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Abstract

This work is concerned with the source identification problem in
air pollution modeling. The forward problem is described by an
advection-diffusion equation with physically realistic coefficients. It
is solved by the combination of adaptive meshes and a stabilized finite
element method. The source is estimated by Tikhonov-type regular-
ization with a composite misfit function and an entropic penalty term.
The composite misfit is given by the convex combination of `1 and `2

norms of the discrepancy between observed and predicted concentra-
tions. Morozov’s discrepancy principle is applied to simultaneously
choose the regularization and the misfit combination parameters. Nu-
merical experiments using Copenhagen field data is used to validate
numerically the proposed methodology.
Keywords: Air Pollution Modeling, Stabilized Finite Elements For-
mulation, Source Identification, Tikhonov-type Regularization.

1 Introduction

The release of toxic materials to the atmospheric boundary layer (ABL) can
bring serious consequences to those who will suffer its effects, like all kind of
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vegetal and animal life. The leak of harmful gases may take place acciden-
tally or deliberately in several ways, for example, leakage in gas pipelines,
industrial accidental releases, or even terrorist attacks.

In such emergency situations, fast and accurate source estimation method-
ologies are of great significance to predict the source parameters (source
strength and location) since they can be introduced in numerical forecast
models to predict the transport and diffusion of the harmful contaminants
into the atmosphere. Thus, improving the forecast of the source parameters
allows the decision makers to look for better strategies regarding the evacu-
ation and other protective measures in order to mitigate possible damages.

Since the identification of pollutant sources parameters is an intrinsic ill-
posed problem, many different inverse problems techniques were proposed,
some of them giving robust and reliable solutions. Such techniques can be
divided into two main classes, namely, stochastic and deterministic methods.

The stochastic or Bayesian approach has been frequently using in source
term estimation problems. See Wang et al. (2017) and references therein.
In this class, the unknowns and the observed data are treated as random
variables, which are related through the so-called likelihood function and
the posterior probability distribution. Then, the reconstructions, which are
given within confidence intervals, can be obtained by different sampling tech-
niques, like point estimators or Monte Carlo Markov Chain methods. See for
reference Somersalo and Kapio (2004). One of the main advantages of these
methods is that they incorporate naturally the uncertainty in the observa-
tions and in the forward model. However, the sampling techniques can be
computationally intensive, specially when the number of unknowns is large.
This makes deterministic optimization techniques more attractive, since they
are computationally cheaper and the reconstructions are robust. See Vogel
(2002); Engl et al. (1996); Tarantola (2005).

In the deterministic or optimization class, a cost or objective function,
which is usually based on the mean error between the measured and predicted
concentrations, is given by different methods. See Wang et al. (2018) for dif-
ferent choices of cost functions. The desired parameters are, in general, global
minimizers of the cost functional, which must be found by some optimiza-
tion technique, like gradient-descent methods, genetic algorithm, simulated
annealing, etc. See Long et al. (2010); Addepalli et al. (2011); Ma et al.
(2014); Ma and Zhang (2016); Ma et al. (2017; 2018); Wang et al. (2018).

It is important to note that the precision of the source estimation will de-
pend on the accuracy of both the measured data and the forward atmospheric
dispersion model. In case of too noisy monitoring data or a poor prediction
of the forward problem, the source estimation may greatly deviate from the
real one.
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Optimization methods coupled with the Gaussian plume model (GPM)
have broadly been employed for the source parameter estimation, see Long
et al. (2010); Addepalli et al. (2011); Ma et al. (2014); Ma and Zhang (2016);
Ma et al. (2017; 2018); Wang et al. (2018). Using synthetic data, Long et al.
(2010) combined the Genetic Algorithm with gradient descent techniques
to determine the source parameters that fit the observed concentrations.
They also estimated the minimum sensor requirements, given a particular
configuration, needed to estimate the source term robustly. Addepalli et al.
(2011) used a stochastic search to determine clever initial spatial parameters
guess and Tikhonov-type regularization to identify the source. Ma et al.
(2017) applied the Tikhonov regularization to identify the source strength
and particle swarm optimization algorithm to estimate the source location.
Wang et al. (2018) proposed the use of composite cost functions to identify
the source location and source strength using Prairie-Grass field data. In
this technique, two or more different cost functions are combined to define
a composite objective function that appropriately balances sensitivity and
robustness.

Concerning the forward problem, GPM has been widely applied to obtain
the forward model solution in source estimation problems. However, the good
reliance of such approaches is restricted to flat topography and stationary
atmospheric conditions. To deal with the release of hazardous gases over
an urban environment, or to include more physically relevant information
about the ABL dynamics, for example, it is necessary to appeal for numerical
solution methods. An improved Gaussian model was developed in Ma and
Zhang (2016) in order to deplete the representative error from the analytical
solution. Although this Gaussian solution had achieved better results in
relation to the original forward problem formulation, its application to more
complex scenarios seems to lack further investigation.

The ABL experiences a variety of regimes ranging from advection-to
diffusion-dominated along the day. This fact imposes a challenging task
to any solution method. The mathematical model for the forward problem
is an advection-diffusion equation type. According to recurrently reported
in the literature, the solution of advective-dominated problems faces several
difficulties, as the appearance of nonphysical oscillations.

