
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 274 (2004) 433–444

Letter to the Editor

Eigensystem realization algorithm (ERA): reformulation and
system pole perturbation analysis

F.S.V. Baz!an

Department of Mathematics, Federal University of Santa Catarina, 88040-900 Florian !opolis SC, Brazil

Received 3 September 2002; accepted 3 September 2003

1. Introduction

The identification of modal parameters from measured data can be done in a wide variety of
ways through many time and frequency domain algorithms. A list of modal parameter
identification algorithms include the least-squares complex exponential algorithm [1], the
polyreference time and frequency domain algorithm [2,3], Ibrahim time domain algorithm [4],
and eigensystem realization algorithm (ERA) [5], among others. Presently, most of these
algorithms are well understood but the effect of measurement noise on the identified parameters
remains largely unexplored.
An analysis of the effect of external noise on system poles identified by ERA will be given in this

work. Based on system realization and the singular value decomposition (SVD), ERA constructs a
discrete state-space model of minimal order that fits measured impulse response functions (IRFs)
handling closely spaced frequencies within a certain accuracy. Since its appearance in 1985, ERA
has become a recognized and successful method for analyzing data in a number of engineering
applications. Despite this however, very little has been done on sensitivity of system poles to noise.
Some indicators of modal purity of computed parameters are given in Ref. [6] but they do not
explain the pole sensitivity problem. The interest for this analysis is thus supported by the
excellent reputation of ERA amongst practitioners and the lack of theoretical explanation of its
robustness.
This paper provides two major contributions. The first is a detailed analysis concerning

sensitivity of poles, intended to explain when and under what conditions the system poles are less
sensitive to noise, as well as to provide theoretical explanation of the well observed fact that poles
extracted by ERA from MIMO systems are less sensitive to noise than those extracted from a
single input. The second contribution provides estimates for the pole error in the form of upper
bounds. As a result, it is shown that poles near the unit circle become quite insensitive to noise
whenever the dimension of the Hankel matrix is large enough and the poles themselves are not
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extremely close to each other. Technically speaking, this result says that poles of slightly damped
systems become rather insensitive to noise, under appropriate conditions.
The paper is organized as follows. Section 3 presents a reformulation of ERA which avoids the

SVD, as well as some properties involving Hankel matrices and the underlying mathematical
model used in modal parameter identification. The resulting reformulation is then used in Section
3 in which the main contributions of the work are described. The theoretical results of the paper
are illustrated in Section 4. Finally, some conclusions are provided in Section 5.

2. Reformulating ERA

The equation of motion of a multiple-input multiple-output (MIMO) dynamic system can be
represented by a set of differential equations given by

M .u þ C ’u þ Ku ¼ f ; ð1Þ

where M; C and K are the mass, damping and stiffness matrices respectively; u is a vector of
displacement and f a vector of forcing functions. If q inputs and p outputs are available, an IRF
hðtÞARp�q may be found in order to describe the characteristics of the system. The following
relationship between IRF’s and modal parameters is known to hold [1,5,7–11]:

hðtÞ ¼ feStL: ð2Þ

Here, fACp�2n is a mode shape matrix, SAC2n�2n a diagonal matrix containing the system
eigenvalues sj; LAC

2n�q a modal participation factor matrix, and n the number of modes.
LetHrsðcÞ ðcX0Þ denote anM � N Hankel-block matrix withM ¼ r � p and N ¼ s � q; whose

block-entry on the position ði; jÞ is hcþiþj�1 ¼ hððcþ i þ j � 1ÞDtÞ; where Dt is the sampling
interval. It is known that this Hankel-block matrix can be factorized as

HrsðcÞ ¼

f

fL

^

fLr�1

266664
377775Lc½LLL?Ls�1L� ¼ OrLcCs; ð3Þ

where L ¼ diagðl1;y; ln; %l1;y; %lnÞ; lj ¼ esjDt; j ¼ 1 : n; and Or and Cs are the so-called extended
controllability and observability matrices, respectively. If the system is controllable and
observable, Or and Cs are both of rank 2n [1,9]. Thus, for r; sX2n; rankðHrsðcÞÞ ¼ 2n;8cX0:
Notice that for p ¼ q ¼ 1; the above factorization reduces to

