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Tikhonov Reg.

Black-Scholes/Dupire framework: non-const. vol.

F : {vol. surf. σ} 7−→ {Call Prices surf. C}

Vol. Calibration: given C find σ such that

F(σ) = C

in a robust way.

”Standard” Tikhonov reg.: Find an element of

argminσ∈D(F){‖F(σ)−C‖2 + αf (σ)}
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Our Proposal

Considering many different measurements in the same Tikhonov Reg.
procedure:

argminσ∈D(F){
∫ Smax

Smin

‖F(s,σ(s))−C(s)‖2ds + αF (−→σ )},

where −→σ = {s 7→ σ(s)}.

In other words, it is an ”Online” version of Tikhonov Reg.
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The Model

(Ω,V ,F,Q) is a filtered probability space, with F = {Ft}t∈R a filtration and Q
a ”risk-neutral” measure.

dFt,T =
√

ν(t)Ft,T dW̃ (t), for t ∈ [0,T ]
F0,T > 0 non-random and known.

(1)

{W̃ (t)}t∈R - Q-Brownian motion,
ν(t) - squared vol.

Local vol can be def. as[Dup94, Gat06]:

σ(F0,T , t, f ) =

√
Ẽ[ν(t)|Ft,T = f ]
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European Vanilla Options on Futures

C(T̃ ,K , t,Ft,T ) on Ft,T , with maturity T̃ ≤ T and strike K .
Fix t = 0 and F(t = 0,T ) = F0,T .
C(F0,T , T̃ ,K ) satisfies:


∂C

∂T̃
= 1

2 σ2(F0,T , T̃ ,K )K 2 ∂2C
∂K 2 0≤ T̃ ≤ T , K ≥ 0

C(T̃ = 0,K ) = (F0,T −K )+, for K > 0.

(2)
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Market Variables

Change of variables:
τ = T̃ and y = log(KF0,T ).

Define

u(τ,y) = C(τ,F0,T ey )/F0,T and a(F0,T ,τ,y) = σ
2(F0,T ,τ,F0,T ey )/2.

Thus, u(τ,y) satisfies:
∂u
∂τ

= a(F0,T ,τ,y)

(
∂2u
∂y2 −

∂u
∂y

)
0≤ τ≤ T , y ∈ I ⊂ R

u(0,y) = (1−ey )+, y ∈ R,

(3)

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 7 / 35



A Change in Notation

Instead of depending on F0,T , we assume that a depends on the initial spot
commodity price S(0):

a = a(S(0),τ,y).

Then, call prices for futures with different maturities satisfy the same
equation.
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Resulting Surfaces

Figure: Normalized European call option prices on Futures of Brent oil (WTI) traded on
2011/03/16, where for each option’s maturity T̃ , we consider the normalized prices
u(T̃ ,K ).
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Another View

Figure: Normalized European call option prices on Futures of Brent oil (WTI) traded on
2011/03/16, where for each option’s maturity T ′, the call prices C(t,T ,T ′) are divided
by the current futures price F(t,T ) and the related implied vol.
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The Forward Operator

We define the sets

Q = {a ∈ a0 + H1+ε(D) | 0 < a1 ≤ a≤ a2 < +∞} (4)

Q := {A ∈ H l(0,T ,H1+ε(D)) : a(s) ∈ Q, ∀s ∈ [0,S]}, (5)

and the operators

F : [0,S]×Q −→ W 1,2
2 (D)

(s,a) 7−→ u(s,a)−u(s,a0),

U : Q −→ L2(0,S,W 1,2
2 (D)),

A 7−→ U(A) : s ∈ [0,S] 7→ F(s,a(s)) ∈W 1,2
2 (D).

We have proved regularity properties for them.
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The Inverse Problem

IDEALIZED
Given the noiseless data Ũ, we have to find some Ã ∈Q such that

Ũ = U(Ã). (6)

REALISTIC
Instead of considering Ũ, we shall consider the noisy data Uδ. Thus, we have
to find Ã ∈Q such that

Uδ = Ũ + E = U(Ã) + E . (7)

E introduces all the uncertainties sources concerning the actual problem. The
constant δ > 0 is the noise level, i.e.,

‖Uδ− Ũ‖= ‖E‖ ≤ δ

SINCE, U(·) IS COMPACT, PROBLEMS (6) AND (7) ARE ILL-POSED.
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Given the noiseless data Ũ, we have to find some Ã ∈Q such that
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‖Uδ− Ũ‖= ‖E‖ ≤ δ

SINCE, U(·) IS COMPACT, PROBLEMS (6) AND (7) ARE ILL-POSED.

