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A b s t r a c t  

This paper presents sufficient conditions to the regional 
stability problem of a class of nonlinear hybrid systems 
in the piecewise nonlinear form. The nonlinear local 
models are defined by a differential equation of the type 
Jc = Ai(x)x + hi(x), where Ai(x) and hi(x) are affine 
functions of x. This class of systems is equivalently 
represented by k = A(x,5)x  + b(x, 5) with 5 denot- 
ing a vector of logical variables that modifies the local 
model of the system in accordance with the continuous 
dynamics. Using a single polynomial Lyapunov func- 
tion, v(x) - x'7)(x)x, we present LMI conditions that 
assure the local stability of the nonlinear system with 
a guaranteed domain of attraction. 

1 I n t r o d u c t i o n  

Piecewise affine systems, also called piecewise linear 
systems, have been investigated during the past years 
because of their wide applicability in a large class of 
nonlinear systems, such as linear systems with satura- 
tion, variable structure control, and systems described 
by fuzzy and ARMAX techniques [1]. Despite the ex- 
istence of powerful methods to cope with this class of 
systems, the generalization to the nonlinear case is a 
difficult task that has been recently studied by several 
researchers. For example: Agrachev ~ Liberzon in [2] 
use Lie-algebraic conditions to analyze the local stabil- 
ity of nonlinear switched systems by using a common 
quadratic Lyapunov function; Beldiman ~ Bushnell in 
[3] extends the Lyapunov's indirect method to deal with 
this class of system; Mancilla-Aguilar in [4] establishes 
sufficient conditions for global asymptotic stability for 
switched systems where the local models are Lipschitz 
vector fields, Li et al. in [5] consider the robust stabil- 
ity problem for a general class of hybrid systems, and 
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E1-Farra ~ Christofides in [6] uses multiple Lyapunov 
functions to the control of switched nonlinear systems. 

Since the development of interior-point methods for 
solving semi-definite programming problems and the 
publication of the book Linear matrix inequalities in 
systems and control theory [7], the LMI framework has 
been widely used to solve many control problems using 
quadratic Lyapunov functions. More recently, several 
nonlinear problems such as regional stability, synthe- 
sis and performance have been addressed by means of 
polynomial Lyapunov functions and convex optimiza- 
tion problems [8, 9]. In particular, we have proposed 
in [101 an LMI based approach for the stability anal- 
ysis of switched linear systems by considering a single 
polynomial Lyapunov function. 

As an extension of [101, this paper focuses on the re- 
gional analysis of a class of nonlinear switched systems 
where the local system matrices are affine functions of 
the state. This class of switched systems is modelled by 
a differential equation of the form k = A(x, 5)x +b(x, 5) 
where x is the continuous state vector and 5 denotes a 
vector of logical variables that modifies the local model 
of the system. Then, to analyze the local stability of 
this class of systems and estimate its domain of attrac- 
tion, we use a common polynomial Lyapunov function, 
v(x) - x'7)(x)x where the Lyapunov matrix 7)(x) is 
computed via a convex optimization problem in terms 
of LMIs. 

The notation used in this paper is standard. Jn  denotes 
the set of n integers {1, 2 , . . . ,  n}. Jl n is the set of n- 
dimensional integer vectors. R n denotes the set of n- 
dimensional real vectors; R n×'~ is the set of n × m 
real matrices; In is the n × n identity matrix; 0n×,~ is 
the n × m matrix of zeros and 0n is the n × n matrix 
of zeros). For a real matrix S, the notation S > 0 
means that S is symmetric and positive definite and 
S' is its transpose. Let X and Y be normed spaces 
and T a function defined from X into Y, then, we say 



T is a bounded function if exists some real number 
MT such that  T(z)  <_ MT z , V z • X.  For two 
polytopes II1 C_ R nl and II2 c_ R n~, the notat ion II1 x 
IIe represents a meta-polytope of dimension nl + n2 
obtained by the cartesian product.  For simplicity of 
notation, the arguments t (time) and x (state) will be 
often omitted as well as matr ix and vector dimensions 
whenever they can be determined from the context. 

2 P r o b l e m  S t a t e m e n t  

Consider the following class of systems 

2(t) = Ai(x( t ) )x( t )+bi(x( t ) ) ,  x(t) • Xi, i • & ,  t > 0 
(1) 

where x(t) • R nx denotes the continuous component of 
the state taking values in the subsets X~ c Rn~; i • ,Tn 
denotes the discrete variable; Ai(x(t))  • a n~×n~ and 
bi(x(t)) • R n~, for i =  1 , . . . ,  n, are given functions of 
x(t) for t > 0. 