HrsðcÞ ¼ WT
MLcRWN ; ð4Þ

where WM denotes a 2n � M Vandermonde matrix with entries on the jth column being given by
½lj�1
1 ;y; lj�1

n ; %lj�1
1 ;y; %lj�1

n �T;R ¼ diagðr1;y; rn; %r1;y; %rnÞ; L is as above, andWN is the submatrix
of WM consisting of its first N columns.
Let

HrsðcÞ ¼ ½U1U2�
S1 0

0 0

 !
VT
1

VT
2

" #
¼ U1S1VT

1 ð5Þ

ARTICLE IN PRESS

F.S.V. Baz !an / Journal of Sound and Vibration 274 (2004) 433–444434



be a partitioned SVD of HrsðcÞ where U1ACM�2n; V1ACN�2n; with S1 containing the non-zero
singular values of HrsðcÞ in decreasing order, i.e., s1X?Xs2n: Using this SVD for fixed c; ERA
extracts system poles (i.e., the eigenvalues lj ¼ esjDt; j ¼ 1 : 2n) from a system matrix defined as

A ¼ S�1=2
1 UT

1 Hrsðcþ 1ÞV1S
�1=2
1 : ð6Þ

Additionally, ERA constructs an input matrix B and an output matrix C defined by

B ¼ S1=2VT
1 Eq and C ¼ ETp U1S1=2; ð7Þ

respectively. Here ET
p ¼ ½Ip 0�p�M ; where Ip is a p � p identity matrix; matrix Eq is defined

analogously. The triplet fA;B;Cg is then referred to as a realization of the system with impulse
response function hðtÞ as described in Eq. (2), in the sense that hkþ1 ¼ CAkB; kX0:
In order to reformulate ERA, notice that Hrsðcþ 1Þ and HrsðcÞ are related by a matrix equation

of the form

Hrsðcþ 1Þ ¼ HrsðcÞG; ð8Þ

where G is a block-companion matrix defined as

G ¼

0 0 y 0 X1

Iq 0 y 0 X2

0 Iq y 0 X3

^ ^ & ^

0 0 y Iq Xs

26666664

37777775 ð9Þ

so that its last column-block has components XjARq�q and satisfies the matrix equation

HrsðcÞX ¼ b; ð10Þ

where b is the last column-block of Hrsðcþ 1Þ: Relations (5) and (8) show that matrix A in Eq. (6)
can be rewritten as

A ¼ S1=21 VT
1 GV1S

�1=2
1 ; ð11Þ

which in turn shows that system poles can be extracted from the spectrum of VT
1 GV1 as well.

Matrices of this type were introduced by Baz!an and Toint [12] and called predictor matrices
obtained by orthogonal projection. Notice that only the product VT

1 X needs to be carried out in
order to form the product VT

1 G: Using Eq. (5) again, this results in

VT
1 X ¼ S�2

1 VT
1 HrsðcÞ

Tb: ð12Þ

Using Eq. (5) once more, matrix C in Eq. (7) can be rewritten as

C ¼ ETp HrsðcÞV1S
�1=2
1 : ð13Þ

A simplified version of ERA algorithm is then given by matrices A;B and C described in Eqs. (11),
(7) and (13), respectively. The new version allows an implementation of ERA using only the
non-zero eigenvalues and corresponding eigenvectors of matrix HrsðcÞ

THrsðcÞ (the right singular
vectors), as opposed to the original version which requires the 2n triplets fsj; uj; vjg; j ¼ 1 : 2n:
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3. Perturbation analysis

Let *HrsðcÞ denote the Hankel matrix formed from estimates *hk ¼ hk þ ek; k ¼ 0; 1;y; where ek

stands for noise. Let *HrsðcÞ have a SVD,

*HrsðcÞ ¼ ½ *U1
*U2�diagð *S1; *S2Þ½ *V1 *V2�T; ð14Þ

where *U1 and *V1 contain singular vectors associated with the 2n largest singular values of *HrsðcÞ:
ERA uses the dominant part of this decomposition to construct a system matrix as

