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Derivative Markets

Worldwide Exchange Traded Derivatives Breakdown by products
(billion contracts) in 2013
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Figure: In 2013, commaodities represented 19% of the total amount of traded
derivatives.

Source: World Federation of Exchanges
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Pricing Problem

Required properties:
@ Robustness.
@ Reliability.
@ Simple calibration.

Desirable property: implied smile adherence.
Well established model: Dupire’s Local Volatility [5].

Applications: Calendar spread options, path dependent options, ...
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Challenges in Commodity Markets

Peculiarity in some futures for energy commodities:

@ WTI options: three business days before the futures’ maturity.
@ HH natural gas options: the business day before the futures’ maturity.
@ Heating oil options: three business days before the futures’ maturity.

@ RBOB options: three business days before the futures’ maturity.

Source: CME webpage.

Conclusion: We do not have a surface of option prices for each future.
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Challenges in Commodity Markets (cont.)

@ Convenience yield is an important feature.
@ In general, options are American.
@ Vol Calibration from American pricing is much harder:
The forward problem should be solved for each strike and maturity. See

Achdou-Pironneau [1].

@ Then, evaluate European prices from the American ones.
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Principal Features

@ The term-structure of future prices is given by:

@ The curve of initial future prices.
@ The local volatility surface.

@ Then, we can form a unique surface of option prices after a normalization.
@ We apply usual Tikhonov regularization to calibrate local volatility.

@ Use many surfaces of prices in the calibration procedure: online setting.
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Online Approach

@ Option prices change with movements of the underlying asset.

@ After technical adaptations, the main underlying is the commodity spot
price.

@ Consider the nearest to maturity future as the spot price (proxy).
@ Then, index the option price surface by this underlying.
@ Reorder the underlying price in ascending order.

@ Then, the forward problem associates families of local volatility surfaces to
call option prices:

G(S, T, K) '—> C(37 7-7 K)’ S E [0, Smax - Smax].
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Reordering Future Prices
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Figure: Left: 30 market future and option prices expiring at Nov. 2013. Strike price is
US$ 105,00. Right: Reordered prices.
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Dupire’s Local Volatility Model in Commodity Markets

° (%, ,‘F,Iﬁ’) - risk neutral filtered probability space.
@ Commodity futures are the underlying assets.

@ F; 1 - future price at t > 0 with maturity 7 > 1.

@ S; (unknown) spot price at t > 0.

o Fir =E[Sr|F] then {Ft.7}tefo,r) is @ martingale.

Assume that F; 7 satisfies:

dFir = o(For,t, Ft,r)Ft,rdVVt, foro<t<T

Fo,r is givenand Fr 7= Sr. %
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Dupire’s Equation

Fix the current time at t = 0, European call options satisfy, with T < T:

ac 1.2 20°C ,

— = For T,K)K?=—,0<T<T,K>0

aT 2 For TR G
| = ' !
KTOC(T K) For, 0<T<T,

(1)

im C(T,K) = 0,0<T<T,
K—+o0
C(T=0,K) = (Fop—K)*, forK>0.

We need some technical adaptations.
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Technical Points

Perform the change of variables
=T and y=Ilog(K/For).
Then define:
V(Fo.r,T,y) := C(Fo.1,7%,Fo.r€”) and a(Fo 1, T,y ) := %GZ(FOJ/,T, Fo.re”).
Moreover, normalize the option prices by its underlying futures:

V(FO,THTvy) = V(FO,TUTvy)/FO,T"

Thus, from the previous PDE we have the following problem:

impa ’

Local Volatility Model in Commaodity Markets and Online Calibration ©V. Albani (IMPA) 11/04/2013 12/50



A Surface of Option Prices

We also assume that

V(FO,T’;T,}’) = V(8071:7y) and a(FO,T/afcay) = a(SO7T7y)‘

Then, V satisfies:

T = asen) (Gren-Sen) o0 yer
lim V(t,y) = 1,1t>0,
a (2)
yL'T V(t,y) = 0,1>0,
V(t,y) = (1—¢)", foryeR.

It is independent of Fo 1!
We present some background properties of the forward operator. %
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The Forward Problem

@ g, ERst. 0<a; <ap < +oo,
@ gyin H'TE(D), withe > 0and a; < ap < ap.
@ Define the set

Q:={acay+HT(D):a<a<a)} (3)

Proposition
If a € Q, then the Cauchy problem of Dupire’s Equation is a well-posed. J

See, Crepey [3], De Cezaro-Scherzer-Zubelli [4] and Egger-Engl [6]. impa s
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Online Setting

@ Denote the index by s € [0, 5].

@ The family of local volatility surfaces:
A:s5€0,5] — a(s;T,¥) € Q.
@ The family of call prices given by Dupire’s equation:
V:(s,a(s)) — V(a(s))
@ Then define the forward operator.

