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Pricing Problem

Required properties:

Robustness.

Reliability.

Simple calibration.

Desirable property: implied smile adherence.
A well-known model in equity markets: Dupire’s Local Volatility.

Applications: Calendar spread options, path dependent options, ...

Local Volatility and Commodity Markets c©V. Albani (IMPA) 11/04/2013 2 / 58



Challenges in Commodity Markets

For each future we have options with only one maturity.
WTI oil: three business days before the termination of trading in the
underlying futures contract.
HH natural gas: the business day immediately preceding the expiration of
the underlying futures contract.
HO heating oil: three business days before the expiration of the underlying
futures contract.
RBOB: three business days before the expiration of the underlying futures
contract.

Source: CME webpage.
Conclusion: We do not have a surface of option prices on each future.
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Challenges in Commodity Markets (cont.)

Important features:

In commodity markets convenience yield is one important feature.

Market vanilla option prices are American and then are more expensive
than the European ones.

We need to extract European from American prices.

The inverse problem associated to American pricing is much harder:
There is no framework similar to Dupire’s equation for pricing American
options. Then, the forward problem should be solved for each strike and
maturity.

We pass to the transformation of American in European prices.
This is based on the framework introduced by Black [Bla76].

Local Volatility and Commodity Markets c©V. Albani (IMPA) 11/04/2013 4 / 58



Black’s Framework

Under the risk-neutral measure, with constant coefficients:
r is the risk-free interest rate,
σ is Black’s volatility,
d is the convenience yield.
St is the commodity spot price, satisfying

dSt = St((r −d)dt + σdW̃t)

Ft,T is the commodity future, satisfying

dFt,T = σFt,T dW̃t

They are related by Ft,T = e(r−d)(T−t)St

European call options on Ft,T satisfy Black’s equation:

−Ct =
1
2

σCff , for f ≥ 0, t > 0,

with the terminal condition:

C(T , f ) = (f −K )+, for f ≥ 0.
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American options under Black-Scholes [WHD95]:

x := log(S/K ) and τ = (T − t)
1
2

σ
2

Then we have the linear complementary problem:
(uτ−uxx )≥ 0, (u(x ,τ)−g(x ,τ))≥ 0,

(uτ−uxx ) · (u(x ,τ)−g(x ,τ)) = 0,

where, for κ = (r −d)/
(

1
2 σ2
)
,

g(x ,τ) = e
1
4 (κ+1)2τ

(
e

1
2 (κ+1)x −e

1
2 (κ−1)x

)+
for a call.

The boundary conditions are:

u(x ,0) = g(x ,0) and lim
x→±∞

u(x ,τ) = lim
x→±∞

g(x ,τ)

Then, call prices are given by C(S, t) = K e−
1
2 (κ−1)x+ 1

4 (κ+1)2τu (x ,τ)
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European from American Prices

Transforming American prices in European ones,

Then we could use Dupire’s framework.
Another possibility is the following:

1 Find the American implied vol. from market option prices.
2 Then use Black’s formula to find European prices.

CAME
B-S AME Pricing7−→ σAME

B-S Formula7−→ CEUR.
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HH Nat. Gas Implied Vol. - Mat.:10/28/2013
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HH Nat. Gas Implied Vol. - Mat.:11/25/2013
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HH Nat. Gas Implied Vol. - Mat.:12/26/2013
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HH Nat. Gas Implied Vol. - Mat.:01/28/2014
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HH Nat. Gas Implied Vol. - Mat.:02/25/2014
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HH Nat. Gas Implied Vol. - Mat.:03/26/2014

We present also one important feature of Commodity futures.
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Correlations

Futures on the same commodity for different maturities are highly correlated.

Figure: Example: Future prices and daily log-returns of Henry Hub nat. gas.
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Correlations

Example: Future prices and daily log-returns of Henry Hub nat. gas.

Figure: Minimum of correlations between daily log-returns - first and second tests.

Local Volatility and Commodity Markets c©V. Albani (IMPA) 11/04/2013 15 / 58



Correlations

Figure: Example: Future prices and daily log-returns of WTI oil.
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Correlations

Figure: Minimum of correlations between daily log-returns - first and second tests.