*A ¼ *S�1=2
1

*UT
1
*Hrsðcþ 1Þ *V1 *S

�1=2
1 ; ð15Þ

taking the eigenvalues *lj of *A as approximations for the exact eigenvalues lj: The goal of the
section is to estimate how much the eigenvalues *lj can depart from the exact ones. More precisely,
the goal is to derive pole error estimates of the form

j*lj � lj jpkj;qJ *A � AJ2; j ¼ 1 : n; ð16Þ

which are known to hold from eigenvalue perturbation theory (see, e.g., Ref. [13, p. 323]). Here,
kj;q;measures the sensitivity of lj to noise and it is referred to as the condition number of lj; index q
is used to highlight the dependence of kj;q on the number of system inputs. Recall that for general
AAC

n�n with distinct eigenvalues, the condition number kj of eigenvalue lj with left eigenvector uj

and right eigenvector vj; is defined by

kj ¼
JujJ2JvjJ2

ju�j vj j
ð17Þ

The problem with the bounds in Eq. (16) is that the error matrix J *A � AJ2 is difficult to estimate.
To overcome this drawback define AP and *AP as

AP ¼ V1V
T
1 G; *AP ¼ *V1 *V

T
1
*G; ð18Þ

where V1 and G come from Eq. (11), *V1 from the SVD of *HrsðcÞ and *G is a block-companion
matrix as in Eq. (9) but with its last column-block satisfying condition (12) in which exact
quantities are replaced by approximations extracted from *HsrðcÞ: Then, using the property that
discarding zero eigenvalues, the spectrum of the product of two matrices A and B satisfies
lðABÞ ¼ lðBAÞ (see, e.g., Ref. [13, p. 318]), it follows that the spectrum of AP and the spectrum of
*AP satisfy

lðAÞ ¼ lðAPÞ; lð *AÞ ¼ lð *APÞ; ð19Þ

and thus, the pole error obtained from *AP and AP is the same as that obtained from A and *A: The
pole error estimates presented in the work rely on this observation and are expressed as

jlj � *lj jpkj;q
*AP � AP

�� ���� ��
2
; j ¼ 1 : n: ð20Þ

As it will be seen later, the main advantage of deriving pole error estimates using these inequalities
instead of those in Eq. (16) is that the error matrix *AP � AP

�� ���� ��
2
now is easy to estimate.
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3.1. System pole sensitivity

Some results on the condition number kj;q are given here in order to assess the sensitivity of
poles related to ERA. Before this, it is worth emphasizing that kj;1 refers to a SISO system,
whereas kj;q refers to the same system but with q > 1 inputs. Thus, all results presented below rely
on the assumption that independently of the number of inputs used to realize the system, the
system matrix constructed by ERA is always of the same order and always contains the same
modal information. Based on this, the following properties hold.
A1: The condition number kj;1 depends only on the Vandermonde matrix WN and its

dimension.
A2: For qX1 it holds that

kj;q ¼ JeTj CsJ2JC
w
s ejJ2; j ¼ 1 : 2n; ð21Þ

where Cw
s is the pseudo-inverse of matrix Cs; and ej is the jth canonical vector in R2n:

A3: Assume that for every qX1 the number of column blocks in Cs is kept fixed. Then

1pkj;qpkj;1; j ¼ 1 : 2n: ð22Þ

Furthermore, if dj ¼ minjlj � lkj; 1pkpn; jak; then the condition number kj;q satisfies

1pkj;qp 1þ
2n � 1þ JxwJ22 þP2n

j¼1jlj j
2 �

P2n
i¼1jlj j

2

ð2n � 1Þd2j

" #ð2n�1Þ=2
; j ¼ 1 : 2n; ð23Þ

where xw is minimum 2-norm solution of the linear system (10) for q ¼ 1:
To prove Property A1; observe that if q ¼ 1; matrix Cs can be rewritten as Cs ¼ RWN ; where

R ¼ diagðL1;1;L2;1;y;L2n;1Þ is non-singular (otherwise rank ðCsÞo2nÞ: From this observation
and (21) it follows that kj;1 ¼ JeTj WNJ2JW w