Notice that  systems with switching vector fields require 
special at tention in their mathemat ica l  description Ell 1. 
To avoid undesirable behavior in our system model, we 
will assume with respect to system (1) that" 

A1 The origin, x - 0, is an equilibrium point. 

A2  The analysis is performed on a polytopic region 
Bx of the state  space containing the origin. 

A3  The subsets Xi have non-empty disjoint interiors 
and satisfy Z - X1 U . . .  U Xn c_ R nx, i.e., there 
are non-overlapping among the regions Xi. 

A4  The matrices Ai(x) and the vectors bi(x) are 
affine functions of x for all i • ,Tn. 

A5 The changes in the discrete variable i are only 
governed by the continuous state component. In 
other words, the system (1) can be characterized 
as an autonomous switched system. 

A6  There is a finite number of transitions in any finite 
interval of time. 

A 7  On the boundaries among lk adjacent regions of 
Xk, k - i , . . . ,  i + lk, there is no sliding behavior, 
i.e. if x ( t - )  • X i A X j  then x(t) ~ X i A X j ,  where 
x ( t - )  denotes the t rajectory position before time 
t. 

In this paper, we will represent the subsets Xi as fol- 
lows" 

X i - { x  • ~ik(x)_>0, k -  1 , . . . , m i } ,  i • &  (2) 

where ¢ik(x) • R are given affine functions of x. 

Now, consider that  the Lyapunov function has the form 
v(x) - x'7)(x)x, where 7)(x) is a quadratic function of 
x, and is single for all sub-sets Xi. Then, the problem 
of concern in this paper is to analyze the local stability 
of system (1) and est imate its domain of a t t ract ion 
using a convex optimization problem for determining 
the matr ix 7)(x). 

3 Prel iminaries  

In this section, we will introduce some preliminary re- 
sults before the s ta tement  of our main result. Firstly, 
we present a continuous model that  describes the non- 
linear switched system. Secondly, we define the class of 
Lyapunov functions to be considered in this paper and, 
subsequently, we define a level surface of this Lyapunov 
function to est imate the domain of attraction. 

3.1 T h e  S y s t e m  M o d e l  
Consider system (1) with assumptions A1-7.  For con- 
venience, the discrete variable i • Jn  will be associated 
to a set of logical variables { 51 , . . . ,  5n } with 5~ • {0, 1} 
as follows. Let ci be the i-th column of the identity ma- 
trix In and define the logical vector 5 • Jl n as 

5 "-- " -- q ,  if x ( t - )  and x(t) belong to Xi (3) 

io 
The above relation states that  if the discrete state as- 
sumes a given value i • ,Tn the i-th logical component 
of the vector 5 assumes a uni tary value and all the re- 
maining ones are zeros. To represent the fact that  5 
may take any value in the set { c l , . . .  ,cn}, we use the 
notat ion 5 • A where 

/ , , . -  { (4) 

In order to simplify our system representation, notice 
from above that  the elements 5~ of the vector 5 satisfy 

n n- -1  
~ i = 1  5i - 1 and thus 5n - 1 -  ~ i = 1  5i" Also, without 
loss of generality, consider the following assumption on 
the dynamics corresponding to the sub-set Xn: 

A8  The origin is an equilibrium point of the dynamics 
associated to the region Xn, i.e. bn(x) - O .  

Thus, we can recast the nonlinear switched system (1) 
as follows: 

n- -1  n - -1  

- A n ( x ) x + E ( A { ( x ) - A n ( x ) ) a { x +  E b{(x)5{, (5) 
i = 1  i = 1  

for all (z,5) • B,  × A. Observe that  5n was re- 
moved from the expression through the equality 5n - 



n - - 1  
1 -  ~ i = ~  6i. Now, let us introduce the following aux- 
iliary vector 7r ~ R TM where n~ - ( n -  1)nx  + n -  1. 

71 m 

7] 1 

71n_ 1 

71- n 

7 1 - 2 n _  2 

, with 
7c~ - 5ix,  V i ~ jTn_~ 

( 6 )  

To simplify the notation the above relations between x 
and 7r will be hereafter represented in a more compact 
form by the notation (x, 7r) ~ T~ as indicated bellow" 

where f~ ~ R na × n~ and f~2 ~ R na × n~ are affine matr ix 
functions of (x, 5~ , . . . ,  5n-~). 

