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Introduction

Before solving parameter estimation problems, it is necessary:

To describe the math. model of the problem.

To state some regularity properties of the parameter to solution map.

Is it linear, nonlinear, differentiable, satisfies the tangential cone
condition,...?

To identify the type of noise (white noise, impulsive noise, ...)

To find some prior information.

To consider the problem dimensionality.

These help us to identify the most appropriate regularization technique to
be used.
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Pricing Derivatives

Asset (Petrobras, Vale S.A., Itau, Sabesp,...) price dynamics means
history.

Pricing: expectation is more important than history.

Expectation here means beliefs that practitioners have.

Expectation is hidden in derivative prices.

Derivatives are designed to reduce exposure to some source of risk.

The most simple and most traded derivatives are vanilla options.
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Vanilla Options

European Call: gives the right, but not the obligation, of buying a share of
an asset for a fixed strike price at its maturity.

Euopean Put similar to the call, but gives the right of selling.

American Option (call and put) can be exercised any time before its
maturity.

Sometimes, American options are more expensive than the European
ones.

The prices of such contract take into account asset dynamics.
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Asset Prices as Stochastic Processes

Typically, the asset price dynamics is given by a semi-martingale:

St = somethingt + Martingalet .

What is a martingale?

E[|Mt |] < ∞ e E[Mt |{Ml , l ≤ s}] = Ms.
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The Black-Scholes Model (1973) 1/2

Let (Ω,U, P̃) be a prob. space with filtration F = {Ft}t≥0.
An asset price at time t ≥ 0 is given by

dSt = St(rdt + σdWt),

where Wt is a (risk neutral) Brownian motion and S0 is given.
An European call option price is then given by:

C(t,St ,T ,K ) = e−r(T−t)Ẽ[max{0,ST −K}|Ft ].

Feynman-Kac, when T and K are fixed, C(t,S) satisfies the
Black-Scholes PDE:

∂C
∂t

+
1
2

σ
2 S2 ∂2C

∂S2 + r S
∂C
∂S
− r V = 0, 0 < t < T , S > 0,

with terminal condition

C(T ,S) = max{0,S−K}.
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The Black-Scholes Model (1973) 2/2

Its solution is given by:

C(t,S) = SN(d1)−K e−r(T−t)N(d2),

where,

N(x) =
1√
2π

∫ x

−∞

e−
y2

2 dy ,

d1(t,S) =
log(S/K ) + (r + σ2/2)(T − t)

σ
√

T − t
,

e
d2(t,S) = d1−σ

√
T − t.
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Dupire’s Local Volatility Model (1994) 1/2

Let (Ω,V ,F , P̃) be a filtered prob. space.

the asset price St satisfies: dSt = (r −q)St dt + σ(t,St)StdW̃t , t ≥ 0

S0 is given.

Again, European call option price is given by:

C(t,St ,T ,K ) = Ẽ[e−r(T−t) max{0,ST −K}|Ft ].
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Dupire’s Local Volatility Model (1994) 2/2

Fixing t = 0 and St = S0, it follows that:

C(0,S0,T ,K ) = e−r T
∫

∞

0
max{0,S−K}ϕ(S,T )dS

and applying Fokker-Planck equation to ϕ and integrating by parts we find:



∂C
∂T

=
1
2

σ
2(T ,K ;S0)K 2 ∂2C

∂K 2 − (r −q)K
∂C
∂K
−qC, T > 0, K ≥ 0

lim
K→0

C(T ,K ) = S0, T > 0,

lim
K→+∞

C(T ,K ) = 0, T > 0,

C(T = 0,K ) = max{0,S0−K}, K > 0.
(1)
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Adaptation to Commodity Markets

Again, Let (Ω,V ,F , P̃) be a risk neutral filtered prob. space.
yt,T = log(Ft,T/F0,T ) is the log-future.
Assuming that yt,T does not depends on T , i.e. yt,T = yt , and yt satisfies:

dyt =−a(S0; t,yt)dt +
√

2a(S0; t,yt)dWt .

