PLANO DE ENSINO

DISCIPLINA: Cálculo C

CÓDIGO: MTM 5163

PRÉ-REQUISITO: MTM 5162

SEMESTRE: 2008-2

NÚMERO DE HORAS-AULA SEMANAIS: 05

NÚMERO TOTAL DE HORAS-AULA: 90

CURSOS: Engenharias (exceto Engª Elétrica)

PROFESSORES: Joel Santos Souza, Antônio Vladimir, Marcos Henrique Santos Martins, Robert Ozório Moreira e Viviane Maria Beuter

I - EMENTA

Noções de cálculo vetorial; integrais curvilíneas e de superfície; teorema de Green e de Stokes; teorema da divergência de Gauss; equações diferenciais de 1ª ordem; equações diferenciais lineares de ordem N; noções sobre transformada de Laplace.


II- OBJETIVOS

  1. Identificar funções vetoriais e calcular diferenciais e derivadas parciais

  2. Calcular derivadas direcionais de funções escalares

  3. Parametrizar curvas e superfícies

  4. Calcular e interpretar os operadores: gradiente, divergente e rotacional

  5. Identificar e calcular integrais de linha e de superfície e fazer aplicações

  6. Classificar as equações diferenciais e os tipos de solução: geral e particular

  7. Resolver equações diferenciais de 1a ordem e 1o grau tais como as equações a variáveis separáveis, homogêneas, exatas e lineares

  8. Resolver problemas que envolvam equações diferenciais

  9. Identificar equações diferenciais de ordem N

  10. Resolver tipos especiais de equações diferenciais de segunda ordem

  11. Resolver equações lineares de ordem N

  12. Resolver equações diferenciais utilizando a transformada de Laplace


III - CONTEÚDO PROGRAMÁTICO

1a Unidade: Noções de Cálculo Vetorial

1.1. Funções vetoriais de uma variável

1.1.1. Definição e exemplos

1.1.2. Representação geométrica

1.1.3. Limite e continuidade

1.1.4. Derivada. Interpretação geométrica da derivada

1.2. Curvas

1.2.1. Representação paramétrica de uma reta

1.2.2. Representação paramétrica de outras curvas (circunferência, elipse, hélice circular,...).

1.2.3. Reta tangente a uma curva

1.2.4. Reparametrização de curvas por comprimento de arco

1.3. Funções vetoriais de várias variáveis

1.3.1. Definição e exemplos

1.3.2. Derivadas parciais

1.3.4. Campos escalares e vetoriais

1.3.5. Derivada direcional e gradiente de um campo escalar

1.3.6. Campos conservativos


2a Unidade: Integral Curvilínea e de Superfície

2.1. Integral curvilínea ou de linha

2.1.1. Integral de linha de campo escalar: definição, propriedades e cálculo

2.1.2. Integral de linha de função vetorial: definição, propriedades e cálculo

2.1.3. Integral de linha independente do caminho de integração

2.1.4. Teorema de Green

2.2. Integral de Superfície

2.2.1. Parametrização de superfície

2.2.2. Área de superfície

2.2.3. Integral de superfície de um campo escalar: definição, propriedades, cálculo e aplicações

2.2.4. Integral de superfície de um campo vetorial: definição, cálculo. Interpretação física

2.2.5. Rotacional. Teorema de Stokes

2.2.6. Divergente. Teorema da divergência


3a Unidade: Equações Diferenciais de 1a ordem

3.1. Noções gerais de equações diferenciais: definição, ordem, grau, solução

3.2. Equações diferenciais de 1a ordem e 1o grau

3.2.1. Definição e tipos de soluções

3.2.2. Equações a variáveis separáveis

3.2.3. Equações homogêneas

3.2.4. Equações diferenciais exatas - fator integrante

3.2.5. Equação linear homogênea e não homogênea


4a Unidade: Equações Diferenciais de ordem N

4.1. Equações diferenciais de 2a ordem

4.1.1. Definição e exemplos

4.1.2. Teoria das soluções (dependência e independência linear), Wronskiano

4.1.3. Solução de alguns tipos especiais (y"=f(x); y"=f (x,y’); y”=f(y); y"=f(y,y’)

4.2. Equações lineares de ordem N

4.2.1. Equações lineares homogêneas a coeficientes constantes

4.2.2. Equações lineares não homogêneas. Solução pelo método dos coeficientes a determinar e pelo método da variação dos parâmetros