With  the above notation, we can represent system (5) 
as follows" 

- A n ( x ) x  + A(x)Tr, x ~ Bx,  (x, 7c) ~ Z) (8) 

where the matr ix  A(x)  is given by 

[ ( A ~ - A n )  . . .  ( A n - ~ - A n )  bl ... bn-~ ] .  

As defined above, the matrices f~l and f~2 are used to 
represent the whole set of relations between x and 7r. In 
particular, these matrices will represent the fact that  
is a logical variable. To this end, note from (3) that  the 
following relation holds 55' - diag(5{)  or, equivalently: 

6~6j -- 0 and 6i(6i - 1 )  - O, Vi C j E J n .  

From (6) and above, we get the following" 

(6~-  1)6~x = ( 6 ~ -  1)7r~ = 0, Vi E & - i  
(6~-  1)6~ = (6~-  1)Tr{+n_l 0, Vi E & - i  
6iS jx  = 6~7cj = O, Vi ¢ j E J n - 1  
6~5j = 6iTcj+n-1 - O, Vi ¢ j E J n - 1  

(9) 

Similarly, the following identities must hold: 

5ix - 7c~ -- O, 7c~ - xTci+n_l O, Vi E J n - 1 .  (10) 

As a consequence, the set of identities in (9) and (10) 
can be incorporated into (7) by rewriting them as new 
lines of f~l and f~2. 

3.2  L y a p u n o v  f u n c t i o n  c a n d i d a t e  
In this paper, we consider that  the Lyapunov function 
candidate, v ( x )  • Bx ~ R, is common for all subset Xi, 
and has the following structure: 

- - 

! 

O(x) P O(x) (11) 

where O(x) E R nl ×nx is a given affine matr ix function 
of x and P is a constant matr ix  to be determined. 

From the Lyapunov theory, [121, the nonlinear switched 
system (1) is locally stable if there are positive scalars 
ca, Cb and cc that  satisfy the following inequalities for 
all x E Bx: 

CaX'X <_ v(x) -- x"P(x)x  <_ CbX'X (12) 
X I I - 2 '7 (x)x + ¢ , (x )x  _< x (13) 

As a result, we have to compute the time derivative of 
the Lyapunov matr ix  7)@). To this end, note that  O(z) 
is an affine function of z. Therefore, we can rewrite it 
with the following structure: 

n x  

6)(x) - E T{x{ -+- U (14) 
i =1  

where x~ is the i-th entry of the vector x and the ma- 
trices Ti, for i = 1 , . . . ,  nx,  and U are constant with the 
same dimensions of O(x). 

In addition, the term 6 ( x ) x  that  appears in x ' T b ( x ) x  
can be rewrit ten as follows: 

n x  n x  

- Z - ex( ) - Z 
i = 1  i = 1  

where r~ is the i-th row of the identity matr ix Inx. 

Therefore, we can use (14) and (15) in order to obtain 
a convex characterization of the Lyapunov inequalities 
(12) and (13). 

3.3  D o m a i n  of  A t t r a c t i o n  
The Lyapunov inequalities (12) and (13) assure the lo- 
cal stability of system (1). As a consequence, we can 
est imate its domain of attraction. 

In this paper, we estimate the domain of at t ract ion 
by computing the region that  contains the largest level 
surface of v ( x )  belonging to the polytope Bx. 

Hence, without lost of generality, we use the level sur- 
face of the Lyapunov function candidate v ( x )  - 1 and 
define the region: 

T -  { x  " v(x) - x "P(x)x  <_ 1} (16) 

as an estimation of the domain of attraction• Observe 
that  this set is not an usual ellipsoid because v ( x )  is a 
polynomial function of x. 



Also, for convenience, we will represent Bx by the set 
of inequalities: 

{ ' } Bx - x " a~x <_ 1, l -  1 , . . . , n ~  (17) 

where the vectors a~ ~ R ~x are associated with the n~ 
edges of the polytope Bx. Keep in mind that Bx may 
be equivalently represented by its vertices• 

Through the S-Procedure [7], the relation T C Bx 
holds if the following conditions are satisfied: 

/ / 

2 ( 1 - a k x ) ÷ x ~ ( x ) x -  1~_ 0, k -  1 , . . . , n ~  (18) 

Observe that the problem of maximizing the size of T 
is related with the trace of 7)(x). Taking into account 
the structure of P(x) ,  we get that 

/ 

1 1 [a~ 0 ]  1 
x a~ p x > 0, 

e (x)  0 e (x)  

k -  1 , . . . , n~  (19) 
As in [10], the above expression may be used to derive 
a convex optimization problem to optimize the size of 
T. 