A numerical method to solve ABL dispersion models must be capable of
dealing with such issues. Considering these points, we propose a combination
of a finite element method (FEM) and adaptive mesh refinement to obtain
the forward problem solution. This methodology considers the application of
the stabilized finite element formulation proposed by Hughes et al. (1989) ad-
dressed to the solution of advective-diffusive equations. Finite element-based
approaches have become an attractive option to the air pollution modeling
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research field. See for example, Albani et al. (2015); Oliver et al. (2013);
Monforte and Foguet (2014) and references therein.

The benefits of using finite elements based methods on air pollution mod-
eling encompass the possibility of mesh adaptation to complex geometries and
boundary conditions. In addition, it is possible to perform local refinements
in those regions where the gradient solution changes abruptly such as near
point source emissions along the downwind direction.

The forward model includes the time-evolving ABL structure by mean
of parametric profiles for the wind speed and the vertical eddy-diffusivity,
which, in turn, depend on the ABL stability regime. We assess the forward
model by simulating a classical field experiment. The source parameters
then, are subsequently obtained and evaluated with those data.

Since composite cost functions were successfully used for the source term
estimation (Wang et al. (2018)) and in imaging problems (Yue et al. (2014);
Yan (2013)), we propose an inversion technique based on Tikhonov-type reg-
ularization, where the data misfit or merit functional is given by the convex
combination of the `2 and `1 norms of the discrepancy of measured and pre-
dicted concentrations. The penalty term is given by the Shannon entropy
function. Another motivation to use a composite merit function is to treat
differently uncertainty sources. In this case, we assume that the noise in the
data is Gaussian, which justify the `2 misfit and the model uncertainty is
treated as impulsive noise, leading to the `1-norm term. The regularization
parameter and the parameters of the combination of `1 and `2 misfit terms are
chosen accordingly to Morozov’s discrepancy principle. See Morozov (1966).

For the best of our knowledge, the application of FEM to source estima-
tion and the inversion technique aforementioned are new and constitute the
main contribution of this paper.

This article is structured as follows: Section 2 is devoted to the forward
problem formulation. In Section 3, the source identification problem and the
estimation techniques are presented. The numerical experiments based on
real data are the subject of Section 4. Concluding remarks are designed in
Section 5.

2 Forward Problem

The goal of the present section is to introduce the so-called forward problem
which consists of a partial differential equation (PDE) for the transport of
a chemical species into the atmosphere, and its numerical solution based on
FEM.
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2.1 The Dispersion Model

The following mathematical model describes the dispersion of a single pol-
lutant released from a point source in the atmospheric boundary layer. This
model considers two transport mechanisms, that is advection in the horizon-
tal direction (x, y-directions) and turbulent diffusion in the x, y, z-directions.
The spatial domain for the computational model is the parallelepiped Ω in
the ABL, which the dimensions will be specified later. The contaminant is
released from a point source located at (xs, ys, zs) within Ω during the time
interval [ts − ε, ts + ε], with ε > 0.

The problem of obtaining the mean pollutant concentration C(x, y, z, t)
at some spatial location (x, y, z) ∈ Ω and time t ∈ [0, T ] is given by solving
the partial differential equation (PDE):

∂C

∂t
+ u cos(θ)

∂C

∂x
+ u sin(θ)

∂C

∂y
− ∂

∂x

(
Kx

∂C

∂x

)
− ∂

∂y

(
Ky

∂C

∂y

)
− ∂

∂z

(
Kz

∂C

∂z

)
=

Qδ(x− xs)δ(y − ys)δ(z − zs)X[ts−ε,ts+ε](t), (1)

where u is the wind velocity intensity and X[ts−ε,ts+ε](t) is the indicator func-
tion of the interval [ts − ε, ts + ε], which is defined as

X[ts−ε,ts+ε](t) =

{
1, if t ∈ [ts − ε, ts + ε],
0, otherwise.

We assume that the concentration field has no impact on the velocity field,
which guarantees the linearity of the equation (1). The coefficients Kx, Ky

and Kz represent the turbulent diffusion in the longitudinal, lateral and ver-
tical directions respectively. The left-hand side terms of (1) account for
the advection and diffusion of the pollutant, wherein the K-theory has been
applied to model the turbulent fluxes. The right-hand side term accounts
for the point source, where Q stands for the emission rate of the pollutant.
Finally, θ is the wind direction angle.

2.2 The adjoint state

To find a minimizer for the Tikhonov-type functional, a gradient descent al-
gorithm will be applied. To avoid solving two PDEs at each iteration during
this procedure, we follow Pudykiewicz (1998), and replace the original PDE
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problem by an adjoint one, which has to be solved only once, for each con-
centration measurement. This procedure furnishes a remarkable advantage
when a computationally expensive solution method is applied to solve the
dispersion model. More precisely, each observation Cobs(xj, yj, zj, T ) is given
by

Cobs(xj, yj, zj, T ) =

∫ T

0

∫
Ω

C(x, y, z, t)Lj(x, y, z, t)dxdydzdt, (2)

where C(x, y, z, t) is the solution of the PDE problem (1), and Lj is the
spatial filtering function for the sensor located at (xj, yj, zj, t). See Yee et al.
(2008). Since the operator that maps the emission source to concentration
is linear, then, (2) is equivalent to

Cobs(xj, yj, zj, T ) =∫
Ω

C∗j (x, y, z, t)S(x, y, z, t, xs, ys, zs, ts, Q)dxdydzdt = 〈C∗j , S〉, (3)

where S denotes the emission source defined in (1) and C∗j is the solution
of the adjoint PDE

∂C∗

∂t
− u cos(θ)