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 12 / 35



Tikhonov-type Regularization

Find an element of

argmin
{
‖U(A)−Uδ‖2

L2(0,S,L2(D)) + αfA0(A)
}

subject to A ∈Q. (8)

Tikhonov functional:

F Uδ

A0,α
(A) = ‖Uδ−U(A)‖2

L2(0,S,L2(D)) + αfA0(A). (9)
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Morozov’s Principle [AR10, Mor66]

Definition

For 1 < τ1 ≤ τ2 we choose α = α(δ,Uδ) > 0 such that

τ1δ≤ ‖U(Aδ
α)−Uδ‖ ≤ τ2δ (10)

holds for some Aδ
α a minimizer of

F Uδ

A0,α
(A) = ‖Uδ−U(A)‖2

L2(0,S,L2(D)) + αfA0(A).

We can use this definition to find the reg. par. appropriately in the vol.
calib. prob.
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Additional Assumptions

In order to apply some convex regularization tools we assume that

fA0 is convex.

fA0 is weakly lower semi-continuous.

fA0 is coercive.

By the continuity and compactness of the operator U, we can state some
results concerning existence, stability and convergence of minimizers for (9)
[SGG+08].
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Some Results

Theorem (Existence)

For every data Uδ ∈ L2(0,S,L2(D)), there exists Aδ
α ∈Q minimizing

F Uδ

A0,α
(A) = ‖Uδ−U(A)‖2

L2(0,S,L2(D)) + αfA0(A).

Definition (Stability)
The minimizers of (9) are stable if for every sequence
{Uk}k∈N ⊂ L2(0,S,W 1,2

2 (D)) converging strongly to U, the sequence
{Ak}k∈N ⊂Q of minimizers of F Uk

A0,α
(·) has a subsequence converging weakly

to Ã , a minimizer of F U
A0,α

(·).

Theorem (Stability)
The minimizers of (9) are stable. Furthermore, if there exists a solution to (6),
then there is at least one fA0 -minimizing solution for such problem.
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Convergence

Theorem (Convergence)

We assume that there exist A† ∈Q solving the noiseless Inv. Prob. (6) and the
map α : (0,∞)→ (0,∞), satisfies

lim
δ→0

α(δ) = 0 and lim
δ→0

δ2

α(δ)
= 0. (11)

Thus, when δ→ 0, and Uδ→ Ũ it follows that the minimizers Aδ
α converges

weakly to A†.
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Convergence Rates

Theorem (Convergence Rates)

Let the map α : (0,∞)→ (0,∞) be such that α(δ)≈ δ.Then

Dξ†(Aδ,A†) = O(δ) and ‖U(Aδ)−Uδ‖= O(δ).

Then, we conclude that:

This theorem quantifies how reliable solutions are.

For example, if fA0(A) = ‖A−A0‖, then Aδ
α→ A†.
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Convergence Rates (cont.)
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Two Functionals

The Classical One

fA0(A) = ‖A−A0‖2
H l(0,T ,H1+ε(D))

Kullback-Leibler

fA0(A) =
∫ S

0

∫
D

log(a(s,τ,y)/a0(s,τ,y))− (a(s,τ,y)−a0(s,τ,y))dτdyds

In order to be mathematically precise, we assume that D is bounded when
considering the second functional.
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Synthetic Data

Figure: The first image shows the true volatility surface, the second is the
reconstructed one and the third is the relative error.
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Synthetic Data (cont.)

Figure: The first image shows the true volatility surface, the second is the
reconstructed one and the third is the relative error.
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Online × Standard Tikhonov

Figure: As the data amount increases, the reconstructions become better.
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Online × Standard Tikhonov (cont.)

Figure: L2 distance between original and reconstructions.
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Heston Model

A popular model in practice [Gat06].

dS(t) = rS(t)dt +
√

ν(t)S(t)dW1(t) with t ≥ 0
dν(t) = κ(θ−ν(t))dt + η

√
ν(t)dW2(t)

S(0) = S0 and ν(0) = ν0.

