Profa. Cristiane - 25/03/2006 Aula 6 - Métodos de Otimização Irrestrita (continuação)

3.4 - Métodos de Descida

3.4.1 - Método do Gradiente

ALG. 3 Se $x_k \in \mathbb{R}^n$ é tal que $\nabla f(x_k) \neq 0$, os passos para determinar x_{k+1} são:

Passo 1: Calcular $d_k = -\nabla f(x_k)$;

Passo 2: (Busca Linear Exata) Determinar λ_k , minimizador de $f(x_k + \lambda d_k)$ sujeito a $\lambda \geq 0$

Passo 3: Fazer $x_{k+1} = x_k + \lambda_k d_k$

Casos: (1) Função objetivo quadrática

Teorema 1 : Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função quadrática com matriz hessiana G definida positiva. Seja x^* o minimizador global de f. Dado $x_0 \in \mathbb{R}^n$, arbitrário, o ALG. 3 gera uma sequência $\{x_k\}$ tal que

- (i) $\lim_{k\to\infty} x_k = x^*$;
- (ii) $\lim_{k\to\infty} f(x_k) = f(x^*)$ e $f(x_{k+1}) f(x^*) \ge \left[\frac{(A-a)}{A+a}\right]^2 (f(x_k) f(x^*))$, onde A e a são o maior e o menor autovalor de G, respectivamente.
 - (2) Função objetivo não quadrática

Teorema 2: Seja $f: \Re^n \to \Re$, $f \in \mathcal{C}^2$. Seja x^* o minimizador local de f, tal que $\nabla^2 f(x^*)$ é definida positiva. Se o ALG. 3 está bem definido para todo $k \in \mathcal{N}$ e a sequência $\{x_k\}$ gerada por ele converge para x^* , então a sequência $\{f(x_k)\}$ converge linearmente para $f(x^*)$ com taxa não superior $\left[\frac{(A-a)}{A+a}\right]^2$, onde A e a são o maior e o menor autovalor de $\nabla^2 f(x^*)$, respectivamente.

3.4.2 - Método de Newton

Proposição 1: Se f é uma função quadrática com matriz hessiana G definida positiva. Dado $x_0 \in \mathbb{R}^n$, arbitrário, a direção $d \in \mathbb{R}^n$ dada por $d = -G^{-1}(Gx_0 + b)$ verifica que $x^* = x_0 + d$ é o minimizador global de f em \mathbb{R}^n .

Se a função não é quadrática e temos uma aproximação x_k da solução de (P), podemos utilizar a Proposição 1 na função quadrática, resultante da consideração dos três primeiros termos do desenvolvimento em série de Taylor de f em torno de x_k : $f(x) = f(x_k) + \nabla^t f(x_k)(x - x_k) + \frac{1}{2}(x - x_k)^t \nabla^2 f(x_k)(x - x_k)$.

Dúvidas: (a) d_k é sempre uma direção de descida?

(b) Se d_k é uma direção de descida, as condições (i) e (ii) do Passo 1 do ALG.2 são verificadas?

Informações: (a) Se $\nabla^2 f(x_k)$ não for definida positiva pode ser que d_k não seja uma direção de descida.

- (b) No caso em que d_k é uma direça de descida, a verificação de (i) e (ii) no Passo 1 do ALG.2 depende de propriedades da função objetivo. Uma hipótese para garantir estas condições é que os autovalores das matrizes $\nabla^2 f(x_k)$ estejam uniformemente incluídos em algum intervalo $(a,b) \subset \Re$, a > 0.
- **ALG.** 4 Se $x_k \in \mathbb{R}^n$ é tal que $\nabla f(x_k) \neq 0$, os passos para determinar x_{k+1} são:

Passo 1: Determinar d_k tal que $\nabla^2 f(x_k) d_k = -\nabla f(x_k)$ (resolução de um sistema linear que pode não estar bem-definido se $\nabla^2 f(x_k)$ for singular);

Passo 2: Fazer $x_{k+1} = x_k + \lambda_k d_k$, onde λ_k é determinado como no Passo 2 do ALG.2.

Teorema 2: Seja $f: \mathbb{R}^n \to \mathbb{R}$, $f \in \mathcal{C}^3$. Seja x^* um minimizador local de f em \mathbb{R}^n , tal que $\nabla^2 f(x^*)$ é definida positiva. Então, existe $\epsilon > 0$ tal que se $x_0 \in \mathcal{B}(x^*, \epsilon)$ e $\lambda_k = 1$, para todo $k \in \mathcal{N}$, a sequência $\{x_k\}$ gerada pelo ALG.4 verifica:

- (i) $\nabla^2 f(x_k)$ é definida positiva para todo $k \in \mathcal{N}$;
- (ii) $\lim_{k\to\infty} x_k = x^*$;
- (iii) $\exists c > 0$ tal que $||x_{k+1} x^*|| \le c ||x_k x^*||^2$, para todo $k \in \mathcal{N}$.