∂C∗

∂x
− u sin(θ)

∂C∗

∂y
− ∂

∂x

(
Kx

∂C∗

∂x

)
− ∂

∂y

(
Ky

∂C∗

∂y

)
− ∂

∂z

(
Kz

∂C∗

∂z

)
= Lj, (4)

Equation (4) must be completed with initial and boundary conditions, given
by

C∗ = C0 in Ω for t = 0, (5)

∂C∗

∂z
= 0 in z = z0 and z = h (6)

and

C∗ = 0 elsewhere. (7)

The parameter h represents the boundary layer height which we define as the
height of Ω. In addition, z0 denotes the surface roughness length, which is also
the height of the base of Ω. The PDE problem (4)-(7), associated with the co-
efficients u,Kx, Ky, Kz, the source strength Q and its location xs, ys, zs, con-
stitutes the forward problem formulation. Since the coefficients u,Kx, Ky, kz
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are functions of the solar radiation, they might change drastically depend-
ing on the meteorological conditions. Depending also on such meteorological
conditions, the atmosphere can perform a diffusion or advection-dominated
character.

Even when the atmosphere is diffusion-dominated, near the surface, the
advection predominates and the equation possesses a hyperbolic character.
That is an arduous task for any solution method. Hence, the employed
solution methodology must be able to handle such issues.

It is well known that the classical Galerkin finite element method is not
appropriate to deal with hyperbolic equations. Therefore, in this work, we
use a stabilized FEM Galerkin/least-squares (GLS) designed to advective-
diffusive equations. This is the subject of the next section.

2.3 Finite Element Formulation

We now shortly discuss the steps involved to obtain the finite element solu-
tion to the forward problem. The discretization process using a finite ele-
ment method starts from a reformulation of the partial differential equation
(4) jointly with its boundary conditions (5)-(7) as an equivalent variational
problem. Concerning the problem (4), we aim to find the adjoint concentra-
tion C∗ in the space ϕ of admissible functions such that

A(C∗, w) = 0 for all w ∈ W, (8)

whereA is a bilinear functional andW is a space of a special class of functions,
as we shall see below. The bilinear functional A(., .) is given by

A(C∗, w) =

∫
Ω

[
w
∂C∗

∂t
− wu cos(θ)

∂C∗

∂x
− wu sin(θ)

∂C∗

∂y
+

Kx
∂C∗

∂x

∂w

∂x
+Ky

∂C∗

∂y

∂w

∂y
+Kz

∂C∗

∂z

∂w

∂z

]
dΩ, (9)

In the context of the standard Galerkin method, ϕ usually denotes the
trial space function and consists of all functions which are square integrable,
have square integrable first derivatives over the computational domain Ω,
and also satisfy the Dirichlet conditions. The space of functions W is similar
to the trial space functions except that these functions are required to vanish
on the Dirichlet portion of the boundary.

The sets ϕ and W are infinite-dimensional spaces of functions. So, in
the context of FEM, ϕ and W are approximated by finite-dimensional sub-
sets, denoted respectively by ϕh and W h. These finite element spaces are
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defined, among other things, according to a partition of the domain Ω into
subdomains, called finite elements.

Hence, in the Galerkin method, the adjoint concentration C∗ is approxi-
mated by the field C∗h ∈ ϕh, given by

C∗h(x, y, z, t) =
N∑
i=1

C∗i (t)φi(x, y, z), (10)

where the unknowns C∗i (t) = C∗h(xi, yi, zi, t) represent the concentration at
the ith nodal point of the finite element mesh with coordinates (xi, yi, zi), N
is the dimension of the approximation spaces ϕh and W h, and {φ1, φ2..., φN}
is a particular orthonormal basis of both spaces ϕh and W h.

In the standard Galerkin method, a semi-discrete system of equations for
the unknown nodal functions C∗i is obtained by substituting (10) in (8) and
setting w = φi also in (8). As aforementioned, the standard Galerkin method
gives rise to spurious oscillations when applied to advective-diffusive prob-
lems. Accordingly, we opt for the so-called Galerkin/Least Squares method
(Hughes et al. (1989)), wherein the unknowns C∗i are obtained by substitut-
ing (10) into an extended version of (8) given by

A(C∗h, wh) + AGLS(C∗h, wh) = 0 (11)

where

AGLS(C∗, w) =

∫
Ω

τ

(
∂C∗

∂t
+ Ψ(C

∗
)

)
Ψ(w)dΩ. (12)

The operator Ψ(.) is given by

Ψ(ζ) = −u cos(θ)
∂ζ

∂x
− u sin(θ)

∂ζ

∂y
− ∂

∂x

(
Kx

∂ζ

∂x

)
−

∂

∂y

(
Ky

∂ζ

∂y

)
− ∂

∂z

(
Kz

∂ζ

∂z

)
(13)

The parameter τ is specified element-wise and determines the amount of
numerical diffusion to be added in order to dump possible oscillations in the
solution. Finding a closed form for τ is an open problem. If we set τ = 0 ,
the Galerkin formulation is retrieved. A review for this subject can be found
in Volker and Knobloch (2007). For more details about the mathematical
background of the present section see Ern and Guermond (2004); Donea
and Huerta (2006). Furthermore, the reorganization of all of the terms of
Equation (11) gives rise to the following semi-discrete system of equations:
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F(C∗, Ċ∗, t) = 0 (14)

wherein Ċ∗ represents the time variation of the nodal concentration values
and C∗ indicates the nodal concentration values. To obtain Ċ∗ values, a time
discretization technique must be applied.