We present now some features of the present model.
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Some Features

Under this framework, the term-structure is given by:
The current curve of future prices F0,T , for T > 0
The local volatility surface.

The model would work fine for short maturity options and a small
term-structure curve, since it has only one factor.

We can form a unique surface of normalized option prices on futures with
different maturities.

Dupire’s formula is not stable in practice, since the inverse problem is
ill-posed.

We apply usual calibration procedures, e.g. Tikhonov regularization.

In what follows, we present the theoretical aspects of the model.
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Dupire’s Local Vol. in Commodity Markets

(Ω,V ,F , P̃) - risk neutral filtered probability space.

Commodity futures are the underlying assets.

Ft,T denotes the future price at time t ≥ 0 with maturity T ≥ t .

St denotes the (unknown) spot price at time t ≥ 0.

Ft,T = Ẽ[ST |Ft ], then {Ft,T}t∈[0,T ] is a martingale.

Then, we assume that, Ft,T satisfies: dFt,T = σ(F0,T , t,Ft,T )Ft,T dW̃t , for 0≤ t ≤ T

F0,T is given and FT ,T = ST .

Now, the PDE for pricing call options.
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Dupire’s Equation

Fix the current time at t = 0, European call options satisfy, with T ≤ T ′:

∂C
∂T

=
1
2

σ
2(F0,T ′ ,T ,K )K 2 ∂2C

∂K 2 , 0 < T < T ′, K ≥ 0

lim
K→0

C(T ,K ) = F0,T ′ , 0 < T < T ′,

lim
K→+∞

C(T ,K ) = 0, 0 < T < T ′,

C(T ,K ) = (F0,T ′ −K )+, for K > 0.

(1)

We need some technical adaptations.
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Technical Points

Perform the change of variables

τ = T and y = log(K/F0,T ′).

Then define:

V (F0,T ′ ,τ,y) := C(F0,T ′ ,τ,F0,T ′e
y ) and a(F0,T ′ ,τ,y) :=

1
2

σ
2(F0,T ′ ,τ,F0,T ′e

y ).

Moreover, normalize the option prices by its underlying futures:

V (F0,T ′ ,τ,y) = V (F0,T ′ ,τ,y)/F0,T ′ .

Thus, from the previous PDE we have the following problem:

Local Volatility and Commodity Markets c©V. Albani (IMPA) 11/04/2013 21 / 58



A Surface of Option Prices

We also assume that

V (F0,T ′ ,τ,y) = V (S0,τ,y) and a(F0,T ′ ,τ,y) = a(S0,τ,y).

Then, V satisfies:

∂V
∂τ

(τ,y) = a(S0,τ,y)

(
∂2V
∂y2 (τ,y)− ∂V

∂y
(τ,y)

)
, T > 0, y ∈ R

lim
y→−∞

V (τ,y) = 1, τ > 0,

lim
y→+∞

V (τ,y) = 0, τ > 0,

V (τ,y) = (1−ey )+, for y ∈ R.

(2)

It is independent of F0,T !
We present some background properties of the forward operator.
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The Forward Operator

Let a1,a2 ∈ R be such that 0 < a1 ≤ a2 < +∞.
Consider a0 in H1+ε(D), with ε > 0 and a1 ≤ a0 ≤ a2.
Define the set

Q := {a ∈ a0 + H1+ε(D) : a1 ≤ a≤ a2}. (3)

Proposition ([DCSZ12])
If a ∈ Q, then Pricing Call Options on futures by Dupire’s Equation is a
well-posed problem in W 1,2

2,loc(D)
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The Forward Operator (cont.)

Definition

Let ε > 0 and a0 ∈ H1+ε(D) be fixed. Define the forward operator:

F : Q ⊂ H1+ε(D) −→ W 1,2
2 (D)

a ∈ Q → u(a)−u(a0) ∈ L2(D),

Local Volatility and Commodity Markets c©V. Albani (IMPA) 11/04/2013 24 / 58



The Forward Operator (cont.)

