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The Jump Diffusion Model

Let (Q, 7, T,]?’) be a filtered prob. space.

The asset price S; satisfies:
t t
Si=8 +/ rS,r_dt'—i—/ G(t/, Sﬂ_)st/th/—i-
0 0

t ~
//Stf_(ey—1)N(dt’dy), 0<t<T,
0 JR

where W is a Brownian motion,

N is the compensated Poisson prob. measure on [0, T] X R,

N is the poisson measure and the compensator is v(dy)dt.

Cont and Tankov (2003).

This model allows asset price to jump. This happens quite often in practice!
Recall 2007/2008...
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Vanilla Options

o European Call: gives the right, but not the obligation, of buying a share of
an asset for a fixed strike price at its maturity.

@ Euopean Put similar to the call, but gives the right of selling.

@ American Option (call and put) can be exercised any time before its
maturity.

@ Sometimes, American options are more expensive than the European
ones.

@ The prices of such contract take into account asset dynamics.
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European Call Prices

An European call option price is given by:
C(t, S, T,K) = e " VE[max{0, S — K}| F].

If 6 > 0 and the compensator v satisfies |, e?v(dy), if, 6 < K then, by
setting t = 0 and denoting 7T the time to maturity and K the strike price, by
Bentata and Cont (2015) the price of an European call option is the unique
weak solution of

]
Ce(T,K) — §K26(‘C, K)?Ck (T, K) + rKC (1, K) =
/ v(dz)e” (C(t,Ke %) — C(t,K) — (e % —1)KCk(r,K)),
R
with T > 0, K > 0, and the initial condition

C(0,K) =max{0,Sy— K}, K > 0. (%
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Change of Variables

Make the change of variable y = log(K/Sp) and define
1
a(t,y) = 56(1, Soe”)? and u(t,y) = C(1, Soe”)/So.
So, defining D = [0, T] x R, the PIDE problem becomes

UT(T7y)_a(Tvy)(u}’}’(T y) ( Y))+rUy(T,y)=
[ v(a2)e* (u(r.y—2) — uz.y) — (e 2 = Duy(5.5))
with T > 0, y € R, and the initial condition

u(0,y) =max{0,1—¢e’}, y e R.

ttie.
i
L
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Double Exponential Tail

Instead of using v in the PIDE, consider, as in Kindermann and Mayer (2011),
the double-exponential tail of v:

[ P (), y <o
o) =otviy) = { 18I 150

and the convolution operator

lof(y) == @xf(y) = / o(y — x)f(x)ax.

Applying Lemma 2.6 in Bentata and Cont (2015) to the integral part of the
PIDE, it follows that

[ V(g (uz.y — 2) - u(x.y) - (€7 = Dy (x.y))

= [or=2y(r.2) - (2.
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The Domain of The Parameter to Solution Map

Assume that the restrictions of @ to (—eo,0) and (0, +<0) are in W?'(—c,0)
and W21(0,+o), respectively.
Consider the Banach space

X = H'""¢(D) x W?!(—o0,0) x W?1(0,+o0),

let 0 < a < a < = be fixed constants and

ap : D — (a,a) be a fixed continuous function s.t. its weak derivatives are in
L2(D).
Define:

D(F)={(a,¢-,04) X : leta=a+ay, best.a<a<a,
let @ be s.t., @=¢_ in (—o,0) and @ = @ in (0,+)}

For simplicity, write (a,¢) € D(F), meaning that aand ¢ are given as inthe
definition of D(F). =
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Well-Posedness

Proposition

Let (a,9) be in D(F), in addition, assume that ||||,1(py < C~", where the
constant C depends on a, a and r. Then, there exists a unique solution of the
PIDE problem in W, (D).

loc
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The Parameter-to-Solution Map

Definition

The direct operator F : D(F) — W, (D), that associates (2,¢_, ) to
u(a, @) — u(ap,0), where u(a, @) is the solution of the PIDE problem, with
(a,9) in D(F).

F(a,¢_,¢,) is the solution of a PIDE problem with homogeneous boundary
condition and source term f = —ly(u(ao,0),, — u(ao,0)y).

At
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Properties of the Parameter-to-Solution Map

Proposition
@ F is continuous.
@ F is weakly continuous and compact.
© F is Frechét differentiable and satisfies

IF(a+hi,@+he) — F(a,9) = F/(a,9)hll 12
C

for any (a,¢) € D(F) and any h= (hy,hp) € X, s.t.
(a+h1, 9+ hy) € D(F).

e
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The Inverse Problem and The Data

@ Let ¥ =¥(t,y) be a surface of European call option prices.
@ Assume that it is given by PIDE problem.
@ So, the corresponding pair (aT, (pT), solves the inverse problem

o=u(a',o").

Unfortunately, only scarce and noisy dataset V3 is available. v® and ¥ are
related by
o — || <8,

with & > 0 (noise level).

gttt
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Tikhonov-type Regularization: The Functional

Since the inverse problem can be ill-posed, Tikhonov-type regularization is
applied:
Find an element of D(F) that minimizes

F (%) = 0(x) + oty (x),

where
o(x) = |IF(x) = y°lI%

is the data misfit or merit function, o. > 0 is the regularization parameter and fy,
is called regularization functional.

The minimizers of the Tikhonov functional in D := D(F) N D(f,,) are called
Tikhonov minimizers or reconstructions, and are denoted by x3.

Fon
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Tikhonov-type Regularization: Assumptions

Assumption (Scherzer et al. (2008))

@ Tx and Ty are topologies associated to X and Y, respectively, weaker
than the norm topologies.

The exponent in the misfit satisfies p > 1.
The norm of Y is sequentially lower semi-continuous w.r.t. Ty.
f

» IS convex and sequentially lower semi-continuous w.r.t. Tx.