2.4 Turbulence Parameterization

Atmospheric transport and dispersion depend mainly on the wind inten-
sity and direction, aside from the atmospheric turbulence state. The ABL
structure changes along the day, and so, those quantities. To be capable of
reproducing more realistic ABL conditions on the proposed dispersion model,
parameterizations for u and Kz will be employed. Although u and Kz could
be any function of the variables x, y, z and t, in this work, they will depend
on (z, t) only. The dependence of these coefficients on t is implicitly given by
the micro-meteorological parameters frictional velocity (u∗), Monin-Obukhov
length (L) and the ABL height (h). Such parameterizations were taken from
Ulke (2000) and they are presented below for the sake of completeness.

The vertical diffusion is given by:

Kz(z) = κu∗0h
(z
h

)(
1− z

h

)(
1 + 6.9

h

L

z

h

)−1

(15)

for the stable condition (h/L > 0) and

Kz(z) = κu∗0h
(z
h

)(
1− z

h

)(
1− 22

h

L

z

h

)1/4

(16)

for the unstable condition (h/L < 0). The wind intensity is given by

u(z) =
u∗0
κ

{
ln
z

z0

−
[
1− 6.9

h

L

] [
z − z0

h
− 6.9

2

h

L

[
z2 − z2

0

h2

]]}
(17)

for stable conditions and

u(z) =
u∗0
κ

{
ln
z

z0

+ ln

[
(1 + µ2

0)(1 + µ0)2

(1 + µ2)(1 + µ)2

]
+

2(arctan(µ)− arctan(µ0)) +
2L

33h
[µ3 − µ3

0]

}
(18)

for unstable conditions, with
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µ =

(
1− 22

h

L

z

h

)1/4

and µ0 =

(
1− 22

h

L

z0

h

)1/4

.

3 The Identification Problem

The goal of the present section is to describe the estimation technique used
in the numerical examples. We begin by introducing Tikhonov-type regular-
ization. Then, the adaptation of this regularization technique to cope with
different kinds of noise in the data is presented.

Firstly, let us assume that the concentration data is observed in all the
finite element mesh points in the whole domain without noise or uncertainties.
Denote this unrealistic set of measurements by C̃.

The inverse problem is then, the identification of the source location
(x†, y†, z†) and the source strength Q†, that satisfy the equation

C̃ = C(x†, y†, z†, Q†), (19)

where C(x†, y†, z†, Q†) is the solution of the advection-diffusion PDE (1).
Unfortunately, only a scarce and noisy dataset Cobs is available, where

Cobs and C̃ are related by

‖C̃ − Cobs‖Lp ≤ δ, (20)

with δ > 0 the noise level. Although the set of four unknowns is small, the
corresponding least-square problem has more than one stationary point. See
Addepalli et al. (2011). In addition, the dataset is highly noisy. Further,
potential inaccuracies in the forward model makes the inverse problem of
source estimation a difficult task that needs some regularization technique.
See, for instance, the textbooks Engl et al. (1996), Scherzer et al. (2008),
Vogel (2002) and Tarantola (2005) for more details.

Many different techniques can be applied to solve this inverse problem,
but, Tikhonov-type regularization is probably the most widespread used
method with successful results in many different applications. Its formula-
tion is simple, in addition, it is well understood computationally and theoret-
ically. See Engl et al. (1996); Scherzer et al. (2008); Tarantola (2005); Vogel
(2002) and references therein. Hence, to solve the current inverse problem,
we apply Tikhonov-type regularization as follows: find a set of parameters
(xmin, ymin, zmin, Qmin) that minimizes the functional

F(x, y, z,Q) = φ(x, y, z,Q) + αf(x, y, z,Q) (21)
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where

φ(x, y, z,Q) = (1− β)

∑Nsensors

j=1 (Cj(x, y, z,Q)− Cobs
j )2∑Nsensors

j=1 (Cobs
j )2

+ β

∑Nsensors

j=1 |Cj(x, y, z,Q)− Cobs
j |1.001∑Nsensors

j=1 |Cobs
j |1.001

(22)

is the data misfit or merit function, α > 0 is the regularization parameter,
β ∈ [0, 1] is a free parameter and

f(x, y, z,Q) = x log(x+ 2000) + y log(y + 5000) + z log(z) +Q log(Q), (23)

is the regularizing functional. Note that, the misfit is a convex combination
between the `2-norm and a smooth approximation of the `1 norm of the
discrepancy between predicted and observed concentrations. The quantity
Cobs

j is the experimental concentration for the jth sensor and Cj(x, y, z,Q) =
Q · C∗j (x, y, z) with C∗j (x, y, z) is the solution of the adjoint state (4).

The `2-norm in the misfit is related to a normally distributed noise in the
data, whereas, the use of `1-norm is associated to impulsive noise, i.e., when
there is a small number of mesh points where the noise is more prominent.
See, e.g., Wohlberg and Rodriguez (2009), Zhang et al. (2014), and Darbon
(2005) for some examples of the use of `1 misfit. To see the relation between
`2 misfit and the Gaussian noise, see Kaipio and Somersalo (2006).