(12)

W1 and W2 are correlated P̃-Brownian motions, with correlation ρ.
Note that

(ν0,θ,κ,η,ρ)

are usually estimated from market data.
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Question:

Given the widespread use of Heston by practitioners,

what would prices given by Heston yield as local vol.?

Remember that
σ

2(S0,T ,K ) = EP̃[ν(T )|S(T ) = K ].
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Local Vol Calibration

Use the parameters
(ν0,θ,κ,η,ρ)

to simulate (12) and formula

C(S0,T ,K ) = EP̃[(S0−K )+]

by a Monte Carlo integration to interpolate real data.
Use this interpolated data as Uδ in the analysis presented above in order to
find Ã .
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Figure: Original × Reconstruction: Heston data.
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Figure: Original × Reconstruction: Heston data.
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WTI Brent Oil

Figure: Reconstructions with the standard reg. functional for Online Tikhonov
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WTI Brent Oil (cont.)

Figure: Reconstructions with the standard reg. functional for Online Tikhonov

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 31 / 35



Henry Hub

Figure: Reconstruction with the standard reg. functional for Online Tikhonov
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Henry Hub (cont.)

Figure: Day 239: Reconstructions with Classical and Kullback-Leibler functionals,
respectively.
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Conclusions

We applied local vol. framework for Vanilla European options on futures.

Under a simplifying assumption we assembled in the same BVP, option
prices on futures with different maturities.

We introduced an online version of Tikhonov reg., under a general
framework with convex penalizations.

We also established the related Morozov’s discrepancy principle.

Reconstructions with the online version of Tikhonov became better as we
increased the amount of data.

We used Heston model for interpolating Vanilla option prices.

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 34 / 35



Conclusions

We applied local vol. framework for Vanilla European options on futures.

Under a simplifying assumption we assembled in the same BVP, option
prices on futures with different maturities.

We introduced an online version of Tikhonov reg., under a general
framework with convex penalizations.

We also established the related Morozov’s discrepancy principle.

Reconstructions with the online version of Tikhonov became better as we
increased the amount of data.

We used Heston model for interpolating Vanilla option prices.

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 34 / 35



Conclusions

We applied local vol. framework for Vanilla European options on futures.

Under a simplifying assumption we assembled in the same BVP, option
prices on futures with different maturities.

We introduced an online version of Tikhonov reg., under a general
framework with convex penalizations.

We also established the related Morozov’s discrepancy principle.

Reconstructions with the online version of Tikhonov became better as we
increased the amount of data.

We used Heston model for interpolating Vanilla option prices.

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 34 / 35



Conclusions

We applied local vol. framework for Vanilla European options on futures.

Under a simplifying assumption we assembled in the same BVP, option
prices on futures with different maturities.

We introduced an online version of Tikhonov reg., under a general
framework with convex penalizations.

We also established the related Morozov’s discrepancy principle.

Reconstructions with the online version of Tikhonov became better as we
increased the amount of data.

We used Heston model for interpolating Vanilla option prices.

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 34 / 35



Conclusions

We applied local vol. framework for Vanilla European options on futures.

Under a simplifying assumption we assembled in the same BVP, option
prices on futures with different maturities.

We introduced an online version of Tikhonov reg., under a general
framework with convex penalizations.

We also established the related Morozov’s discrepancy principle.

Reconstructions with the online version of Tikhonov became better as we
increased the amount of data.

We used Heston model for interpolating Vanilla option prices.

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 34 / 35



Conclusions

We applied local vol. framework for Vanilla European options on futures.

Under a simplifying assumption we assembled in the same BVP, option
prices on futures with different maturities.

We introduced an online version of Tikhonov reg., under a general
framework with convex penalizations.

We also established the related Morozov’s discrepancy principle.

Reconstructions with the online version of Tikhonov became better as we
increased the amount of data.

We used Heston model for interpolating Vanilla option prices.

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 34 / 35



Conclusions

We applied local vol. framework for Vanilla European options on futures.

Under a simplifying assumption we assembled in the same BVP, option
prices on futures with different maturities.

We introduced an online version of Tikhonov reg., under a general
framework with convex penalizations.

We also established the related Morozov’s discrepancy principle.

Reconstructions with the online version of Tikhonov became better as we
increased the amount of data.

We used Heston model for interpolating Vanilla option prices.

Local Vol Calibration c©V.V.L. Albani (IMPA) July 11, 2012 34 / 35



THANK YOU!
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