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Systems with controls and observer

System (A,B,C,D)

7 = Az+ Bu
y = Cz+ Du

e u e IR™ : input/control (usuallly constrained to a subset)
e zc R": state

o y € R¥: output/observation

o to initial time, 20 := z(to) initial state (given or unknown)

Control u € L joc(R; R™) :=
{u IR — R™: Ul[t,t,] € Ll([ta, tb]; IRm) forall t,,tp € R, t; < tb}

For selfcontained considerations of controlled systems see for instance

¥ J. Baumeister and A. Leitdo
Introducdo Teoria de Controle e Programacao Dinamica
IMPA Mathematical Publications, Euclides Project, 2008
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Example: damped harmonic oszillator

Consider the differential equation
(x) X" +2d +cx=u

of second order with observation y = x.
This describes a particle with mass 1 following Newton's law under

the outer force f := u, the inner force cx and the friction force
r:=2dx .

Introducing new variables x, v := x’ this system can be
reformulated as a system (A, B, C) as follows:

(xx) 2 =Az+Bu,y=Cz
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Stability is a property which depends on the matrix A only.
Therefore, we consider just the equation for the state:

7 = Az

State  z(t) = exp(A(t — 1))2°, t > to
This can easily be verified. Clearly one must know the definition of a

matrix exponential.

Stability of A or of the system above is the question concerning the
long-time behavior of solutions. Engineers are interested in answers to
this question (You may consider the harmonic oszillator as a model for
damper in a car operating with a spring and a hydraulic damping).

A special type of long-time behavior shows a solution z which is at rest:

z(t) = z(tp) for all t > tp.
This implies z/(t) = 6 for all t > t; and this implies
A’ =0
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Stability-1

Consider the more general system

(1) Each point z with f(Z) = 0 is called a critical point

(2) A critical point Z is stable if every solution which starts
nearby of z stays nearby.

(3) A critical point Z is asymptotically stable if it is stable and if
every solution which starts nearby of z converges for t — oo to

| N‘

Fact
Consider the linear system z/ = Az and Z = 6. Then

o

N

is stable if Re(\) < 0 for every eigenvalue A of A.

@ Z is asymptotically stable if Re(\) < O for every eigenvalue X
of A. The converse does not hold!
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Example: damped harmonic oszillator-1

The eigenvalues of the matrix

0 1
A= <—c —2d>

A =—-d++Vd?—c

Clearly, this implies that the harmonic oscillator is asymptotical
stable if d > 0.
Set w := y/|c — d?|. Then we have for the general solution x of
the damped harmonic oszillator (aj, a» are free ,amplitudes”):
e d = c (critical damping) x(t) = exp(—dt)(a1 + at).
@ d < ¢ (underdamped case)
x(t) = exp(—dt)(ay cos(wt) + azsin(wt)).
e d > c (overdamped case)
x(t) = exp(—dt)(a1 exp(—wt) + az exp(wt)) .

are given as
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Observability

7 = Az

y = (z

State  z(t) = exp(A(t — 1))2°, t > to
Observation y(t) = Cexp(A(t — t9))2°, t > to

y(to) = G20,y (to) = CxX'(to) = CAZ, ..., y("(ty) = CA" 120,

Equivalent conditions: (Caley-Hamilton Theorem!)

e The system (A, ©, C) is observable, i.e. the initial state z°
can be determined uniquely from the observation y .

@ The observability matrix O(A, C) has full rank, i.e.
rank(O(A, C)) = n where

O(A,C)f == (C CA --- CA™1).
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Example: damped harmonic oszillator-2

In this example we have

A:(_OC _12d>,cz(1 0)

O(A, C) = (é (1’>

and therefore

and we conclude:

The damped harmonic oszillator is observable.
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Controllability

7 = Az+ Bu

State z(t) = exp(A(t — t9))2° + /t exp(A(t — s))Bu(s) ds

to
t € [tg, 00).

Controllability means that for each t; > ty and z! € R" there
exists a control u € Li(ty, t1; R™) with z(t1) = 2%, i.e.