NejJ2; which proves A1: Property A2 is proved in
Appendix A (see Theorem A.1). Inequalities (22) and (23) are consequences of Theorem 3.2 from
Ref. [14]
Properties A1 and A2 say that the sensitivity of system poles to noise essentially depends on

the conditioning of Cs and that if q ¼ 1; the condition number kj;1 does not depend on the
system input but rather on the conditioning of the Vandermonde matrix WN introduced in
Eq. (3).
Concerning property A3; it predicts reduction in sensitivity of system poles when extracted from

IRF’s corresponding to multiple inputs. In practice, sensitivity of lj to noise reduces significantly
when q ¼ 2 in comparison with that related to q ¼ 1; i.e., q ¼ 2 inputs usually ensures that
kj;2{kj;1: This is numerically illustrated in Section 5. Inequalities (23) predict that system poles
near the unit circle, but not extremely close to each other (i.e., dj not too small), become almost
perfectly well conditioned whenever JxwJ22E0; as in this case kj;qE1: The conditions jlj jE1 and
JxwJ22E0 appear frequently in connection with slightly damped systems.
A formal proof of the condition JxwJ22E0 when the dimension of the Hankel matrix is large

enough is provided in Appendix A (see Theorem A.2).

3.2. Estimating the error matrix JAP � *APJ2

To estimate the error matrix the concept of distance between subspaces will be needed.
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Definition. Let S and *S be two subspaces in Rn of the same dimension, and let P and *P be
orthogonal projectors onto S and *S; respectively. The distance between S and *S is
defined as

dðS; *SÞ ¼ JP � *PJ2 ð24Þ

It turns out that using the concept of subspace angles, Ref. [13, p. 603], this distance can be
computed as dðS; *SÞ ¼ sinðyÞ; where y denotes the largest canonical angle between S and *S:

Let P and *P be the orthogonal projectors on RðV1Þ and Rð *V1Þ; the exact and approximate
controllability subspaces, respectively, i.e., P ¼ V1V

T
1 and *P ¼ *V1 *V

T
1 ; where V1 and *V1 are

matrices as of singular vectors as described in Eqs. (5) and (14). Let these projectors be partitioned

P ¼ ½p1; p2;y; pN � and *P ¼ ½ *p1; *p2;y; *pN �; ð25Þ

where pi; *piACN�q; i ¼ 1 : N: Set ei ¼ *pi � pi and Z ¼ &X � *X; where &X is the solution of minimum
Frobenius norm of the linear system (10) and *X is the last column block of the block companion
matrix *G: Now, using the definitions of AP and *AP; since AP � *AP ¼ ½e2;y; eN ; Z�; it follows that

ðAP � *APÞðAP � *APÞ
T ¼ e1eT1 þ?þ eNeTN þ ZZT � e1eT1
¼ðP� *PÞðP� *PÞT þ ZZT � e1eT1 :

Taking 2-norm leads to the estimate

JAP � *APJ
2
2psinðyÞ

2 þ JZJ22: ð26Þ

The above upper bound is important since if JEJ2 ¼ J *HrsðcÞ � HrsðcÞJ2{s2nðHrsðcÞÞ; then
JAP � *APJ2 becomes small, as in this case both sinðyÞ and JZJ2 approach 0. These conclusions
rely on estimates for sinðyÞ and JZJ2 which depend on quantities of the form JEJ2=s2nðHrsðcÞÞ
(see Ref. [15, Theorem 3.21]). Thus one is faced with the problem of investigating when the
condition JEJ2{s2nðHrsðcÞÞ is plausible and when is not. This is a hard matrix dimension
dependent problem as both JEJ2 and s2nðHrsðcÞÞ monotonically increase with the dimension. The
SISO case was analyzed by Baz!an and Toint [18] who concluded that the desired inequality
happens when the Hankel matrix is chosen so that MEN; but analyses concerning the MIMO
case are lacking. Despite this, numerical experiments reported in Ref. [8] point out that if the IRFs
are not dominated by the noise, the desired inequality is reached when the Hankel matrix is
sufficiently large, unless severe ill-conditioning is present, i.e., unless the smallest non-zero
singular value of the Hankel matrix is small.
Finally, notice that if JZJ22pJ &XJ22; because this last norm approaches to zero when N is large

enough, a good estimate for the error matrix is

JAP � *APJ2EsinðyÞ: ð27Þ

A formal proof of the property J &XJ22E0 for s large is given in Appendix A (see Theorem A.3).