Since, Ft,T = F0,T eyt , it follows that

dFt,T

Ft,T
=
√

2a(S0; t, log(Ft,T/F0,T ))dWt

and a call option on Ft,T with maturity. T ′ and strike K is given by

C(t,Ft,T ,T ,K ) = Ẽ[e−r(T−t) max{0,Ft,T −K}|Ft ]

= Ẽ[e−r(T−t) max{0,F0,T eyt −K}|Ft ].
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Change of Variables

Setting t = 0 and Ft,T = F0,T , define τ = T ′ and

v(τ,y) = C(τ,F0,T ey )/F0,T ,

so, v satisfies the PDE:

∂v
∂τ

= a(S0;τ,y)

(
∂2v
∂y2 −

∂v
∂y

)
− rv , τ > 0, y ∈ R

lim
y→−∞

v(τ,y) = 1, τ > 0,

lim
y→+∞

v(τ,y) = 0, τ > 0,

v(0,y) = max{0,1−ey}, se y ∈ R.

(2)
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Notation

D = (0,∞)×R.

a1,a2 ∈ R s.t. 0 < a1 ≤ a2 < +∞.

a0 is s.t. a1 ≤ a0 ≤ a2 e ∇a0 ∈ (L2(D))2.

Define the set

Q := {a ∈ a0 + H1+ε(D) : a1 ≤ a≤ a2}, (3)

with ε > 0.

Proposition
If a ∈ Q, then the Cauchy problem is well-posed.
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The Direct operator

Define
F : Q ⊂ H1+ε(D) −→ L2(D)

a 7−→ V (a)−V (a0).

By Crepey (2003); Egger and Engl (2005); De Cezaro et al. (2012):

(i) F is continuous and compact.

(ii) F is weakly continuous and weakly closed.

(iii) F is Fréchet differentiable with Lipschitz continuous derivative.

(iv) F satisfies the tangential cone condition.
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The “Online” Model

To associate indexed families of local volatility surfaces to families of surfaces
of option prices, adapting results from Haltmeier et al..

Denote the index by s ∈ [0,s].

The family of local volatility surfaces by:

A : s ∈ [0,s] 7−→ a(s;τ,y) ∈ Q.

Define also the set:

Q = {A ∈ A0 + H l(0,T ,H1+ε(D)) : a(s) ∈ Q, s ∈ [0,s]}.

The family of option prices:

V (A) : s 7−→ v(a(s)), s ∈ [0,s].

Then, define the direct operator:

F : A ∈Q⊂ H l(0,T ,H1+ε(D)) 7−→ V (A)−V (A0) ∈ L2(0,S,L2(D)).
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Properties of the Direct Operator (Online Model)

In Albani and Zubelli (2014), it is shown that if l > 1/2 in H l(0,T ,H1+ε(D)), A
is continuous w.r.t. s, then, F satisfies:

(i) It is continuous and compact.

(ii) It is weakly continuous and weakly closed.

(iii) It is Frechét differentiable with Lipschitz derivative.

(iv) It satisfies the tangential cone condition and it is injective.

(v) The kernel of F ′(A†)∗ is trivial.

Two Applications of Inverse Problems Techniques c©V. Albani (Dept.Math., UFSC) 1st S2C 17 / 56



Local Volatility Calibration

Let ṽ be a surface of European call option prices.

Assume that it is given by Dupire’s equation.

So, the corresponding local volatility surface a†, solution of

ṽ = v(a†). (4)

Unfortunately, only scarce and noisy data vδ is available:

‖ṽ− vδ‖ ≤ δ,

with δ > 0 (noise level).
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Tikhonov-type Regularization

The inverse problem is ill-posed.

Tikhonov-type regularization leads us to find an element in

argmin
{
‖V (A)−V δ‖2

L2(0,S,L2(D)) + αfA0(A) : A ∈Q
}
, (5)

where Q is the set of indexed families of local vol. surf.:

A : s ∈ [0,s] 7−→ a(s) ∈ Q,

and
Q := {a ∈ a0 + H1+ε(D) : a1 ≤ a≤ a2}.