The choice of the norm in the misfit depends on the typical distribution
of the noise source in experimental data of the problem under considera-
tion. There are many different choices, not restricted to `1 and `2 norms, for
the merit function, for example, it is also possible to choose `p norm with
p > 0, `∞ norm, Kullback-Leibler divergence or the Poisson log-likelihood
functional. See Wen et al. (2017), Clason (2012), Resmerita and Anderssen
(2007) and the textbooks Tarantola (2005) and Vogel (2002). In Addepalli
et al. (2011), the authors proposed a misfit function in the source identifica-
tion problem that compensates the difference of magnitudes in the measured
data. It is also possible to combine different misfits, as above, whenever dif-
ferent kinds of noise are present in the data. See, e.g., Yue et al. (2014), Yan
(2013) and Wang et al. (2018).

Some misfit functions are non-differentiable, like the ones based on `1, `∞
and `p, with 0 < p < 1, norms. So, sometimes it is useful to approximate
such merit functions by some smooth ones. For example, as we did above,
the `1-norm can be replaced by some `p-norm with p > 1 but close to 1.
See, for example, Attoucha and Cominettib (1999) and Wen et al. (2017).
The differentiability of the merit function and of the penalty f is important
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since it allows the use of gradient-based techniques in the minimization of
the Tikhonov-type functional (21). For example, quasi-Newton, conjugated
gradient and steepest descent methods can be used to solve the corresponding
optimization problem. See Vogel (2002). For more details on optimization
techniques, see Nocedal and Wright (2006).

Other combinations of functionals in the misfit could be tested, however,
in recent works, this one has proved to be useful for imaging processing
problems where the presence of more than one source of noise is detected.
See, e.g., Yue et al. (2014), Yan (2013) and Langer (2017). It is also important
to mention that `1-based and, principally, `2-based merit functions are the
most common choices in a plethora of applications, presenting reliable results.
See Tarantola (2005), Vogel (2002) and Kaipio and Somersalo (2006) and
references therein.

Another important feature of Tikhonov-type regularization is the choice
of the regularizing term. We use the Shannon entropy, since maximum en-
tropy is considered as a universal method to find the most reasonable distri-
bution in the presence of incomplete data, see Skilling (1988) and Shore and
Johnson (1980). Since, this is the case in the problem under consideration,
this is a natural choice. In addition, entropy functional is extensively used in
inverse problems, specially when the `1-norm is the norm of the parameters
set. See, Eggermont (1993), Amato and Hughes (1991) and Resmerita and
Anderssen (2007).

The parameters β, and α are free and we chose them based on Morozov’s
discrepancy principle. See Morozov (1966). There are other choice rules,
see, for example, Vogel (2002) and Langer (2017), but, this particular one is
widespread used successfully.

4 Results and Discussion

This section is devoted to the numerical validation of the techniques used to
solve both, the forward and the inverse problems. This is performed by using
the experimental data sets from the Copenhagen field campaign (Gryning
(1981)).

4.1 Forward Problem Validation

The Copenhagen field experiment was conducted under neutral and unstable
atmospheric conditions. The tracer sulfur hexafluoride (SF6) was released
without buoyancy from a tower at a height of 115m, and after, collected 2-3m
above ground level at locations up to three crosswind arcs of tracer sampling
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units, positioned radially 2, 4 and 6Km from the point of release. The site was
mainly residential having a roughness length of 0.6m. Three successive 20
min averaged tracer concentrations (runs 1,2 and 3) were measured, resulting
in a total sampling time of 1 hour. For this work, we choose about 20
sampling points of SF6 concentration from “run 1” and “run 2” and then, we
averaged these values to evaluate the numerical solution and subsequently,
to estimate the source parameters. Meteorological data measured during
the field campaign as well as a complete description from the Copenhagen
experiments can be found in Gryning (1981); Gryning and Lyck (1984; 2002).

We employed concentration and micrometeorological data from October
19, 1978 given by h = 1120[m], u∗ = 0.39[m/s] and L = −108[m]. The
average wind direction during the sampling period was θ = 290o. The longi-
tudinal and lateral eddy diffusivity coefficients values Kx = Ky = 50 [m2/s]
are usually applied during unstable conditions [Arya (2001), p. 272].

Figure 1 shows a schematic representation of the sampling units during
the experiments. The x-axis points towards East direction and y-axis, to-
wards the North. The base of the computational domain can also be seen
in Fig.1. Hence, the computational domain dimensions are Ω = [−2, 8] ×
[−5, 5]× [0, h] [Km].

We made use of non-uniform adaptive finite element meshes. This proce-
dure performs grid refinements only when it is necessary, that is, along the
wind direction near the source of emission, where the concentration gradients
are steepest. The initial mesh is locally refined around the source and then,
an iterative procedure generates the mesh according to an error estimation
depending on the the concentration gradient. The computational domain
was divided into tetrahedral elements.

During the sampling period the meteorological conditions presented no
changes, as well as the measured concentrations. Hence, stationary condi-
tions are considered and time derivative is set to zero in Equation (14).

The numerical solution for the adjoint state problem (4), was obtained for
a total of 20 sampling points. Therefore, we performed a total of 20 simula-
tions of the forward problem. The computational domain has a parallelepiped
form with a volume of 112 [km3], divided in about 3.500.000 tetrahedron lin-
ear elements. Of course the number of mesh elements depends on the sensor
location, however, they don’t diverge that much.