3.3. Error estimates for system poles

In this subsection, error estimates for system poles extracted by ERA are presented
and discussed. In fact, assuming MXNX2n and substituting Eqs. (23) and (26) in Eq. (20)
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results in

j*lj � lj jp 1þ
2n � 1þ JxwJ22 þP2n

j¼1jlj j
2 �

P2n
j¼1jlj j

2

ð2n � 1Þd2j

" #ð2n�1Þ=2
� ðsinðyÞ2 þ JZJ22Þ

1=2; j ¼ 1;y; 2n: ð28Þ

Notice that both factors of the bound strongly depend on M and N: While the left factor, which
measures the sensitivity of system poles to noise, requires that N be sufficiently large in order to
guarantee small sensitivity; the right factor estimates the error on AP and requires both M and N
be sufficiently large to ensure that such error is small. Therefore, whenever M and N are
sufficiently large, small pole errors can be expected. If, in addition to M and N being large, the
poles are well separated and fall near the unit circle, then the pole error can be approximated by

j*lj � lj jEsinðyÞ; j ¼ 1;y; 2n; ð29Þ

unless severe noise is present. This is numerically illustrated in the next section. This conclusion
results from the left factor approaching 1 and the right factor approximating sinðyÞ: Poles near the
unit circle appear frequently in connection with very flexible systems.

4. Numerical example: Mini-mast model

In this section the theoretical results of the paper are numerically illustrated. The system
chosen, which correspond to a computer model obtained by finite element analysis of a Mini-Mast
structure, is described by state equations of the form

’x ¼ Ax þ Bu; y ¼ cx; ð30Þ

where A; B and C are of orders 10� 10; 10� 2; and 2� 10; respectively (i.e., the mathematical
model considers two inputs and two outputs). Impulse response functions are thus of order 2� 2
and given by

hk ¼ CeADtkB; k ¼ 0; 1;y

For a description of the entries of the matrices A; B and C; see Ref. [16]. As described in that
reference, and widely known in the spacecraft identification area, this system is sufficiently
complex to be a reasonable test of pole recovering performance. The model considers five modes:
two bending modes as the lowest frequency modes involving closely spaced frequencies, one
torsional mode, and two additional bending modes as the highest frequency modes, involving
again closely spaced frequencies. The frequencies as well as the associated damping factors
(expressed as the negative real part of the eigenvalues lj) are given in Table 1. This table also
displays the system poles lj ¼ esjDt in modulus and the separations dj: As in Ref. [16], the sampling
rate is equal to Dt ¼ 0:03 s:
The numerical example comprises two parts. The first is concerned with system pole sensitivity

and the second with estimation of the pole error. Concerning pole sensitivity, the issues to be
discussed are the influence of the number of system inputs on such sensitivity, and the behavior of
the measure of sensitivity kj;q as a function of the dimension of the controllability matrix. To this
end, condition numbers kj;1 and kj;2 were computed considering controllability matrices of several
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orders. Although the example corresponds to a MIMO system, notice that the condition numbers
kj;1 can be always computed since they depend only on the Vandermonde matrix WN rather than
on the system input. These kj;1 are included here to illustrate that the sensitivity of system poles
linked to ERA using multiple inputs can be much smaller than the sensitivity of the poles using a
single input. Results for s ¼ 10 and s ¼ 20; which implies the Hankel matrix has N ¼ 10 and
N ¼ 20 columns when q ¼ 1 and N ¼ 20 and N ¼ 40 when q ¼ 2; are displayed in Table 2
Reduction in system pole sensitivity is apparent from this table.
To illustrate the potentiality of the bounds in predicting the system pole error, square Hankel

