Plano de Ensino

DISCIPLINA MTM 5112

PRÉ-REQUISITO(S): MTM 5105 - Cálculo I

N DE HORAS-AULA SEMANAIS: 06

N TOTAL DE HORAS-AULA: 108

SEMESTRE: 2005.1

CURSO(S): Matemática - Habilitação Licenciatura

EMENTA: Integral definida; área de figuras planas; Teorema fundamental do Cálculo; técnicas de Integração; equações diferenciais de 1 ordem (separáveis); aplicações da integral; coordenadas polares; construção das funções exponencial e logarítmica; séries numéricas; séries de potências. Utilização de softwares computacionais. História da Matemática relacionada com o conteúdo.

OBJETIVOS GERAIS:

- Proporcionar ao aluno condições de:

- Desenvolver sua capacidade de dedução;

- Desenvolver sua capacidade de raciocínio lógico e organizado;

- Desenvolver sua capacidade de formulação e interpretação de situações matemáticas;

- Desenvolver seu espírito criativo;

- Perceber e compreender o relacionamento entre as diversas áreas da Matemática

apresentadas ao longo do curso;

- Organizar, comparar e aplicar os conhecimentos adquiridos;

- Incentivar o aluno ao uso da Biblioteca.

OBJETIVOS ESPECÍFICOS: Propiciar ao aluno condições de:

1) Dominar o conceito de Integral e suas aplicações

2) Dominar e utilizar os conceitos de séries numéricas e séries de potências.

CONTEÚDO PROGRAMÁTICO

UNIDADE 1 - O CONCEITO DE INTEGRAL

1.1. Motivação histórica sobre áreas

1.2. Somas inferiores e superiores

1.3. Definição e propriedades das integrais inferior e superior

1.4. Funções integráveis

1.5. Somas de Riemann

1.6. Integrabilidade das funções contínuas e contínuas por partes

1.7. Propriedades da integral

1.8. Cálculo numérico de algumas integrais via pacotes computacionais

UNIDADE 2 - TEOREMA FUNDAMENTAL DO CÁLCULO

2.1. Definição de primitiva

2.2. O Teorema Fundamental

2.3. Fórmula de mudança de variáveis

2.4. Integração por partes

2.5. Exemplos de cálculo de áreas

2.6. Extensões do conceito de Integral (Integrais impróprias)

 

UNIDADE 3 - TÉCNICAS DE INTEGRAÇÃO

3.1. Integrais de funções trigonométricas

3.2. Integração de funções racionais por frações parciais

3.3. Integração de funções racionais de seno e cosseno

UNIDADE 4 - APLICAÇÕES DA INTEGRAL

4.1. Equações diferenciais de 1 ordem com variáveis separáveis

4.2. Comprimento de arco

4.3. Volume de sólidos de revolução

4.4. Área de superfícies de revolução

4.5. Um exemplo de aplicação da Integral na Física

4.6. Coordenadas polares

UNIDADE 5 - CONSTRUÇÃO DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

5.1. Definição da função logarítmica usando integral

5.2. Propriedades da função logarítmica

5.3. A função exponencial

UNIDADE 6 - SÉRIES NUMÉRICAS

6.1. Convergência

6.2. Algumas séries especiais

6.3. Operações com séries

6.4. Critérios de convergência

6.4.1. Termo geral

6.4.2. Comparação

6.4.3. Comparação por limite

6.4.4. Integral

6.4.5. Razão

6.4.6. Raiz

6.4.7. Convergência absoluta

6.4.8. Séries alternadas e convergência condicional

UNIDADE 7 - SÉRIES DE POTÊNCIAS

7.1. Definição

7.2. Raio e intervalo de convergência,convergência uniforme

7.3. Série de Taylor

7.4. Expansão em série de Taylor de algumas funções elementares

7.5. Derivação e integração termo a termo

 

 

Metodologia: O conteúdo será desenvolvido através de aulas expositivas e dialogadas, com participação dos alunos.

Avaliação: O aluno será avaliado através de quatro provas escritas obrigatórias. Serão colocadas à disposição dos alunos listas de exercícios com datas para entrega das mesmas. Esta entrega não é obrigatória, mas por cada lista entregue, com um mínimo de 75% dos exercícios resolvidos, será acrescentado 0,3 à soma das notas das 4 provas. A média final será obtida dividindo esta soma por 4.

Estará aprovado o aluno com freqüência suficiente, que obtiver média aritmética simples maior ou igual a seis, segundo o artigo 72 da Resolução n° 17/Cun/97.

 

Prova final: O aluno com freqüência suficiente e média maior ou igual a três (3,0) e menor ou igual a cinco vírgula cinco (5,5), terá direito a realizar uma prova final, sobre todo o conteúdo, conforme o que dispõe o 2o do Art. 70 e 3o do Art. 71 da Resolução n 17/Cun/97. Estará aprovado o aluno que obtiver média aritmética simples maior ou igual a seis (6,0) entre a nota da prova final e a média do semestre.

 

 

 

 

 

 

Bibliografia:

  1. G. Ávila, - Introdução à Análise Matemática, Ed. Edgar Blucher Ltda, 1993.
  2. P. Boulos - Introdução ao Cálculo - Vol. II - Ed. Edgard Blucher, 1983.
  3. D. M. Flemming e M. B. Gonçalves - Cálculo A, - Editora Makron-Books, SP, 1992.
  4. H. L. Guidorizzi- Um Curso de Cálculo, Vols I, II e IV, Livros Técnicos e Científicos Editora, RJ, 1989.
  5. N. Kuelkamp - Cálculo 1, Editora da UFSC, 1999.
  6. L. Leithold - O Cálculo com Geometria Analítica, Vols I e II, Ed. Harbra.
  7. E. L. Lima, - Análise Real, Vol. I - Coleção Matemática Universitária - SBM RJ - 1989.
  8. E. L. Lima, - Curso de Análise, IMPA CNPq, RJ, 1976.
  9. G. F. Simmons- Cálculo c/ Geometria Analítica, Vols I e II, Ed. Makron-Books, SP, 1987.
  10. J. Stewart - Cálculo, Vols I e II, Pioneira Thomson Learning, 2002.
  11. M. Spivak -Calculus, Publish or perish, INC., 3th Edition, 1994.

 

 

 

Florianópolis, 08 de dezembro de 2004.

 

 

 

Prof Silvia Martini de Holanda Janesch.

Coordenadora da disciplina