4.2.3. Equações lineares com coeficientes variáveis: Equação de Euler – Cauchy


5a Unidade: Noções gerais de Transformada de Laplace

5.1. Definição de transformada de Laplace

5.2. Transformada de Laplace de algumas funções elementares

5.3. Transformada inversa de Laplace

5.4. Propriedades da transformada de Laplace

5.4.1. 1o Teorema do deslocamento

5.4.2 Transformada de Laplace de derivadas e integrais

5.4.3. Função degrau unitário

5.4.4. 2o Teorema do deslocamento

5.4.5. Multiplicação por t

5.4.6. Transformada de Laplace de funções periódicas

5.5. Transformada de Laplace e Equações Diferenciais

5.6. Teorema da Convolução


IV – METODOLOGIA

O programa será desenvolvido através de aulas expositivas com a apresentação de exemplos e a resolução de alguns exercícios. O professor fará a adequação necessária nas diferentes turmas em que será ministrada a disciplina.


V – AVALIAÇÃO

Serão feitas 4 (quatro) avaliações durante o semestre e será feita a média aritmética simples das notas obtidas nestas avaliações; será considerado aprovado o aluno com freqüência suficiente (FS) e média mínima igual a seis (6,0). O aluno com freqüência suficiente e média das notas entre três (3,0) e cinco e meio (5,5) terá direito a uma nova avaliação, no final do semestre, que versará sobre todo o conteúdo da disciplina. Neste caso, a média final será calculada através da média aritmética entre a média das notas das avaliações parciais e a nota obtida na nova avaliação. A nota mínima de aprovação é seis (6,0).


VI – CRONOGRAMA DAS PROVAS

Prova 1 – Unidade 1 e seção 2.1

Prova 2 - Seção 2.2

Prova 3 - Unidade 3 e 4

Prova 4 – Transformada de Laplace

Exame - Toda a matéria


VII – BIBLIOGRAFIA

1. ABUNAHMAN, S.A., Equações Diferenciais. Livros Técnicos e Científicos Editora S/A, Rio de Janeiro, 1979.

2. ANTON, H., Cálculo - um novo horizonte (vol. 2), 6ª ed., Editora Bookman, Porto Alegre,2000.

3. AYRES, F., Equações diferenciais, Coleção Schaum, 2ª ed., Makron books, São Paulo, 1994.

4. BOYCE, W.E e DIPRIMA, R.C., Equações diferenciais elementares e Problemas de Valores de Contorno, Livros Técnicos e Científicos Editora, Rio de Janeiro, 2002.

5. GONÇALVES, M.B. e FLEMMING, D. M., Cálculo C. - Funções Vetoriais, Integrais Curvilíneas e Integrais de Superfície. Editora Makron Books do Brasil, São Paulo, 2000.

6. GUIDORIZZI, H. L., Um curso de cálculo, vol. 3, 3ª ed., Livros Técnicos e Científicos Editora, Rio de Janeiro, 1999.

7. KREYSZIG, E., Matemática Superior, vol. 1 e 2, Livros Técnicos e Científicos Editora, Rio de Janeiro, 1978.

8. LEITHOLD, L., O Cálculo com Geometria Analítica, vol. 2, 3ª ed., Editora Harbra, São Paulo, 1994.

9. SIMMONS, G. F., Cálculo com geometria Analítica, vol. 2, Editora Makron Books do Brasil (Mc Graw-Hill), São Paulo, 1987.

10. STEWART, J., Cálculo, vol. 2, 4ª ed., Pioneira Thomson Learning, São Paulo, 2001.

11. ZILL, D.G., CULLEN, M.R., Equações Diferenciais, vol. 1 e 2, 3ª ed., Editora Pearson – Makron Books, São Paulo, 2001.

Florianópolis, 14 de julho de 2008

Prof. Joel Santos Souza

Coordenador da Disciplina