(OB-3) |
I.J.
TANEJA, Generalized
Information Measures and Their Applications: http://www.mtm.ufsc.br/~taneja/book/book.html. First Edititon 1998; Second Revised Edition 2001. |
43. |
42. |
SOLEIMANI-DAMANEH M, ZAREPISHEH M, Shannon's entropy for combining the efficiency results of different DEA models: Method and application, EXPERT SYSTEMS WITH APPLICATIONS, 36(3)(2009), 5146-5150. (ISI CITATION) |
41. |
KANG DK, SOHN K, Learning decision trees with taxonomy of propositionalized attributes, PATTERN RECOGNITION, 42(1)(2009), 84-92. (ISI CITATION) |
40. |
HARANCZYK G, SLOMCZYNSKI W and ZASTAWNIAK T, Relative and Discrete Utility Maximising Entropy , OPEN SYSTEMS & INFORMATION DYNAMICS, 15(4)(2008), 303-327. (ISI CITATION). |
39. |
MARTINEZ O, REYES-VALDES MH, Defining diversity, specialization, and gene specificity in transcriptomes through information theory , PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 105(28)(2008), 9709-9714. (ISI CITATION) |
38. |
Ramón Llorca Queralt. Julio, DETECCIÓN DE TUMULTOS CON. FILTROS DE PARTÍCULAS. 2008. ETSETB - Ph. D. Thesis |
37. |
Arbres de décision em situation d'asymétrie - Université Lumière Lyon II. École Doctorale Informatique et Information pour la Société. THÈSE pour obtenir le grade de. Docteur en. Informatique - Ph. D. Thesis - 2008 |
36. |
M. J. B. Tito, R.F. C. Monteiro, N.C. Roberty and J.P. Zubelli (2006), Solution of an Inverse Problem in Radiative Transfer Using Convex Functions Related to the Entropy of Shannon, Renyi, Varma, Havrad- Charvat, Sharma Taneja and Burn, VI PanAmerican Work Shop - Applied and Computational Mathematics, July 23-26, Univeridad del Mar, Ciudad Universitaria, Puerto Angel, Oaxaca, México. |
35. |
M. J. B. Tito (2006), Aplicações de Algoritmos Baseados na Distância de Bergman para a Solução de Problemas Inversos em Transferência Radiativa, Ph. D. Theis, Universidade Federal do Rio de Janeiro, Departamento de Engenharia Nuclear. |
34. |
R.G. Zaripov (2006), Evolution of the q-entropy and energy dissipation during irreversible processes in nonextensive systems, Russian Physics Journal, 49(2), 159-165. |
33. |
V. Aggarwal and R.K. Bansal (2006), A Coding Theorem Characterizing Rényi's Entropy through Variable-to-Fixed Length - http://arxiv.org/abs/cs.IT/0607029 |
32. |
R.G. ZARIPOV (2005). New Measures and Methods in Information Theory. Kazan: Kazan A.N. Tupolev State Technical University Press, 2005, 364 p. (in Russian). ISBN 5-7579-0815-7, http://www.imm.knc.ru/zaripov-measures.ru.html. |
31. |
R.G. ZARIPOV (2005), To Fluctuation Theory in Statistical Mechanics of Nonextensive Systems, , Russian Physics Journal, 48(10), 1012-1019. |
30. |
Master Thesis - A. WIJAYA (2005), APPLICATION OF MULTI-STAGE CLASSIFICATION TO DETECT ILLEGAL LOGGING WITH T HE USE OF MULTI-SOURCE DATA, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands. |
29. |
P. BOTTA-DUKÁT (2005), THE RELATIONSHIP BETWEEN JUHÁSZ-NAGY'S INFORMATION THEORY FUNCTIONS AND THE LOG-LINEAR CONTIGENCY TABLE ANALYSIS, ACTA BOTANICA HUNGARICA, 47(1-2), 53-73. |
28. |
M.H. REYES-VALDES and C. G. WILLIAMS (2005), An entropy-based measure of founder informativeness , Genetical Research, 85(1), 81-88 |
27. |
P. CERONE and S.S. DRAGOMIR (2005), Approximation of the integral mean divergence and f-divergence via mean results, MATHEMATICAL AND COMPUTER MODELLING 42 (1-2): 207-219. Also available at: RGMIA - Reserach Report Collection, http://rgmia.vu.edu.au/v5n1.html. |
26. |
P. KUMAR (2005), CHARCTERIZATION OF BETA PROBABILITY DISTRIBUTION BASED ON THE MINIMUM CHI-SQUARE DIVEGENCE PRINCIPLE, priprint. Available on-line at: http://web.unbc.ca/~kumarp/d1.pdf |
25. |
P. KUMAR (2005), MIMIMUM CHI-SQUARE PROBABILITY DISTRIBUTIONS GIVEN EXPONENTIAL DISTRIBUTION AND MOMENTS, priprint. Available on-line at: http://web.unbc.ca/~kumarp/d5.pdf |