2(t1) = 71 = exp(A(tr — 10))2° + / " exp(A(t — $))Bu(s) ds.

to

or
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Controllability-1

exp(—Aty)z(ty) — exp(—Atg)z° = /tl exp(—As)Bu(s) ds,

to

ftzl ao(s)u(s) ds
exp(—At1)z(t1) — exp(—Ato)z0 = C(A,B) :
ftil ap—1(s)u(s) ds
where

C(A,B):=(B AB --- A"™1B)

is the so called controllability matrix of the system (A, B).
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Controllability and minimal systems

Consider the system (A, B). Then the following conditions are
equivalent:
@ The system (A, B) is controllable, i.e. for each t; > ty and
each z1 € R" there exists u € Li(to, t1;IR™) such that the

solution z satisfies z(t;) = z*.

@ The observability matrix C(A, B) has full rank, i.e.
rank(C(A,B)) =n

Definition
A system (A, B, C) is minimal iff it is both controllable and
observable.

| A
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Example: damped harmonic oszillator-3

In this example we have

and therefore

and we conclude:

The damped harmonic oszillator is controllable if ¢ # 0.

Moreover, after all:
The damped harmonic oszillator is a minimal system if

c#0.
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Minimal systems

A real square matrix is called a Hurwitz matrix if all its
eigenvalues have negative real part.

Fact
Let (A, B, C) be minimal and let A be a Hurwitz matrix. Then

(*) AW + WcAt = —BBt, WoAt + AWp = —C'C
where
(o.)
We = / exp(As) BB exp(A's) ds
0

Wo := / exp(A's)CtC exp(As) ds
0

Moreover, W¢, W are symmetric and positive definite matrices.
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Minimal systems-1

Proof:

If (A, B, C) is minimal and if A is a Hurwitz matrix then the
gramians W¢, W exist. We conclude the identity (x) for W¢ as
follows, the argumentation for Wy is the same. The integrals exists
due the assumption that A is a Hurwitz matrix. Moreover we have

< d
AW + WeA" = / E(exp(As)BBteXp(Ats)) ds = —BB".
0

Clearly, W¢, W are symmetric and positive definite matrices.
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Parametric systems

System (A(p), B(p), C(p))
zZ = Alp)z+ B(p)u
y = Cp)z

p € Pag (unknown) parameter, u(t) € €, Q open neighborhood of 6.
t
Observation y(t) = Cexp(A(p)t)z° + / Cexp(A(p)(t — 5))B(p)u(s) ds
0

Definition
p € Paq is identifiable by experiments in [0, T] if

Cexp(A(p)1)° + /0 Cexp(A(p)(t — 5))B(p)uls) ds =

= Cexp(A(q)t)2° + /OtC exp(A(q)(t — 5))B(q)u(s) ds, t € [0, T],

for all admissible controls u implies p = q.
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Parametric systems-1

Suppose z° = 6 and let p, g € Pa.q. Since each control may take
values in an open set we are lead to condition

Cexp(A(p)t)B(p) = Cexp(A(q)t)B(q), t € [0, T].
Therefore, we should consider for g € P,q the quantities

Yi(q) = C(q)A(a)YB(a),j=0,1,....

2% =0, p,q € P.q. Equivalent conditions:
1) Yi(p) = Yj(q),j=0,1,.
(p)

= Yi(q), J_O,l,...,2n—1.
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Identifiability

Proof:
The Caley-Hamilton Theorem plays the important role. For each
g € Pad we obtain numbers ap(q), ..., an—1(q) with

Za, A(g).

For a complete proof see

Q J. Baumeister
Stable solution of inverse problems
Vieweg, 1987

2% =0, p € P.y. Equivalent conditions:

(1) p is identifiably.

