EXERCISES 1 (HILBERT MODULES AND FELL BUNDLES)

ALCIDES BUSS

- (1) Let \mathcal{E}, \mathcal{F} Hilbert *B*-modules and $\mathcal{E}_0 \subseteq \mathcal{E}$ a dense *B*-submodule. Suppose $S: \mathcal{E}_0 \to \mathcal{F}$ and $T: \mathcal{F} \to \mathcal{E}$ are linear maps with *T* bounded and satisfying $\langle S(\xi) | \eta \rangle_B = \langle \xi | T(\eta) \rangle$ for all $\xi \in \mathcal{E}_0$ and $\eta \in \mathcal{F}$. Prove that *S* extends to an adjointable operator $S: \mathcal{E} \to \mathcal{F}$ with $S^* = T$.
- (2) Let B be a C^* -algebra and define

$$\ell^{2}(\mathbb{N},B) := \left\{ f \colon \mathbb{N} \to B : \sum_{n=1}^{\infty} f(n)^{*} f(n) \text{ converges inconditionally in } B \right\}.$$

Prove that $\ell^2(\mathbb{N}, B)$ has a canonical structure of a Hilbert *B*-module and with this structure it is isomorphic to the tensor product $\ell^2(\mathbb{N}) \otimes_{\mathbb{C}} B$ (where we use the obvious map $\mathbb{C} \to \mathcal{L}(B) = \mathcal{M}(B)$ to form the (internal) tensor product). Moreover, prove that both Hilbert *B*-modules can be canonically identified with the (Hilbert *B*-module) direct sum $\bigoplus_{n=1}^{\infty} B_n$ with $B_n = B$ (as a Hilbert *B*-module) for all *n*. Generalize (i.e. formulate and prove) all the above statements to arbitrary index sets *I* in place of \mathbb{N} .

(3) The goal of this exercise is to prove that every Hilbert module can be represented as a TRO (Ternary Ring of Operators). Recall that a TRO is a closed subspace $E \subseteq \mathbb{B}(H, K)$ for K, H Hilbert spaces, such that $EE^*E \subseteq E$. One may assume that K = H by replacing both K and H by its direct sum $H \oplus K$ and representing $\mathbb{B}(H, K) \hookrightarrow \mathbb{B}(H \oplus K)$ in the canonical way. Check and write the details. Also check that for a TRO $E, A := \overline{\text{span}} EE^*$ and $B = \overline{\text{span}} E^*E$ are C^* -algebras and one has $\overline{\text{span}} AE = \overline{\text{span}}(EE^*E) = \overline{\text{span}}(EB) = E$. Conclude that E may be viewed as a Hilbert A - B-bimodule in a canonical way.

Now let \mathcal{E} be a Hilbert module over a C^* -algebra B. Represent B into $\mathbb{B}(H)$ via some representation $\pi: B \to \mathbb{B}(H)$. Consider the Hilbert space $K := \mathcal{E} \otimes_{\pi} B$ (internal tensor product of Hilbert modules) and define

$$\tilde{\pi} \colon \mathcal{E} \to \mathbb{B}(H, K), \quad \tilde{\pi}(\xi)(\zeta) \coloneqq \xi \otimes \zeta.$$

Also define $\rho: \mathcal{L}_B(\mathcal{E}) \to \mathbb{B}(K)$ by $\rho(T)(\eta \otimes \zeta) := T(\eta) \otimes \zeta$. Prove that these both maps are well-defined continuous linear maps (you also have to prove that $\rho(T)$ can be extended to $K = \mathcal{E} \otimes_{\pi} H$) and that ρ is a unital *-homomorphism (that is, ρ is a representation of $\mathcal{L}(\mathcal{E})$). Moreover, check the following properties:

- $\tilde{\pi}(\xi)\pi(b) = \tilde{\pi}(\xi \cdot b);$
- $\rho(T)\tilde{\pi}(\xi) = \tilde{\pi}(T(\xi));$
- $\tilde{\pi}(\xi)^* \tilde{\pi}(\eta) = \pi(\langle \xi | \eta \rangle_B);$
- $\tilde{\pi}(\xi)\tilde{\pi}(\eta)^* = \rho(\langle\!\langle \xi | \eta \rangle\!\rangle)$, where $\langle\!\langle \xi | \eta \rangle\!\rangle := \theta_{\xi,\eta}$,

for all $\xi, \eta \in \mathcal{E}, b \in B, T \in \mathcal{L}(\mathcal{E})$. Conclude that if π is faithful (e.g. the Gelfand-Naimark representation), then $\tilde{\pi}$ and ρ are also faithful (and indeed, isometric) so that \mathcal{E} can identified with the closed subspace $E := \tilde{\pi}(\mathcal{E}) \subseteq \mathbb{B}(H, K)$, which is a TRO. Also check that the C^* -algebra $A = \overline{\text{span}} EE^* \subseteq \mathbb{B}(K)$ identifies with $\mathbb{K}(\mathcal{E})$ via ρ and that the C^* -algebra $\overline{\text{span}} E^*E \subseteq \mathbb{B}(H)$ identifies with the ideal $I := \overline{\text{span}} \langle \mathcal{E} | \mathcal{E} \rangle \subseteq B$ via π .