Proposition (From [DCSZ12])
We have the following regularity properties for the forward operator F :

(i) It is continuous and compact.

(ii) It is also weakly continuous and weakly closed.

(iii) F is differentiable at a ∈ Q in every direction h ∈ H1+ε(D) such that
a + h ∈ Q.

(iv) F ′(a) is extensible to a bounded linear operator on H1+ε(D).

(v) It also satisfies the Lipschitz condition:

‖F ′(a)−F ′(a + h)‖L(H1+ε(D),L2(D)) ≤ c‖h‖,

for every h ∈ H1+ε(D) such that a + h ∈ Q.

Corollary (From [AZ12])
The forward operator F is injective.
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The Inverse Problem

The local volatility calibration problem can formulated as follows:

Problem

If u ∈ L2(D) is a surface of European call option prices, then find a† ∈ Q, a
local volatility surface, satisfying

u−u(a0) = F(a†), (4)

with a0 ∈ Q fixed and known.

Since F is injective, there exists a unique a ∈ Q satisfying Equation (4).
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The Inverse Problem

In practice, we observe only the noisy data uδ, which is related to u by:

uδ = u + e (5)

e compiles all the uncertainties concerning the measurement of uδ.

‖u−uδ‖= ‖e‖ ≤ δ

Problem

Find a† ∈ Q satisfying
uδ−u(a0) = F(a†) + e, (6)

with a0 ∈ Q fixed and known and e ∈ L2(D) unknown with ‖e‖ ≤ δ and δ > 0.
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Tikhonov-type Regularization

Problem

Find one minimizer aδ
α in Q for the Tikhonov functional below:

F uδ

a0,α = ‖u(a)−uδ‖2 + αfa0(a) (7)

with α > 0 appropriately chosen and fa0 : D(fa0)⊂ H1+ε(D)→ [0,+∞) a
suitable functional.
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Morozov’s Discrepancy Principle

The choice of α is based on the relaxed version of Morozov’s discrepancy
principle below:

Definition

For 1 < τ1 ≤ τ2 we choose α = α(δ,uδ) > 0 such that

τ1δ≤ ‖u(aδ
α)−uδ‖ ≤ τ2δ (8)

holds for some aδ
α minimizer of the Tikhonov Functional.
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The Functional fa0

We assume that:

fa0 is convex

fa0(a) = 0 if and only if a = a0.

It is also coercive, i.e., if {an}n∈N satisfy ‖an‖→+∞, then fa0(an)→+∞.

fa0 is weakly lower semi-continuous, i.e., if {an}n∈N converges to ã ∈ Q
weakly in H1+ε(D), then the

fa0(ã)≤ lim inf
n→∞

fa0(an)

holds.
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Some Examples

Some canonical examples of fa0 are:
1 Standard quadratic:

fa0(a) = ‖a−a0‖2
L2(D).

2 Smoothing quadratic:

fa0(a) = β1‖a−a0‖2
L2(D) + β2‖∂xa−∂xa0‖2

L2(D) + β3‖∂τa−∂τa0‖2
L2(D).

βj can be arbitrarily chosen and should account discretization levels.
3 Kullback-Leibler: denoting x := (τ,y) ∈ D,

fa0(a) =
∫

D
[log(a(x)/a0(x))− (a0(x)−a(x))]dx .

4 Total Variation:

fa0 = ‖∂xa−∂xa0‖L1(D) +‖∂τa−∂τa0‖L1(D).
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Well-Posedness

Proposition
The level sets

µα(M) =
{

a ∈ Q
∣∣∣F uδ

a0,α(a)≤M
}

are pre-compact in the weak topology of H1+ε(D). The restriction of F onto
µα(M) is weakly continuous.

Theorem (Existence)
Let α > 0 and a0 ∈ Q be fixed. Then, the Tikhonov functional has a minimizer
in Q.
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Stability

Definition
A minimizer a ∈ Q of the Tikhonov functional is said stable if, for small
perturbations on the data u ∈ L2(D), a minimizer of (7) with the perturbed data
is in the neighborhood of a.