24. |
Sun YX, Harper DJ, Watt SNK (2005), Aiding comprehension in electronic books using contextual information, LECTURE NOTES IN COMPUTER SCIENCE, 3652: 504-506. (OB-3) |
23. |
H. ZHENG (2004), Maximum entropy modeling for skin detection: with an application to Internet filtering, (Doctor) Ph.D. Thesis, Univeristé des Sciences et Technologies de Lille, France, 2004, |
22. |
P. CERONE and S.S. DRAGOMIR (2004), Stolarsky and Gini Divergence Measures in Information Theory, RGMIA - Reserach Report Collection, http://rgmia.vu.edu.au/v7n2.html |
21. |
Master Thesis - Ana Helena Tavares (2003), Aspectos Matemáticos da Entropia, Universidade de Aveiro, Portugal. |
20. |
M. HUMBERTO RAYES-VALDÉS and C.G. WILLIAMS (2003), Shannon entropy in informativeness map construction, Pre-print. |
19. |
S.S. DRAGOMIR (2003), New Inequalities for for Csiszár Divergence and Applications, ACTA MATH. VIETNAM, 28(3), 123-134. |
18. |
S. S. DRAGOMIR (2003), On the p-Logarithmic and Alpha-Power Divergence Measures in Information Theory, Panamerican Math Journal, 13(3, 1-10. Also available on-line at: http://arxiv.org/PS_cache/math/pdf/0304/0304240.pdf |
17. |
S.S. DRAGOMIR
(2002), Other
Inequalities for
Csiszár Divergence and Applications, ACTA MATH. VIETNAM, 27(2)(2002), 203-217. |
16. |
N.S. BARNETT, P. CERONE and S.S. DRAGOMIR (2002), Some New Inequalities for Hermite-Hadamard Divergence in Information Theory, RGMIA - Reserach Report Collection, http://rgmia.vu.edu.au/v5n4.html. |
15. |
N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, et al. (2002), Comparing two integral means for absolutely continuous mappings whose derivatives are in L-infinity [a, b] and applications, COMPUTERS & MATHEMATICS WITH APPLICATIONS 44 (1-2): 241-251. |
14. |
P. CERONE and S.S. DRAGOMIR (2002), On the Approximation of the Integral Mean Divergence and f-Divergence via Mean Results, RGMIA - Reserach Report Collection, http://rgmia.vu.edu.au/v5n1.html. |
13. |
N.S. BARNETT, P. CERONE, S.S. DRAGOMIR and A. SOFO (2002), Approximating Csiszar f-divergence by the use of Taylor's Formula with Integral Remainder, MATHEMATICAL INEQUALITIES & APPLICATIONS 5 (3): 417-434. |
12. |
N.S. BARNETT, P. CERONE, S.S. DRAGOMIR and A. SOFO (2001), Approximating Two Mappings Associated to Csiszar f-Divergence via Taylor's Expansion. , priprint in: Inequalities for Csiszár f-Divergence in Information Theory. |
11. |
N.S. BARNETT, P. CERONE, S.S. DRAGOMIR and A. SOFO (2001), Approximating Csiszár f- Divergence via an Ostrowski Type Identity for n-Time Differentiable Functions, priprint in: Inequalities for Csiszár f-Divergence in Information Theory. |
10. |
N.S. BARNETT, P. CERONE, S.S. DRAGOMIR and J. ROUMELITIS (2001), Approximating Csiszár f-Divergence via Two Integral Identities and Applications, priprint in: Inequalities for Csiszár f-Divergence in Information Theory. |
9. |
S.S. DRAGOMIR and V. GLUSCEVIC (2001), Approximating Csiszár f-Divergence via a Generalised Taylor Formula, priprint in:Inequalities for Csiszár f-Divergence in Information Theory. |
8. |
S.S. DRAGOMIR, J. SUNDE and C. BUSE (2000), Some New Inequalities for Jeffreys Divergence Measure in Information Theory, RGMIA - Reserach Report Collection, http://rgmia.vu.edu.au/v3n2.html. |
7. |
Information Theory: Addition Material and Resources |
6. |
Number Theory and Entropy |
5. |
Selected Topics in Applied Probability |
4. |
Characterizations of PDFs by Rare and Ordinary Entropy |
3. |
RGMIA Monographs or RGMIA: Theory of Inequalitie and Applications in Information Theory |
2. |
SHALIZI, C. R. - Information Theory - On-line reading material by Cosma Rohilla Shalizi. |
1. |
X.L. YANG - Basics of Information Theory |