This numerical procedure was developed and solved by using COMSOL
Multiphysics 4.4 (COMSOL, Burlington, USA). The computational time
spent to simulate each run of the forward problem ranged from 3-8 min-
utes (depending on the sensor position). We ran all the experiments on a
Core i5 3.2GHz computer with 16GB of RAM memory under Windows 7
professional 64-bits.
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Figure 1: Schematic representation for the sampling units and source position
during the Copenhagen Experiment.

Figure 2: Comparison between experimental and simulated data correspond-
ing to the Copenhagen data.

Figure 2 presents a comparison of FEM solution and experimental concen-
tration data. The FEM solution is adherent to the observed concentrations.

To access the agreement between observed (O) and predicted (P) con-
centrations the statistical indices proposed by Hanna (1989) were employed.
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The indices are defined as follows.

Normalized Mean Square Error: NMSE =
(C0 − Cp)

2

C0Cp

,

Correlation Coefficient:R =
(C0 − C0)(Cp − Cp)

σ0σp
,

Fractional Bias: FB =
C0 − Cp

0.5(C0 + Cp)
,

Fractional Standard Deviations: FS =
(σ0 − σp)

0.5(σ0 + σp)
,

Factor of two : FAC2 = 0.5 ≤ Cp

C0

≤ 2.

Solution NMSE R FB FS FAC2
Ideal values 0 1 0 0 1

Present work 0.03 0.92 0.02 0.12 1

Table 1: Statistical indices for the Finite Element solution for the dispersion
model based on the Copenhagen field experiment data.

The bars in the indices above denote the mean values of the quantities.
The Correlation Coefficient shows a high degree of relationship between ex-
perimental and numerical concentrations. The positive and small values of
FB indicates that the observed concentrations are lightly underestimated by
the finite element solution presented in this work. Finally, FAC2 value shows
that 100% of the numerical concentrations are between the half and double
of the experimental concentration. The excellent agreement between the cal-
culated and the measured concentrations give us the confidence to estimate
the source parameters from those results.

4.2 Determination of the Source Location and Strength

The goal of the present section is to illustrate that the Tikhonov-type regular-
ization technique presented in Section 3 is able to provide accurate solutions
to the source estimation inverse problem. For all the numerical experiments
provided here, we consider the same experimental dataset used in Section 4.1.

Concerning the choice of the parameters α and β in the Tikhonov-type
functional (21), we tested the values

β = j · 0.05, with j = 0, 1, ..., 20,

and
α = 10−x, with x = 5, 6, 7.
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The values of α and β that we consider acceptable are those which the `2

normalized discrepancy√√√√∑Nsensors

j=1 (Cj(x, y, z,Q)− Cobs
j )2∑Nsensors

j=1 (Cobs
j )2

,

is bellow 0.15. This choice was inspired by Morozov’s discrepancy principle
(Morozov (1966)) and the value 0.15 is based on the `2 discrepancy obtained
with the true values for the source position and the source strength. Of
course, in real applications, this value is in general not available, but it can
be estimated based on the sensors, on the meteorological conditions in the
field and on the numerical method chosen to solve the direct problem.

As aforementioned, the number of sensors was set at Nsensors = 20. We
compare the reconstructed parameters obtained when the forward problem
is solved by FEM with the one provided by GPM. It is important to remark
that GPM is the simplest atmospheric dispersion model available. It is an
analytical solution to the advection-diffusion equation with constants coef-
ficients. A description of GPM can be found, for instance, in Seinfeld and
Pandis (2006). In this set of numerical experiments, the GPM solution was
obtained for the atmospheric stability Pasquill class C (slightly unstable),
which corresponds to the experimental case employed in the previous sec-
tion. We have used the same GPM solution presented in Addepalli et al.
(2011).

To initialize the minimization of the Tikhonov-type functional (21), we
choose the initial source position (x0, y0, z0) and the initial source strength
Q0 at random. In other words, x0, y0, z0 and Q0 are draws of the uniform
random variables:

x0 ∼ U [−2000, 8000], y0 ∼ U [−5000, 5000],
z0 ∼ U [0.6, 1120], and Q0 ∼ U [0, 20],

where U [a, b] denotes the uniform random distribution in the interval [a, b].
The reconstructed values of the source position and the source strength

using FEM for different values of the parameters β and α can be found in
Tables 2, 4 and 6. Tables 3, 5 and 7 present the parameters reconstructed
using GPM. Only the values that satisfy the discrepancy, i.e., the `2-misfit
is below 0.15, are included in the tables.

For α = 10−5 there are already values of β that satisfy the discrepancy
using both methods, FEM and GPM. However, we present the results using
different values of α to illustrate that, as α decreases, the accuracy of the
reconstructed parameters using GPM increases a bit.
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β x y z Q `2-Misfit `1-Misfit
0.70 46.53 10.31 118.97 3.38 0.127 0.100
0.75 -110.35 89.46 108.63 3.42 0.137 0.105
0.80 69.48 -0.44 116.94 3.31 0.127 0.100
0.85 -35.54 45.78 112.27 3.37 0.135 0.104
0.90 -90.16 78.06 109.03 3.41 0.136 0.105
0.95 -110.23 89.38 108.65 3.42 0.137 0.105
1.00 404.70 -160.91 125.45 3.13 0.110 0.100
True 0 0 115 3.20

Table 2: Reconstructed position and source strength of the source emission
using FEM. The values of β ∈ [0, 1] correspond to `2-misfit values below
0.15. The true values are also present for comparison. The regularization
parameter is set at α = 10−5.