Theorem (Stability)
Every minimizer of the Tikhonov functional (7) is stable.
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Convergence12

Theorem ([AZ12])

The regularizing parameter α = α(δ,Uδ) obtained through Morozov’s
discrepancy principle satisfies:

lim
δ→0+

α(δ,Uδ) = 0 and lim
δ→0+

δ2

α(δ,Uδ)
= 0.

Theorem ([AZ12])

Let {δk}k∈N be a sequence of positive numbers converging monotonically to 0.
Let {uδk}k∈N be the associated sequence of noisy data.
Then, the sequence of minimizers {aδk

αk}k∈N converges weakly to a†, the true
solution.

1V.A. & J.P. Zubelli, Online Local Vol. Calib. by Convex Regularization with
Morozov’s Principle and Conv. Rates. Available on SSRN

2V.A. & J.P. Zubelli, Local Volatility Models in Commodity Markets and Online
Calibration. Working article
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Convergence: The Discrete Case3

Definition

Let {Xm}m∈N be a sequence of finite dimensional subspaces of H1+ε(D), such
that

Xm ⊂ Xm+1 for m ∈ N and ∪m∈NXm = H1+ε(D).

Define also the finite-dimensional domains Qm := Q∩Xm.

We assume that Qm 6= /0 for every m ∈ N.

Definition ([ACZ13])

Let δ > 0, uδ and be fixed. For 1 < τ≤ λ, then choose α = α(δ,uδ) > 0 and
m ∈ N such that

τ1δ≤ ‖F(aδ
m,α)−uδ‖ ≤ λδ, (9)

holds for aδ
m,α a minimizer of the Tikhonov functional in Qm.

3V.A., A. De Cezaro & J.P. Zubelli, Discrepancy Based Choice for Domain
Discretization Level and Regularization Parameter. Working article.
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Convergence: The Discrete Case3 (cont.)

Theorem
Let {δk}k∈N be a sequence of positive numbers converging monotonically to 0.
Let {uδk}k∈N be the associated sequence of noisy data.
Then, if mk and αk are chosen through the discrepancy principle above,
the associated finite-dimensional minimizers {aδk

mk ,αk}k∈N converge weakly to
a†, the true solution.

3V.A., A. De Cezaro & J.P. Zubelli, Discrepancy Based Choice for Domain
Discretization Level and Regularization Parameter. Working article.
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Convergence Rates1

Theorem (Convergence Rates [AZ12])

Assume that α = α(δ,uδ) is chosen through the Morozov’s discrepancy
principle.
Furthermore, assume that fA0(a) = ‖a−a0‖2

H1+ε(D).
Then

‖aδ
α−a†‖H1+ε(D) = O(δ

1
2 ) and ‖u(aδ

α)−uδ‖= O(δ),

where aδ
α ∈ Q is the regularized solution.

1V.A. & J.P. Zubelli, Online Local Vol. Calib. by Convex Regularization with
Morozov’s Principle and Conv. Rates. Available on SSRN
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Convergence Rates: The Discrete Case3

Under the discrete setting, we have the following result.

Theorem (Convergence Rates [ACZ13])

Assume that α = α(δ,uδ) and the discretization level m = m(δ,uδ) are chosen
through the discrepancy principle above.
Furthermore, assume that fA0(a) = ‖a−a0‖2

H1+ε(D) and

there exists a ∈ Qm such that ‖u(a)−uδ‖ ≤ εδ and fa0(a) < fa0(a†), with
1 < ε < τ.
Then

‖aδ
m,α−a†‖H1+ε(D) = O(δ

1
2 ) and ‖u(aδ

m,α)−uδ‖= O(δ),

where aδ
m,α ∈ Qm is the finite-dimensional regularized solution.

3V.A., A. De Cezaro & J.P. Zubelli, Discrepancy Based Choice for Domain
Discretization Level and Regularization Parameter. Working Article.
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Convergence Rates4

4V.A., A. De Cezaro & J.P. Zubelli, Convex Regularization of Local Volatility
Estimation in a Discrete Setting. Available on SSRN.