4 Stability Analysis 

In this section, we present a sufficient convex condi- 
tion to the regional stability problem of the class of 
nonlinear switched systems defined in section 2. Since 
the switching rules of the model are described by (2) 
and the expressions defining the auxiliary vector 7r are 
expressed in (7), for analyzing the system stability we 
need to take into account the following inequality and 
equality constraints: 

k E J , ~  
TC ' - -  ' ' 

Moreover, from the definition of the Lyapunov func- 
tion in (11) the following equality constraint will be of 
interest: 

[ -Z l ] 0 

In deriving the stability conditions, we take into ac- 
count the above equality and inequality constraints 
through the Finsler's lemma and the S-procedure [7], 
respectively. When these techniques are applied they 
introduce a set of scaling variables that play an impor- 
tant role in reducing the conservativeness of the final 
result. 

Before we state the main result of this paper, we need 
the following auxiliary notation: 

I )  - -  

2 n - - 1  2 n - - 2  
I I I I 

i = 1  i = 1  

where Fi (i E J2~-2) are free matrices with appropriate 
dimensions and ¢i are affine matrix functions of x given 
by 

~ ) i  ÷ n - - 1  

( ~ 2 n - - 1  

m i  

E 
k = l  

m i  

E 
k = l  

TIZ n 

E 
k = l  

I~ik !)ik , I~ik E R ~x × ~x , i E J~_  1 

R(i+~-l)k!) ik ,  R( i+~- l )k  E R, i E J n - 1  

R(2~-l)k¢~k, R(2n-1)k E R ~x ×~x 

with Ei denoting constant matrices of structure given 
in the sequel and Rik > 0 representing scaling variables 
to be determined. 

The matrices Ei are defined as follows. Let /)i and 
/)2n-1 be constant matrices such that /)iTr - 7ri (i E 

J2~-2) and/~2~-1~- - E~-~ 1 7ri. Then, define: 

[ <  

Also, in order to apply the Finsler's lemma, we intro- 
duce the following notation: 

- x l  0 . . . . . .  0 
- x 2  0 .. • 0 

C X  . . . .  , 

. . . .  

• • • 0 X n x  - - X n x - - 1  

N - 0 ] E R (nx+nl)×(nx+nl+n~), 

C _ 

D _ 

F _ _  

X 2  

0 x3 
• 

• 

0 0 

Cx 
n l  

0 0] 
+ ' 

0 A ( . ) ]  
0 0 0 ' 

- D  F ] 
0 [ C  0 ]  . 
0 [ ~  0 ~ ]  

From above, we state the following theorem which pro- 
poses a sufficient condition for the regional stability 
problem introduced in Section 2. 

T h e o r e m  1 Consider sys tem (1) with assumptions 
A1-A8,  its associated sys tem in (5) and the above no- 
tation. Let O(x)  and Ox(X) be affine matr ix  funct ions  
of x as defined in (14) and (15), respectively. Sup- 
pose that P = P' ,  L, M ,  R~k and F~ are a solution of 
the following optimizat ion problem where the LMIs  are 



constructed at all vertices of 13x x A.  

C' min trace (P + L C  + L ) subject to" 

1 0] 
C'L '  > 0' /  E J~e (21) < (P + LC + ) 

0 

x ' P  + + M ~  + ~ M <o (22) 

Then, system (1) is asymptotically locally stable and 
~(~) g i ~  by (11) i~ ~ Ly~p~o~ f ~ t i o ~  i~ ~x. AZ~o, 
T = {x : v(x) <_ 1} is an invariant set, i.e., for all 

proaches the origin as t ~ oc. 

R e m a r k  1 It was assumed that the system cannot 
have sliding modes. However, the proposed approach 
can be modified to tackle with sliding modes. The idea 
is to use the Filippov's approach [11] for stability and 
the Finsler's Lemma to take the sliding mode dynamics 
into account. In fact, more work on this topic is being 
carried out by the authors. [] 

5 N u m e r i c a l  R e s u l t  

In this section, we present a numerical example to il- 
lustrate the potential of our approach. To this end, we 
analyze the regional stability of the chemical reactor 
introduced in [13, Example 7.21 with input saturation. 