(2) For all g € P,y there exists j € {0,...,2n — 1} with
Yi(q) # Yi(p).
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Parametric system — Example

Z2i = —(p1+p2)z1+ pozo+ u,21(0) =0,
zé = p2z1 — P322,Z2(0) =0,
y = =z

Pad = {,D:(P1,,D2,P3)€R3ZpiZO,i=1,2,3}~

Yolp) = 1, Yi(p) = —(p1+ p2)
Ya(p) = (pr+p2)*+p3
Ya(p) = —(p1+ p2)(pi +2p1p2+3p3) — P3ps3

Result Each p € P,q with p, > 0 is identifiable.

In the general case: Apply symbolic computation!

J. Baumeister Parameter identification — tools and methods



Compartmental systems

Compartment model: Describes a number of compartments,
each containing distinct, well mixed material. Compartments
exchange material with each other following certain rules.

Applications Biology, medicine, physiology, ...

Q D.H. Anderson
Compartmental modelling and tracer kinetics
Notes Biomathematics, 1983

Q J.A. Jacquez
Compartmental Analysis in Biology and Medicine
University of Michigan Press, 1996,

[PV>d KW, Little

Environmental Fate and Transport Analysis with Compartmental Modelling
CRC Press, 2012

[PV G.G. Walter
Compartmental modeling with networks
Springer, 1999
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Compartmental systems-1

Modelling
o Compartments Cy, Cq,...,C,
e (p outer enviroment/external world
o f;j flow rate from compartment / to compartment
@ z;(t) quantity of material in the ith compartment at time t
e z(t) :=(z1(t),...,zn(t)) state of the system at time t

Rule z,f = rate of inflow - rate of outflow
Compartmental equations

n n
! .
z; = E f;-j— E f,-j+v,~,/:1,...,n.
N

vi(t) input to the ith compartment from the outer enviroment.
Fractional transfer coefficients: p; := f,jzjfl
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Compartmental systems-2

System Z = A(p)z+v
Observation y = (z
Inverse problem in compartmental theory

Given the observation y
Determine each coefficient pjj of the matrix A
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Model reduction

Model order reduction reduction tries to capture the essential
features of a structure/model in a smaller approximation.

Pioneering steps and tools:
Fourier approximation, Lancos and Arnoldi in matrix theory, finite
elements, wavelets

Here the focus is on finite dimensional models.

Q W.H. Schilders and H.A. van der Vorst and J. Rommes
Model reduction: Theory, research aspects and applications
Springer 2008

& A.C. Antoulas
Approximation of large-scale dynamical systems
SIAM 2005
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Model reduction-1

Model:

7 = f(z,u)
(P) { y = g(z,u)

z € R" state, u € U C R™ control, y(t) € IR¥ observation, f, g
given.

Model reduction: Find

x = f(x,u)
(Pr) { yr = &(xru)

where x(t) € R", u(t) € R™,y, € R, f,, g, given and
r < n,l < k. We consider controls with a time horizon T, i.e. the
system is considered in the time interval [0, T].
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Model reduction-2

Goal:
Find (P,) in such a way that the following requirement is met:
There is a bound k, (complexity-misfit) such that

Iy = yell < srllull,u € U, and &, 10 if r 1 n.

r, | are the crucial numbers.

Here, we assumed that the space of controls is endowed by a norm.

The misfit is due to the approximation order of the reducedmodel.
There are many reduction methods. We sketch below a method for
linear systems.
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Model reduction-3

Consider the following systems:

Al B A | B
Model: M := <T‘?> Reduced model: Mr = <Tr‘7>

What is a method to come from (A, B, C) to (A, B,, C;), and
what are the features which should preserved, which goals should
achieved? We sketch only the steps which lead to a decomposition.
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Model reduction-4

If (A, B, C) is minimal and if A is a Hurwitz matrix then there
exists a diagonal matrix G such that

AG + GA* = —BB' A'G+ GA= —C'C, We =Wy =G.

Let
01202220, 20p412 " 20p

be the singular values of G where we assume that o, > g,41 .
Then we decompose A, B, C as follows:

Al A B
<A21 Azz) ’ (Bz> ’ (G &)

Now the reduced form is found as

(A | B
Mf'_( G @>
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