Variational theory gives us existence and stability of minimizers, as well as
convergence and convergence-rate results.
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Discretization

Let us consider the following:

Replace V by a numerical approximation Vm in Ym.

Replace Q by the finite dimensional set Qn = Q∩Xn;

Ym ⊂ Ym+1 ⊂ ...⊂ L2(0,S,L2(D)) and
Xn ⊂ Xn+1 ⊂ ...⊂ H l(0,T ,H1+ε(D)), satisfy

∪m∈NYm = L2(0,S,L2(D)) and ∪n∈NXn = H l(0,T ,H1+ε(D)).

Now we have the minimization problem:

argmin
{
‖Vm(A)−V δ‖L2(0,S,L2(D)) + αfA0(A) : A ∈Qn

}
. (6)
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Results

In the minimization problem

argmin
{
‖Vm(A)−V δ‖L2(0,S,L2(D)) + αfA0(A) : A ∈Qn

}
,

choose appropriately α and n through the discrepancy principle:

‖Vm(aδ,α
m,n)−V δ‖ ≤ λδ.
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Futures Prices as Unknowns 1/2

Denote the vector of futures by F, we must find (Aδ,α
m,n;F) in

argmin
{
‖P(F)Vn(A)−V δ‖2 + ψA0(A ;F)

}
, (7)

where

ψA0(A ;F) = α1

L

∑
l=0
‖a(sl)−a0(sl)‖2 + α2

L

∑
l=0
‖∂y ,ma(sl)‖2+

α3

L

∑
l=0
‖∂τ,ma(sl)‖2 + α4

L

∑
l=0
‖q(F(sl),sl)−q(F̂(sl),sl)‖2+

α5‖F− F̂‖2 +
α6

∆s2

L

∑
l=1
‖a(sl)−a(sl−1)‖2.

q(F(sl),sl) represents boundary and initial conditions, and F̂ are the observed
futures.
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Futures Prices as Unknowns 2/2

Since a and F are independent variables, so, we split the minimization as:

1 Fix F and minimize w.r.t. a.

2 Fix a and minimize w.r.t. F.

Repeat until some tolerance is satisfied.
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Numerical Solution

Dupire’s PDE is solved by a Crank-Nicolson scheme.

The minimization of the Tikhonov-type functional are solved by the
gradient descent method.

The steps are chosen by Wolfe’s rules.

The iterations cease whenever the tolerance is satisfied:

‖V (Ak )−V δ‖
‖V δ‖

< tol,

typically tol = 0.01.
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Asset Price Correction
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Figure: Local vol. after correction of the underlying asset prices.
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Asset Price Correction

0 2 4 6 8 10
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

L
2
 r

e
s
id

u
a
l 
o
f 
p
ri
c
e
s

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L
2
 e

rr
o

r

Figure: Esq.: Normalized Residual. Dir.: Normalized Error.
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Asset Price Correction

F0,τ1 F0,τ2 F0,τ3 F0,τ4 F0,τ5

Ftrue 1.0809 1.0951 1.0309 0.9412 0.9000
F0 1.0269 1.0404 0.9794 0.8942 0.8550
F10 1.0801 1.0922 1.0262 0.9369 0.8936

Table: Futures Prices: True, Initial an after 10 iterations.
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Henry Hub Natural Gas Data

Figure: Local vol. reconstructions with original (left) and corrected (right) prices.
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Henry Hub Natural Gas Data

Figure: Implied volatility: Market (squares) and reconstructions (continuous line).
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Henry Hub Natural Gas Data

Figure: Implied volatility: Market (squares) and reconstructions (continuous line).
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Henry Hub Natural Gas Data

Vencimento 10/29/13 11/27/13 12/27/13 01/29/14 02/26/14 03/27/14
Original 3.62 3.78 3.87 3.87 3.83 3.77
Ajustado 3.62 3.82 3.87 3.87 3.84 3.77