β x y z Q `2-Misfit `1-Misfit
0.85 -1157.55 577.93 105.60 6.04 0.136 0.107
0.90 -1157.55 577.93 105.60 6.04 0.136 0.107
0.95 -1157.54 577.93 105.60 6.04 0.136 0.107
1.00 -1104.17 547.92 107.42 5.92 0.136 0.106
True 0 0 115 3.20

Table 3: Reconstructed position and source strength of the source emission
using GPM. The values of β ∈ [0, 1] correspond to `2-misfit values below
0.15. The true values are also present for comparison. The regularization
parameter is set at α = 10−6.

The tables also show that, for smaller values of the `2-misfit, the recon-
structions are less accurate. This is in accordance with the rule of thumb of
inverse problems, that says we cannot overfit the data.

The most accurate reconstructions for each value of α, using both FEM
and GPM, can be found in Table 8. By the comparison between the best
results for each α, we can observe that, the reconstructions obtained with
FEM are much more accurate than those provided by GPM, whenever the
same technique to solve the inverse problem is applied. This fact illustrates
that with more accurate solutions of the forward problem the results for the
inverse problem can be indeed improved.

Furthermore, for almost all values of α, our best results are with β differ-
ent from 0 and 1. β = 0 and β = 1 correspond to Tikhonov-type functionals
with single `2-misfit and single `1-misfit, respectively. This is also an evi-
dence that it is worth to use composite misfit functionals to solve the inverse
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β x y z Q `2-Misfit `1-Misfit
0 479.29 -196.06 126.43 3.07 0.109 0.101

0.05 515.74 -213.04 127.99 3.06 0.108 0.101
0.10 451.72 -182.58 126.41 3.09 0.109 0.101
0.15 83.52 -3.32 121.14 3.36 0.126 0.100
0.20 463.38 -188.18 125.35 3.06 0.109 0.101
0.30 406.70 -157.44 124.91 3.10 0.110 0.100
0.35 324.35 -121.32 127.04 3.22 0.112 0.100
0.40 113.71 -18.81 119.53 3.30 0.123 0.100
0.45 165.75 -45.47 118.37 3.24 0.120 0.099
0.50 275.34 -95.54 122.98 3.22 0.114 0.100
0.55 24.93 24.10 119.74 3.42 0.128 0.102
0.60 48.82 12.05 117.28 3.34 0.127 0.100
0.65 169.76 -44.63 124.73 3.33 0.120 0.099
0.70 -25.39 46.73 114.72 3.40 0.133 0.103
0.80 -76.55 73.01 110.72 3.41 0.135 0.105
0.85 114.25 -18.71 120.25 3.31 0.123 0.100
0.90 327.10 -124.59 129.06 3.24 0.113 0.100
True 0 0 115 3.20

Table 4: Reconstructed position and source strength of the source emission
using FEM. The values of β ∈ [0, 1] correspond to `2-misfit values below
0.15. The true values are also present for comparison. The regularization
parameter is set at α = 10−6.

problem, as highlighted by Wang et al. (2018). One possible reason for this
is the fact that the data can be corrupted by more than one noise source
with different probability distributions.

The minimization of the Tikhonov-type functional (21) was performed by
the function LSQNONLIN from the optimization toolbox of MATLAB, with
the settings below:

• Maximum number of function evaluations: 35000.

• Maximum number of iterations: 25000.

• Termination tolerance on the objective function value: 10−25.

• Termination tolerance on the current point: 10−25.

Each minimization took approximately 60 seconds in an Intel Core i7-4510U
CPU @ 2.00GHz laptop with 8GB RAM running MATLAB R2017a in Ubuntu
Linux 16.04.05 LTS.
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β x y z Q `2-Misfit `1-Misfit
0.05 -953.27 489.13 0.6 5.26 0.127 0.125
0.10 -994.99 505.41 0.6 5.36 0.129 0.121
0.15 -1045.51 525.46 0.6 5.49 0.132 0.116
0.20 -1059.52 528.56 0.6 5.50 0.135 0.113
0.25 -1046.94 520.11 0.6 5.45 0.136 0.112
0.30 -1075.84 532.83 0.6 5.53 0.138 0.111
0.35 -1071.38 530.44 0.6 5.52 0.138 0.111
0.40 -1066.16 527.66 0.6 5.52 0.138 0.111
0.45 -1059.01 523.85 0.6 5.51 0.138 0.111
0.50 -1053.33 520.82 0.6 5.50 0.138 0.111
0.55 -1050.23 519.16 0.6 5.49 0.138 0.111
0.60 -1028.55 507.61 0.6 5.46 0.139 0.110
0.65 -762.76 394.73 195.41 5.96 0.112 0.098
0.70 -986.93 485.42 0.6 5.40 0.141 0.110
0.75 -953.27 467.49 0.6 5.36 0.144 0.110
0.80 -1060.76 524.78 0.6 5.51 0.138 0.111
0.85 -945.00 463.08 0.6 5.35 0.145 0.109
0.90 -919.33 475.69 201.87 6.24 0.124 0.098
0.95 -944.75 462.95 0.6 5.35 0.145 0.110
1.00 -972.53 477.72 0.6 5.39 0.142 0.110
True 0 0 115 3.20

Table 5: Reconstructed position and source strength of the source emission
using GPM. The values of β ∈ [0, 1] correspond to `2-misfit values below
0.15. The true values are also present for comparison. The regularization
parameter is set at α = 10−6.