F:aA— 7.
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Properties of The Forward Operator’

Proposition

Under some regularity assumptions on the index, the forward operator ‘F
satisfies:

() Itis continuous and compact.
(i) It is weakly continuous and weakly closed.

(iii) It is Frechét differentiable

(iv) Itis injective.

We now start the analysis of the inverse problem.

impa
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Local Volatility Calibration

Problem

o Let V be a surface of European call option prices.
@ Assume also that it is a solution of Dupire’s equation.

@ Then, find its correspondent local volatility surface a', i.e., solve the
equation

Dupire’s formula:

Vyy — Vy.
The uncorrupted data should be known, at least, with continuous precision.
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Local Volatility Calibration

Problem

o Let V be a surface of European call option prices.
@ Assume also that it is a solution of Dupire’s equation.

@ Then, find its correspondent local volatility surface a', i.e., solve the

equation N
V=Vv(a"). (4)
Dupire’s formula: N
aT = #
Viy = Vy
The uncorrupted data should be known, at least, with continuous precision.
That is unreasonable! impa s
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Option Price Data

Data Issues:
@ Time-to-maturity x Strike - mesh is sparse.
@ Missing prices for some strikes.
@ Noise introduced by trading.
@ Noise level varies with strike and maturity.

Let V denote the noiseless data, given by Dupire’s eq.
The observed prices are denoted by VS, where
VO =P(V+E) and &:=||V-V|,

where E is the noise and
P is the observation operator.
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Tikhonov-type Regularization

@ The calibration problem is ill-posed.

@ Recall that
Q:={aca+H(D):a<a<a)}.

Then, finding a solution to
min{||V(a) — V3| : subjectedto ac Q}
is not possible.
We then regularize it and solve:

Problem
Find an element of

argmin{||V(a) — V®|? +af,(a) : subjectedtoac Q}.

(5)
[
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Tikhonov-type Regularization (cont.)

Under the online setting, it becomes:

Problem
Find an element of

argmin{/sH V(a(s)) — VO(s)||2ds +afq,(A) : subjectedto 4 € Q}, (6)
0

where £ is the set of continuous trajectories

A:s€[0,s]— a(s) € Q.

The penalization functional f4, should be convex and coercive.

The regularization parameter o should be appropriately chosen.

Local Volatility Model in Commodity Markets and Online Calibration ©V. Albani (IMPA)
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Morozov’s Discrepancy Principle

The choice of o is based on the discrepancy principle:
Definition
For1 < 11 < T, we choose o. = o8, u®) > 0 such that
18 < [|V(a) — VO < 128 (7)

holds for some af’x minimizer of the Tikhonov Functional.

The same principle works under the online setting, i.e.,

wo< L [T Ivias) - Vsl < b

impa ’
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Some Canonical Examples of fj,

@ Quadratic Regularization:
fao (@) = [la— a0 %2 py-
@ Smoothing Regularization:
far(a) = Billa— aOHiZ(D) +Bolldxa— axélo”iz(n) + Bs||0ra — drao Hfz(D)'

B; should account discretization levels.
© Kullback-Leibler:

(@)= [ [ loalaz.p)/an(z.y)  (a0(z.y) ~ a(s.y))ldyet.
© Total Variation:

fap(@) = [|0ya—9dyaol|,1(p) + [[0za — draol| 1 (p)- %
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Well-Posedness

Proposition
The level sets

tia(M) = {le €N /Os|| V(a(s)) — V3(s)|[2ds+ aifa, () < M}

are weakly pre-compact. The restriction of the forward operator F onto (M)
is weakly continuous.

Theorem (Existence)
Let o > 0 and A, be fixed. Then, the Tikhonov functional

[ IVGats)) - Vs s+ atn (1)

has a minimizer in .

v
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Stability of Minimizers

Definition
A minimizer of the Tikhonov functional is stable if, for small perturbations on the

data, there exists a minimizer correspondent to the perturbed data in its weak
neighborhood.

Theorem (Stability)
Every minimizer of the Tikhonov functional is stable.
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Convergence of Minimizers'

Theorem

The regularization parameter o. = (8, U®) obtained through Morozov’s
discrepancy principle satisfies:

2
lim o(8, 7% =0 and lim ——— =0.
550+ ( ) 50+ oS, UP)

Theorem

Let {8k }ken be s.t. & — 0. N
Let {V¥},cn be the sequence of noisy data, satisfying V3% — V.
Then,

S —2
aswar,

where A is the family of true local volatility surfaces.

v
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Convergence Rates'

Theorem (Convergence Rates)

Assume that a. = o8, ud) is chosen through the Morozov's discrepancy
principle.

Furthermore, assume that f4,(a) = ||4 — A ||?.