Table: Original and corrected future prices.
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Calibração Online com Dados Sintéticos
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Figure: Vol. local original e reconstruções, a medida que aumentam os dados.
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Online Calibration with Synthetic Data
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Figure: Left: Normalized Residual vs. ∆s (squares). Right: Mean (squares) and std.
deviation (dashed line) of normalized error.
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Online Calibration with Henry Hub Data
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Figure: Local vol.: 04-Set-2013, 05-Set-2013, 09-Set-2013 and 10-Set-2013.
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Online Calibration with Henry Hub Data
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Figure: Implied volatility: Market (squares), SVI (dashed), and reconstructions
(continuous line).
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Online Calibration with WTI Data

Figure: Local volatility: 04-Set-2013, 05-Set-2013, 09-Set-2013 and 10-Set-2013.
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Online Calibration with WTI Data

Figure: Implied Volatility: market (squares), SVI (dashed), and reconstructions
(continuous line).
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Pricing Exotic Option

Consider the Heston model:

dSt = µStdt +
√

VtStdW 1
t , 0≤ t ≤ Tmax

dVt = κ(θ−Vt)dt + σ
√

VtdW 2
t ,

(8)

Evaluate the price of European Asian Options with srike K , maturity Tmax and
payoff

A(Tmax) := max

{
0,

1
N

N

∑
j=0

Stj −K

}
,

where tj = j ·∆t and ∆t = Tmax/N.
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Pricing Exotic Option

Local Volatility Black & Scholes
log(K/S0) 0 -0.1 0.1 0 -0.1 0.1

τ = 0.1 0.0247 0.0387 0.0985 0.0067 0.0478 0.0519
τ = 0.5 0.0189 0.0317 0.0495 0.0076 0.0576 0.1246
τ = 1.0 0.0157 0.0103 0.0057 0.0757 0.1436 0.2370
τ = 1.5 0.0400 0.0420 0.0426 0.1244 0.1791 0.2592

Table: Relative errors.
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Tikhonov-Type Reg. in Math. Finance: Final considerations

We have introduced an adaptation of Dupire’s model to commodity
markets.

We also applied calibration techniques based on Tikhonov-type
regularization.

Considered underlying asset as unknowns improving reconstructions.

The online model also improves reconstructions.

How to calibrate local volatility and jump-size distributions simultaneously?
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Size-Structured Population Dynamics

For example, consider a population of E. coli.

Typically rod-shaped unicellular organisms.

Its volume falls between 0.6−0.7µm3.

Extensively studied in vitro and in vivo.
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Math. Model

Let n(t,x) denote the population density of cells of “size” x at time t .
So, n satisfies

∂tn(t,x) + ∂x [g(x)n(t,x)] =
∫

∞

0
k(x ,x ′)n(t,x ′)dx ′, (9)

g(x) = microscopic growth rate of individuals at size x ,
k(x ,x ′) = proportion of cells of size x ′ that divide into cells of size x and x ′−x .

Under this generality, the model is hard to calibrate and to make
predictions.
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A Simplified Model

Consider the following simplified version:
∂tn(t,x) + ∂xn(t,x) + B(x)n(t,x) = 4B(2x)n(t,2x), x , t ≥ 0,

n(t,x = 0) = 0, t > 0,

n(0,x) = n0(x)≥ 0, x ≥ 0.

(10)

The choice of g ≡ 1 was made and that a natural alternative would be that of
an affine function.
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The Stable-Size Distribution

There exist a unique an eigenpair λ0 and N = N(x), s.t., after a time
re-normalization, the limit

n(t,x)e−λ0t −→ ρN(x), as t → ∞, (11)

holds under weighted Lp topologies, and the pair (λ0,N) is a solution for
∂xN(x) + (λ0 + B(x))N(x) = 4B(2x)N(2x), x ≥ 0,

N(x = 0) = 0,

N(x) > 0, for x > 0,
∫

∞

0 N(x)dx = 1.

(12)

Such N is the so-called stable-size distribution.
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Let the birth rate B be a measurable function and satisfy

0 < Bm ≤ B(x)≤ BM < ∞. (13)

Then, we can define the direct problem as, given a birth rate B satisfying such
conditions, finding the eigenpair (λ0,N) of Problem (12).