matrices Hrsð0Þ of several orders were corrupted by additive zero-mean Gaussian noise, and then
the estimate for the pole error given by sinðyÞ; the pole error itself, JEJ2 and the smallest non-zero
singular value of Hrsð0Þ; all were calculated from the corrupted Hankel matrix. Average values of
100 different random realizations at two noise levels are reported. The noise level was specified by
the standard deviations of the random noise and was equal to 8� 10�9 and 4:75� 10�6;
respectively. Low noise results are displayed in Fig. 1. Fig. 1(a) shows that the smallest non-zero
singular value of Hrsð0Þ really increases faster than the norm of the noise JEJ2; while Fig. 1(b)
illustrates the quality of sinðyÞ as an approximation for the pole error (see Eq. (29)). It is
interesting to notice in this figure that the pole error itself tends to decrease as the dimension of the
Hankel matrix grows.
Fig. 2 repeats Fig. 1 but with data corresponding to the high noise level obtained from Hankel

matrices whose orders depend on s which ranges from s ¼ 10 to s ¼ 100: In this case, the standard
deviation of the noise was calculated so as to enforce the smallest non-zero singular value of
Hrsð0Þ to be approximately dominated by the noise (Fig. 2(a)). Results for the pole error displayed
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Table 1

Modal information, system poles and separations

Mode Damping factor Frequency (rad/s) jlj j dj

j

1 0.32907 27.42011 0.99017 0.32299

2 0.38683 38.68230 0.98846 0.00982

3 0.38352 38.35103 0.98856 0.00982

4 0.09066 5.03555 0.99728 0.00011

5 0.09055 5.03176 0.99728 0.00011

Table 2

Condition numbers of system eigenvalues lj

Mode kj;1 kj;1 kj;2 kj;2

j s ¼ 10 s ¼ 20 s ¼ 10 s ¼ 20

1 0:00017� 107 0:00130� 103 1.84786 1.00766

2 0:00127� 107 0:02310� 103 1.20076 1.00611

3 0:00136� 107 0:02311� 103 1.71432 1.00758

4 3:10889� 107 4:75131� 103 1.52448 1.00447

5 3:11084� 107 4:75306� 103 2.15234 1.00587
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in Fig. 2(b) show that the estimates and the pole error itself slightly deteriorate when compared to
the low noise results. Finally, notice that the trend of the pole error of decreasing as a consequence
of increasing the dimension of the Hankel matrix observed in the low noise situation, continues to
hold even in this case.
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Fig. 1. Low noise results: (a) behavior of s2nðHrsð0ÞÞ (dashed line) and average value of JEJ2 (solid line) for several

dimensions of the Hankel matrix; (b) average value of maximum absolute error in lj (solid line) and average value of its

estimate given by sinðyÞ (dashed line) for several dimensions of the Hankel matrix.

Fig. 2. High noise results: (a) behavior of s2nðHrsð0ÞÞ (dashed line) and average value of JEJ2 (solid line) for several

dimensions of the Hankel matrix; (b) average value of maximum absolute error in lj (solid line) and average values of

its estimate given by sinðyÞ (dashed line) for several dimensions of the Hankel matrix.
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5. Conclusions

A reformulation of the well-known eigensystem realization algorithm (ERA) was presented and
an analysis on system pole sensitivity for this algorithm was carried out. The analysis relies on an
existing relationship between the system matrix used by ERA and predictor matrices obtained by
orthogonal projection introduced in Ref. [8,12], as well as on classical eigenvalue perturbation
theory. As a result, the issue of system pole sensitivity associated with ERA was explained and
estimates for the pole error in the form of upper bounds, which say much on the pole error itself,
were provided. In this respect, it was concluded that poles near the unit circle become quite
insensitive to noise provided the dimension of the Hankel matrix is large enough and the poles
themselves are not extremely close to each other. All theoretical results were numerically
illustrated using a difficult test case of pole recovering performance taken from the specialized
literature.
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Appendix A. Theorems

Theorem A.1. Let AP be as in Eq. (8) and let the columns of FACN�ðN�2nÞ form an orthonormal

basis for the null subspace of Cs: Then AP has a spectral decomposition of the form