Then

195 - 2| = 0(8"%) and ||V(a) — V7|l = O(8),

where a5 € Q is the regularized solution.
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Convergence Rates?
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European Prices from American Ones

@ Assume Black’s model: constant coefficients [2].
@ Evaluate American implied volatilities from market prices.
@ Then, evaluate European call prices, with such implied volatilities.

Black AME Pricing B-S Formula
CaME — GAME " CEeuR.
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American and European Implied Volatilities: HH Nat. Gas
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Figure: Left: Mat.:12/26/2013. Right: Mat.:01/28/2014
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American and European Implied Volatilities
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Figure: Left: Mat.:02/25/2014. Right: Mat.: 03/26/2014
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Correlations

Futures on the same commodity for different maturities are highly correlated.

Future Prices Log-Returns
0.08

0 100 200 300 400 500 600 700 800 % 100 200 300 400 500 600 700 800

Figure: Example: Future prices and daily log-returns of Henry Hub nat. gas.
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Correlations

Example: Future prices and daily log-returns of Henry Hub nat. gas.
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Figure: Minimum of correlations between daily log-returns - first and second tests.
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Correlations

Future Prices Log-Returns
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Figure: Example: Future prices and daily log-returns of WTI oil.
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Correlations

Min. Correlations Returns - Test 1 Min, Correlations Returns - Test 2
1 - 1 =
i s 0.95 [———C}
099) u e g o e e
\B\\‘ H\g\\ e
e
098 T \ 5 o /V
R e
0.85
0.97 E\\ A~
0.8
0.96 N
\\ AN 075
0.95
" 07
JEE I /
0947 =g 065 "6
—a—12 12
0937 —a—1g \m 067 —=—18
—a—04 24
092 i 0.55 ———+ . i ; . . i
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Figure: Minimum of correlations between daily log-returns - first and second tests.
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Numerical Solution

@ The forward problem is solved by a Crank-Nicolson scheme.

@ The minimization of the online Tikhonov functional

2
Y (U(/q?SI7TnaYm)_US(SlaTmYm)> +afq,(4), (8)

I,n,m

is solved by the Conjugate-Gradient method.
@ The steps in iterations are chosen by the Wolfe rules.
@ The stopping criteria is the Morozov discrepancy:

718 < |Ju(a) — u¥]| < 128.
@ We assume that the noise level is equal to half of the mean of the bid-ask

length. ‘
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Synthetic Data: Local Volatility.
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Figure: Left: Original. Center and right.: Reconstructions with noisy data.
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Synthetic Data: Local Volatility.
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Figure: Left: Original. Center and right.: Reconstructions with noisy data.
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Synthetic Data: Residual and Error Evolutions.
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Figure: Left: Residual x discretization level. Right: Error x discretization level.
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Online x Standard Calibration
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Figure: More data, better results!
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Online x Standard Calibration
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Figure: More data, better results!
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Online x Standard Calibration
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Figure: More data, better results!
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Online x Standard Calibration
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Figure: L2 distance between original and reconstructed local vol.
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WTI Local and Implied Volatilities
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Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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WTI Local and Implied Volatilities
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Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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WTI Local and Implied Volatilities
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Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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Local Vol.: Henry Hub Nat.

0.55
050
0.55
3 045
2
[ = 0.45
3 oMo &
.05 years b3
—+—0.15 years
0357 5 O-2years 0.35
e 0.25 years > 0.2
—'— 028 years N
- -1 -0.5 0 log(KIS
- 05 0 05 1 0 0.5 1 oS,

Loa-monevness

Figure: Left: local vol. reconstructed for some maturities. Right: reconstructed local
vol. surface.
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Implied Volatility Comparison

— Model
0.39 ‘ ~~ "Market

= 038 3
> >
O O
2 2
a a
Eos7 E
0.361
i i i i i i i i i
-0.2 -0.1 0 0.1 0.z -0.2 -0.1 0 0.1 0.z
Loa-monevness

Loa-monevness

Figure: Implied vol. (Black) for market prices (dashed) and model prices (continuous)
for two maturities.

impa ’

47 /50

Local Volatility Model in Commodity Markets and Online Calibration ©V. Albani (IMPA) 11/04/2013



HH Local and Implied Volatilities
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Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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HH Local and Implied Volatilities
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Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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Conclusions and Future Directions

Conclusions:
@ Applied Dupire’s local vol. model to commodity markets.
@ Solution of Local vol. calibration by convex regularization.

@ Online setting: associate families of local volatility surfaces to call option
prices.

@ Morozov discrepancy principle.
@ Numerical tests with market as well as synthetic data.

@ The model has the required properties and the desirable one: robustness,
reliability, simple calibration and smile adherence.

Future directions
@ Application of particle and Kalman filtering techniques.
@ Convex risk measures associated to local volatility.
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