Local Volatility and Commodity Markets c©V. Albani (IMPA) 11/04/2013 39 / 58



Online Approach12

How to improve results even further?
Introducing more information:

F Uδ

A0,α
(A) =

∫ Smax

Smin

‖u(a(s))−uδ(s)‖2ds + αFA0(A), (10)

In the discrete case:

F Uδ

A0,α
(A) =

M

∑
j=1
‖u(a(sj))−uδ(sj)‖2 + αFA0(AM), (11)

with Smin ≤ sj ≤ Smax for every j = 1, ...,M.

1V.A. & J.P. Zubelli, Online Local Vol. Calib. by Convex Regularization with
Morozov’s Principle and Conv. Rates. Available on SSRN

2V.A. & J.P. Zubelli, Local Volatility Models in Commodity Markets and Online
Calibration. Working article
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Online Approach (cont.)

Theorem
There exists a solution for a minimizer for the online Tikhonov functional.
It is stable.
Assume that δ→ 0 and α is chosen through the Morozov’s discrepancy
principle.
Then the regularized solutions converge weakly to the solution of the noiseless
inverse problem A† ∈Q.
In addition, when FA0(A) = ‖A−A0‖2

H l(0,T ,H1+ε(D)), these solutions satisfy the
convergence rate:

‖Aδ
α−A†‖= O(

√
δ).

The same holds in the discrete case.
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Synthetic Data: Local Volatility.

Figure: Left: Original. Center and right.: Reconstructions with noisy data.
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Synthetic Data: Local Volatility.

Figure: Left: Original. Center and right.: Reconstructions with noisy data.
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Synthetic Data: Residual and Error Evolutions.

Figure: Left: Residual × discretization level. Right: Error × discretization level.
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Online × Standard Calibration

Figure: More data, better results!
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Online × Standard Calibration

Figure: More data, better results!
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Online × Standard Calibration

Figure: More data, better results!
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Online × Standard Calibration

Figure: L2 distance between original and reconstructed local vol.
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WTI Local and Implied Volatilities

Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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WTI Local and Implied Volatilities

Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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WTI Local and Implied Volatilities

Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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Local Vol.: Henry Hub Nat. Gas

Figure: Left: local vol. reconstructed for some maturities. Right: reconstructed local
vol. surface.
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Implied Volatility Comparison

Figure: Implied vol. (Black) for market prices (dashed) and model prices (continuous)
for two maturities.
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HH Local and Implied Volatilities

Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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HH Local and Implied Volatilities

Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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HH Local and Implied Volatilities

Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).
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HH Local and Implied Volatilities

Figure: Left: Local Volatility. Right: Implied Vol. of model (cont.) and market (squares).

Local Volatility and Commodity Markets c©V. Albani (IMPA) 11/04/2013 57 / 58



Conclusions

Dupire’s local vol. applied to commodity markets.

Implemented American to European prices transformation.

Local vol. calibration solved by convex regularization.

Online approach.

Morozov’s discrepancy principle.

Numerical tests.

Local Volatility and Commodity Markets c©V. Albani (IMPA) 11/04/2013 58 / 58



V. Albani, A. De Cezaro, and J. Zubelli.
Discrepancy-based Choice for Domain Discretization Level and Parameter
in Tikhonov-type Regularization.
2013.

V. Albani and J. Zubelli.
Online Local Volatility Calibration by Convex Regularization with Morozov’s
Principle and Convergence Rates.
Submitted., 2012.

Fischer Black.
The pricing of commodity contracts.
Journal of Financial Economics, 3:167–179, 1976.

Adriano De Cezaro, Otmar Scherzer, and Jorge Passamani Zubelli.
Convex regularization of local volatility models from option prices:
Convergence analysis and rates.
Nonlinear Analysis, 75(4):2398–2415, 2012.

Paul Wilmott, Sam Howinson, and Jeff Dewynne.
The Mathematics of Financial Derivatives: A Student Introduction.
Cambridge University Press, 1995.

Local Volatility and Commodity Markets c©V. Albani (IMPA) 11/04/2013 58 / 58