Hence, based on the results above and the comparisons between solutions
obtained with FEM and GPM, we can conclude that, the combination of
more accurate solutions of the forward problem with the use of composite
misfit functions in Tikhonov-type regularization is indeed worth to provide
precise reconstructions of the source strength and the source position.

5 Concluding Remarks

Based on the premise that more accurate modeling of the forward prob-
lem potentially improves the solution of the inverse problem, we proposed
a stabilized FEM formulation to numerically solve the atmospheric disper-
sion model. This methodology allowed the introduction of physically relevant
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β x y z Q `2-Misfit `1-Misfit
0 409.99 -160.55 126.38 3.14 0.109 0.101

0.05 415.21 -165.14 127.02 3.13 0.109 0.100
0.10 264.73 -90.23 126.32 3.27 0.115 0.100
0.25 479.24 -195.92 127.75 3.08 0.109 0.101
0.30 212.52 -66.23 122.90 3.27 0.117 0.100
0.40 25.65 24.66 117.93 3.38 0.128 0.101
0.50 48.31 12.95 118.12 3.35 0.127 0.100
0.55 367.34 -139.93 122.83 3.13 0.110 0.100
0.60 273.40 -96.44 130.22 3.29 0.116 0.100
0.70 234.30 -75.06 123.70 3.25 0.117 0.100
0.75 -22.91 47.08 116.67 3.43 0.132 0.103
True 0 0 115 3.20

Table 6: Reconstructed position and source strength of the source emission
using FEM. The values of β ∈ [0, 1] correspond to `2-misfit values below
0.15. The true values are also present for comparison. The regularization
parameter is set at α = 10−7.

characteristics of the ABL. Although such techniques are not completely new,
for the best of our knowledge, this was not yet applied to source estimation
problems. In general, the forward problem is solved by GPM, which has
limited applications in more realistic situations.

In addition, FEM formulation can be used jointly with wind profiles
given by the solution of the Navier-Stokes equations, whenever the hypothe-
ses made in this work are not valid, for example, when dealing with non-
homogeneous boundary layers.

Numerical tests illustrated that the predicted concentrations given by
FEM solution were quite close to the observed data. This was corroborated
by means of statistical indices, usually employed to evaluate the dispersion
models.

To address more appropriately the uncertainty sources in the data and in
the forward problem solution, we solved the inverse problem by Tikhonov-
type regularization, where the misfit functional was given by the convex
combination of the `2 and the `1 norms of the discrepancy between pre-
dicted and observed concentrations. The regularizing or penalty term was
the Shannon entropy, which is commonly used in applications. The regular-
ization parameter and the parameter that controls the weight of each norm
in the misfit function were chosen accordingly to the Morozov’s discrepancy
principle. This particular combination of inverse problems techniques was
also a contribution of this article.
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β x y z Q `2-Misfit `1-Misfit
0 -547.79 289.23 201.49 5.62 0.107 0.0989

0.05 -549.63 289.73 202.07 5.64 0.107 0.099
0.10 -551.56 290.21 202.60 5.65 0.107 0.099
0.15 -553.91 290.88 203.15 5.66 0.107 0.099
0.20 -556.15 291.37 203.88 5.67 0.107 0.099
0.25 -560.47 293.09 204.27 5.68 0.107 0.099
0.30 -568.37 296.67 204.44 5.70 0.108 0.099
0.35 -565.33 294.07 205.94 5.71 0.108 0.098
0.40 -571.10 296.67 206.00 5.73 0.108 0.098
0.45 -582.17 302.02 205.66 5.74 0.108 0.098
0.50 -590.59 306.07 205.39 5.76 0.108 0.098
0.55 -604.14 312.64 205.05 5.78 0.108 0.098
0.60 -609.34 315.21 205.09 5.79 0.108 0.098
0.65 -614.26 317.75 205.44 5.80 0.108 0.098
0.70 -619.97 320.70 205.88 5.81 0.109 0.098
0.75 -629.01 325.36 206.55 5.82 0.109 0.098
0.80 -645.53 333.89 207.77 5.86 0.109 0.098
0.85 -660.13 341.44 208.85 5.89 0.110 0.098
1.00 -794.80 411.19 204.88 6.06 0.116 0.098
True 0 0 115 3.20

Table 7: Reconstructed position and source strength of the source emission
using GPM. The values of β ∈ [0, 1] correspond to `2-misfit values below
0.15. The true values are also present for comparison. The regularization
parameter is set at α = 10−7.

Table Method α β x y z Q
Table 2 FEM 10−5 0.70 46.53 10.31 118.97 3.38
Table 3 GPM 10−5 1.00 -1104.17 547.92 107.42 5.92
Table 4 FEM 10−6 0.55 24.93 24.10 119.74 3.42
Table 5 GPM 10−6 0.65 -762.76 394.73 195.41 5.96
Table 6 FEM 10−7 0.40 25.65 24.66 117.93 3.38
Table 7 GPM 10−7 0 -547.79 289.23 201.49 5.62

- True - - 0 0 115 3.20

Table 8: Comparison of the best reconstructions obtained using FEM and
GPM for each value of α.

Numerical tests using Copenhagen experimental field campaign showed
that the proposed technique provided solutions considerably precise.
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The computational cost of the inverse problem solution was comparable
with typical solutions in the literature. Concerning the forward problem, the
computational cost to run all the simulations at the same time (all sensors)
might be considerably reduced by a parallelization procedure.

Therefore, the proposed methodology has a strong appeal to be used
during real leakage events.
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