Theorem (Perthame and Zubelli (2007))
The map

B 7→ (λ0,N),

from L∞(R+) into [Bm,BM ]×L1∩L∞(R+) is:
1 continuous under the weak-∗ topology of L∞(R+),
2 locally Lipschitz continuous under the strong topology of L2(R+) into

L2(R+),
3 of class C1 in L2(R+).
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The Inverse Problem

It is to recover the birth rate B from noisy data N and the rate λ0.

If the measurement N were smooth, one could directly solve for B, the PDE

4B(y)N(y) = B (y/2)N (y/2) + λ0N (y/2) + 2∂y N (y/2) , y > 0. (14)

This is well-posed as long as N satisfies, e.g. ∂y N (y/2) is in Lp, for some
p ≥ 1.
However, this is not the case for reasonable practical data.
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Inverse Problem Regularization: Tikhonov

Find minimizers for the following Tikhonov-type functional:

F (B) = ‖N(B)−Nobs‖2
L2(R+)

+ αfB0(B), (15)

with B ∈ L2(R+), satisfying (13), and α = 0.05.
The penalization functional used are:

Smoothing: fB0(B) = 0.01‖B−B0‖2
L2(R+)

+‖∂xB‖2
L2(R+)

, and

Kullback-Leibler: fB0(B) =
∫

∞

0 B(x) log(B0(x)/B(x))− (B0(x)−B(x))dx .

where B0(x) is assumed constant.
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Bayesian Techniques

Suppose that

N and B are random variables.

the data is corrupted by a Gaussian noise, with distribution N(0, Id).

the noise is additive and independent of N.

So, the likelihood function is

π(N|B) ∝ exp
[
−‖N(B)−Nobs‖2

L2(R+)

]
The prior distribution can be chosen as

πprior (B) ∝ exp
[
−α

(
‖B−B0‖2

L2(R+)
+‖∂xB‖L1(R+)

)]
.

By Bayes Theorem:

πposterior (B|Nobs) ∝ πprior (B)×π(Nobs|B).
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Estimators

1 Maximum a posteriori (MAP):

BMAP ∈ argmaxπposterior (B|N)

2 Conditional Mean:

BCM =
∫

B πposterior (B|Nobs)dB,

if the integral converges.
3 Other point estimators.

It is also possible to explore the posterior density by using a MCMC method.
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Numerical Results: Synthetic Data

Figure: Reconstructions of a non-smooth B using Tikhonov regularization (left), and
statistical techniques (right).

Two Applications of Inverse Problems Techniques c©V. Albani (Dept.Math., UFSC) 1st S2C 51 / 56



Numerical Results: Synthetic Data

Figure: Reconstructions of a smooth B using Tikhonov regularization (left), and
statistical techniques (right).
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Numerical Results: Real Data – E. coli

Data from Doumic et al. (2010).

Figure: Reconstructions of B using Tikhonov-type (Smoothing and Kullbacl-Leibler)
regularization (left), and statistical techniques (right).
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Numerical Results: Real Data – E. coli

Data from Doumic et al. (2010).

Figure: The density N corresponding to the reconstructions of B using Tikhonov-type
(Smoothing and Kullbacl-Leibler) regularization (left), and statistical techniques (right).
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Concluding Remarks

1 Statistical Inverse Problems techniques are more versatile than Tikhonov
reg.

2 However, they can be more computationally intensive.
3 We found similar results with Tikhonov reg. and point estimators.
4 So, they are at least as good as Tikhonov reg.
5 MAP and Tikhonov reg. are the same thing, at least intuitively.
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Concluding Remarks

These inversion techniques can be used in many different applications, such
as,

1 image processing (denoising, deblurring, ...)
2 medical imaging (CT, EIT, ...)
3 Geophysics
4 Math. Finance
5 Fluid dynamics
6 Biomath
7 and so on...
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