The objective set satisfies D #

00000

For every a. > 0 and M > 0 the level set
Mu(M) :={x €D : F(x) <M}

is sequentially pre-compact w.r.t. Tx.

@ Foreverya,M > 0, My(M) is sequentially closed w.r.t. Tx and the
restriction of F to My (M) is sequentially continuous w.r.t. Tx and Ty.
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Tikhonov-type Regularization: Well-Posedness

Proposition (See Scherzer et al. (2008))
@ The existence of stable Tikhonov minimizers is guaranteed.
@ In addition, some sequences of Tikhonov minimizers converge to some

fx, -minimizing solution whenever § — 0 and o. = oi(d) satisfies the limits:
g
limo(8) =0 and lim —= =0.
30 5—0 0U(9)

e
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Penalty Terms

gx(a) = lla— ao||$41+s(o)
for the variable a and for the variable @

hoy (@) = KL(9-+(9-+.0) + KL(Q, |9 o) + KL(@"L | o
+KL(9-|9—0) + KL(qL 197 o) +KL(¢" |9” )
where the KL stands for the Kullback-Leibler divergence

KL(9+|9+0) = /:w [<p+ln (q(i >+(<p+o—<p+)]

with @ > 0 given.
ga, and hg, are convex, weakly continuous and coercive. In addition, the level
sets of the Kullback-Leibler divergence

{9 e L'(R) : KL(olgo) < C}

are weakly pre-compact in L'(R). See Lemma 3.4 in Resmerita and i
Anderssen (2007) UFSC
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The Splitting Strategy: Notation

Define the projections Py : (a,9) — aand P, : (a,¢) — @.
For each @, define:

@ the operator Fy as Fy(a) = F(a, ),
@ the Tikhonov-type functional F¢(a) = ¥ (a,¢),
@ and the set Dy = P1(D) x {@}.

Similarly, define F,, ¥, and D,.

Proposition

Whenever D is replaced by P1(D) or P2(D), F by F, or Fy and F by F or
Fo, existence of stable Tikhonov minimizers is guaranteed, for each a € P1(D)
and ¢ € Py(D).

gttt
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The Splitting Strategy: The Algorithm

Forany a € P;(D) (or ¢ € Po(D)), set & = a (¢° = @) and consider the
iterations with n € N:

0" € argmin{ Fo-1(9) : @ € Po(D)}
a" € argmin{ For(a) : ac Pi(D)}.

Repeat the iterations until some termination criteria.

If the algorithm starts with @ instead of a, the order of the two iterations must
be reversed.

gttt
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The Splitting Strategy: Stationary Points

Definition
A stationary point of the functional F is some point X = (&,) € D, such that

ac argmin{ Jy(a) : ac P1(D)} and § € argmin{ F4(9) : ¢ € Po(D)}.

v

Proposition

For every initializing pair (w,z) € D, any convergent subsequence produced
by the splitting algorithm converges to some “stable” stationary point of F .

\

Stable w.r.t. perturbations in the data.

At
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The Splitting Strategy: Regularization Technique

Proposition

If the initializing pair and x" is inside some ball B(x*; r) and
A > (14m)/(1—mn) is fixed, then there exist constants o, 0tz > 0 such that for
a finite n, the iterates of the splitting algorithm satisfy

IF(w",2") = y°lly > A8 > | F(w™",2"") —y°) .

Proposition

Every sequence of solutions obtained by the splitting algorithm, satisfying the
discrepancy in the previous proposition, when d ™\, 0, has a subsequence
converging w.r.t. Tx to some solution of the inverse problem.

strategy.
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Numerical Solution

@ The PIDE is solved by a Crank-Nicolson-like scheme, with the integral in
the explicit part.

@ The minimization of both Tikhonov-type functionals are solved by the
gradient descent method.

@ The iterations cease whenever the tolerance is satisfied:

lu(a",¢*) — ]|
]

< tol,

typically to/ = 0.01.

Faon
UFSC

Jump-Diffusion Models in Finance @©V. Albani (Dept.Math., UFSC) CNMAC 2018 24/33



Synthetic Data: Local Volatility Calibration

—Calib.
025 0 Data
25 0 05

Figure: Original and Calibrated Local volatility surfaces.




Synthetic Data: Local Volatility Calibration
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Figure: Adherence to data: Implied volatilities

CNMAC 2018 26/33

©V. Albani (Dept.Math., UFSC)

Jump-Diffusion Models in Finance



Synthetic Data: Double Exponential Tail and Jump-Size Dist.
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Figure: Left: true (line with crosses) and reconstructed (line with squares)
double-exponential tail functions. Right: true (line with crosses) and reconstructed (line
with squares) jump-size distributions.
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Synthetic Data: Splitting Strategy and Local Vol. Calibration
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Figure: Reconstruction of the local volatility surface: original (left), after one step
(center) and after two steps (right).
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Synthetic Data: Splitting Strategy and Double Exp. Tail Calib.
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Figure: Reconstruction of the double exponential tail: after one step (left) and after two
steps (right). Continuous line: true. Dashed line: reconstruction.
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The Splitting Algorithm with DAX Options

050 -5 0 5 -0.5 0 0.5

Figure: Reconstructions from Dax options of local volatility surface (left), double
exponential tail (center) and jump-size density function (right).
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The Splitting Algorithm with DAX Options
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Figure: Market (squares) and model (continuous line) implied volatility-of DAX options:
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Final considerations

@ We have considered the simultaneous calibration of local vol. and
jump-size dist.

We have stated the regularity properties of the parameter-to-solution map.

Tikhonov-type regularization was used to solve the inverse problems
separately.

(]

We have applied a splitting strategy to solve the simultaneous calib. prob.

(4]

We provided numerical examples.

We also provided examples with real data.
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