Thus, consider the following bilinear system with sat- 
uration: 

(23) 

where K -  [ 0.3133 
uration function and 

-3.5561 ] ,  sat( .) is the unit sat- 

0 5 / 1 2  
A -  -50/3 s/3 [ ° l , b ( ~ ) -  2 + ~ / s  " 

The above system can be equivalently represented by 
the following nonlinear switched system: 

k -  A~(x)x + b~(x), x E X~, i E 33 

where 

A,  (~) - A~(~)  - A, A~(~)  - A + b ( ~ ) K ,  

The subsets X1, X2 and X3 represent the positive sat- 
uration, the negative saturation and non-saturation re- 
gions, respectively. From (2), they can be defined as 
follows: 

~l(x) - - (1  + K x ) ,  
~2(x) - - l + K x ,  

~31(x) - l + K x ,  ~32(x) - 1 - K x  

Define the Lyapunov function candidate by choosing" 

[ x"2 l x2,2 
Consider that the polytope 13x is defined by the follow- 
ing vertices: 

{[  0.151[-0.15 ] 
0.2 ' -0 .4  ' 

[001  [01  
- .2 ' 0.4 

-0.02 1 
-0 .9  ' 

, [  0.02 0 1} 
Figure 1 shows the estimated domain of attraction, ob- 
tained from Theorem 1, and the phase portrait of sys- 
tem (23) for comparison purposes. 

x l  ' = 0.4167 x2 
x2 = - 16.6667 x l  + 2.6667 x2 + (2 + 0.125 x l )  sat(x1 ,x2) 

i i i i i 

1 i ! i i 

0.8 ! ! 

0.6 i 

0 4  i 

o l  0 2  0 

- 0 . 2  

- 0 . 4  

- 0 6  i 

°:i 
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 

X 1 

F i g u r e  1: Theoretical and estimated domain of attraction 
for system (23). 

6 C o n c l u d i n g  R e m a r k s  

In this paper, we have addressed the regional stability 
problem of nonlinear switched systems with the form 
k = A~(x)x + b~(x), x E X~, i E & ,  where A~(x) and 
bi(x) are affine functions of x. For this class of sys- 
tems, we have proposed a sufficient condition in terms 
of LMIs that assures the local stability of the system 
while providing an estimate of its domain of attrac- 
tion. To this end, we have used: (i) a representation 
k = A(x,  5)x + b(x, 5) for the switched system in which 
5 denotes a logic variable associated with the switching 
logic; and (ii) a single polynomial Lyapunov function 
v(x) - x 'T)(x)x  for all sub-set Xi, where the Lyapunov 
matrix 7)(x) is a quadratic function of x. As future 
research, we intend to extend these results for more 
complex systems, e.g., those with nonlinear (not only 
affine in x) local matrices and whose switching dynam- 
ics depend on continuous and logical variables. 
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P r o o f  o f  T h e o r e m  1 

Define the following auxiliary vectors: 

Let D be a matrix such that D{ - 0, e.g. 

D - [  _+. O.x,+l ] 

Consider the set of LMIs in (21). Applying the Schur 
complement to it leads to P + L C + C ' L '  > O, g z E 13~. 
Since this LMI is strict, there exists a sufficient small 
scalar e~ > 0 such that the following is still satisfied: 

I I I 

P+LC+CL -eIDD>O, VzEB~ 

Pre- and post-multiplying the above LMI by {' and {, 
respectively, yields z'TO(z)z >_ elz 'z ,  g z E 13~ (notice 
that C{ - 0 by construction). As the elements of 70(z) 
are bounded on B,, there exists a sufficient large scalar 
e2 > 0 such that TO(z) _< e2I~+. Then, we get" 

I I I 
< - < 

Now consider the LMI (21). Pre- and post multiplying 
it by[  ~' {' ] and its transpose, we then get" 

Note that g,[ ~' ¢' ]' - 0, since by construction we 
have the following identities: 

- D ~ + F # - 0 ,  C # - 0  and g l l z + g l 2 r r - 0 .  

/ 

Also, we can rewrite the term ¢)¢ as follows: 

/ 
n - - 1  

i = 1  

n - 1  

i = 1  

From (2), (3) and (20), it follows that oc'~/oc >_ 0 when- 
ever z E X/. Moreover, in this case we have 5i - 1 and 
5j - 0, i # j ,  and t h u s S n S i -  0 fo r i  E Jn-1 .  Since 
Bx c _ U X / , w e g e t  ¢ ' O ¢ _ > 0 f o r a l l z E B ~  a n d S E A .  

From above and (25), we get the following: 

for some sufficient small e3 > O. 

Finally, pre- and post-multiplying the set of LMIs in 
(21) by [  1 ~' ] and its transpose we get (19). Then, 
{oc "v(oc) <_ 1} c Bx, i.e. T is an invariant set which 
completes the proof. 
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