AP ¼ ½Cw
s F �

L 0

0 0

" #
Cs

F�

" #
; ðA:1Þ

and therefore,

kj;q ¼ JeTj CsJ2JC
w
s ejJ2: ðA:2Þ

Proof. First notice that from the matrix equation (8) and the full-rank factorization (3) it follows
that

CsG ¼ LCs ðA:3Þ

Next, reintroduce matrix V1 of the right singular vector of HrsðcÞ and observe that because
V1V

T
1 ¼ Cw

sCs; left multiplication by Cw
s on both sides of Eq. (A.3) yields

AP ¼ V1V
�
1 G ¼ Cw

sCsG ¼ Cw
s LCs: ðA:4Þ

From this it follows that the jth column of Cw is a right eigenvector of AP associated with
eigenvalue lj and that the right eigenvectors associated with zero eigenvalues are vectors in
NðCsÞ:
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Now set

X ¼ ½Cw
s F �; and Y ¼

Cs

F�

" #
:

Then it follows that XY ¼ Cw
sCs þ FF� ¼ Pþ ðI �PÞ ¼ IN ; because FF� is the orthogonal

projector ontoNðCsÞ: It is also immediate that YX ¼ IN ; which shows that X is a matrix of right
eigenvectors of AP; thus ensuring (A.1). Equality (A.2) is an immediate consequence of Eq. (A.1)
and the definition of kj;q in Eq. (17). &

Theorem A.2. Let xw denote the minimum two-norm solution of the linear system

HrsðcÞx ¼ b; ðA:5Þ

where b is the last column of Hrsðcþ 1Þ and the Hankel matrices are formed from an IRF of a SISO

system (i.e., p ¼ q ¼ 1 in Eq. (2)). Then JxwJ2 is a decreasing function of s, and lims-NJxwJ2 ¼ 0:

Proof. Using the Vandermonde decomposition (4), it follows that

xw ¼ HrsðcÞ
wb 3 xw ¼ W w

NL
se; e ¼ ½1;y; 1�TAR2n: ðA:6Þ

The assertions of the theorem follow from Eq. (A.6) upon using Theorems 2.1 and 3.8 from
Ref. [17]. &

Theorem A.3. Let &X denote the minimum Frobenius-norm solution of Eq. (10) where the Hankel

matrices correspond to the MIMO case. Then J &XJF-0 as s-N:

Proof. From Eq. (10), notice that &X satisfices a system of linear equations with q right hand sides
of type

½L LL?Ls�1L�X ¼ LsL: ðA:7Þ

This system can be rewritten as ½Lð1ÞWs Lð2ÞWs?LðqÞWs�Y ¼ Ls½Lð1Þe Lð2Þ?LðqÞe�; where
Y ¼ JX ; J is an appropriate permutation matrix, LðiÞ ¼ diagðL1;i;y;Lq;iÞ; i ¼ 1;y; q; with Li;j

the ði; jÞ entry of L; and Ws as in Eq. (4). Notice that JYJF ¼ JXJF ; since J is orthogonal. Next,
consider the system

½Lð1ÞWsL
ð2ÞWs?LðqÞWs�y ¼ LsLðiÞe; i ¼ 1;y; q; ðA:8Þ

and notice that there exist infinitely many solutions since this is an underdetermined system. Now
assume that L has no zero entry and introduce

&yi ¼

y1

^

yq

264
375; ykARs such that yk ¼

W w
s ðL

ðiÞÞ�1ZsLðiÞe; if k ¼ i;

0 if kai; k ¼ 1 : q:

(
ðA:9Þ

Thus, &yi is a solution of system (A.8) and J &yiJ2 ¼ JxwJ2: This ensures that the minimum
two-norm solution of Eq. (A.8) does not exceed JxwJ2: Finally, if Y ¼ ½yw1?ywq�; with ywi denoting
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the minimum two-norm solution of Eq. (A.8), then

JYJ2F ¼ Jywi J
2
2 þ?þ JywqJ

2
2pJ &yij22 þ?þ J &yqJ

2
2pqJxwJ22:

The assertion of the theorem is thus a consequence of Theorem A.2. If some entry Li;j vanishes
the inverses in Eq. (A.9) can be substituted by pseudo-inverses and the proof follows in the
same way. &
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