalized traces on Mk(C) and M`(C) restrict to the same trace
on D. In this section, we observe that by applying Proposition 2.2, one obtains
(as a corollary of the result from [5]) the analogous result for full amalgamated free
products of finite dimensional algebras.

Lemma 4.1. Let S = {x ∈ Rn | Ax = 0}, where A is an m× n matrix having only
rational entries. Then vectors having only rational entries are dense in S.

Proof. By considering the reduced row–echelon form of A, we see that there is a basis
for S consisting of rational vectors. �

Theorem 4.2. Consider unital inclusions of C∗–algebras A ⊇ D ⊆ B with A and B
finite dimensional. Let A ∗D B be the corresponding full amalgamated free product.
Then A ∗D B is residually finite dimensional if and only if there are faithful tracial
states τA on A and τB on B whose restrictions to D agree.

Proof. Since every separable r.f.d. C∗–algebra has a faithful tracial state, the necessity
of the existence of τA and τB is clear.

Let us recall some well known facts about a unital inclusion D ⊆ A of finite
dimensional C∗–algebras (see e.g. Chapter 2 of [8]). Let p1, . . . , pm be the mini-
mal central projections of A and q1, . . . , qn the minimal central projections of D.
Then the inclusion matrix ΛA

D is a m × n integer matrix whose (i, j)th entry is
rank (qjpiAqj)/rank (qjD), where the rank of a matrix algebra Mk(C) is k. To a
trace τ on A, we associate the column vector s of length m whose ith entry is the
trace of a minimal projection in piA. Then the restriction of τ to D has associated
column vector (ΛA

D)ts, where the superscript t indicates transpose.
Thus, given A ⊇ D ⊆ B as in the statement of the theorem, the existence of faithful

tracial states τA and τB agreeing on D is equivalent to the existence of column vectors
sA and sB, none of whose components are zero, such that (ΛA

D)tsA = (ΛB
D)tsB, i.e.[

(ΛA
D)t, −(ΛB

D)t
] [

sA

sB

]
= 0. (23)

Supposing now that such traces τA and τB exist, by Lemma 4.1 there is a solution
[ sA
sB ] to (23) whose entries are all strictly positive and rational. Therefore, the traces

τA and τB agreeing on D can be chosen to take only rational values on minimal
projections of A and, respectively, B. Hence there are unital inclusions into matrix
algebras,

Mk(C) ⊇ A ⊇ D ⊆ B ⊆M`(C),



12 Full Free Products

so that τA is the restriction of the tracial state on Mk(C) to A and τB is the restriction
of the tracial state on M`(C) to B. By Proposition 2.2, A ∗D B is a subalgebra of
Mk(C)∗D M`(C). By Theorem 2.3 of [5], Mk(C)∗D M`(C) is r.f.d. Therefore, A∗D B
is r.f.d. �
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