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Inverse problem in groundwater flow

A twodimensional model

−∇(q∇u) = r in Ω ⊂ IR2

Here: u piezometric head, r given function, q unknown
(transmissivity) parameter.

Determine from the solution u the transmissivity q of a porous
medium

This is considered in an outstanding paper:

G.R. Richter

An inverse problem for the steady state diffusion equation

SIAM J. Appl. Math. 41, 1981
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Inverse problem in groundwater flow-1

See also

I. Knowles

Uniqueness for an elliptic inverse problem

SIAM Journal on Appl. Math. 59, 1999

K. Ito and K. Kunisch

On the injectivity and linearization of the coefficient-to-solution
mapping for elliptic boundary value problems

J. of Math. Anal. and Appl. 188, 1994

M. Hanke

A regularizing Levenberg–Marquardt scheme, with applications to
inverse groundwater filtration problems

Inverse Problems 13, 1997

Parameter identification – tools and methods



Inverse problem in groundwater flow-2

Assuming sufficient regularity, the equation may be stated as follows:

Hyperbolic description

L(q, u) := −∇q.∇u − q∆u = r in Ω ⊂ IR2 (Ω open and bounded)

How to solve this hyperbolic equation for the unknown q ?

Consider characteristics (curves of steepest descent of u)

The domain Ω should be covered by a family of characteristics of
the solution u .

The part Γ of ∂Ω where ∂νu is negative is called the inflow region.

The characteristic curve s 7−→ ξ(s) through (ξ0
1 , ξ

0
2) is the solution of

dξ

ds
=
∇u(ξ)

|∇u(ξ)|
, ξ(0) = (ξ0

1 , ξ
0
2) (s arclength ) .

Idea: Then one can compute the value of q along a characteristic since

d

ds
q(ξ(s))|∇u(ξ(s)))|−1 + q(ξ(s))∆u(ξ(s)) = r(ξ(s))

Parameter identification – tools and methods



Inverse problem in groundwater flow-3

Assumptions:

u ∈ C 2(Ω) .

r ∈ L∞(Ω) .

q ∈ L∞(Ω), q continuous .

q differentiable along the characteristics.

The discussion of the characteristics can be done under three different
assumptions:

(1) infξ∈Ω |∇u(ξ)| > 0

(2) infξ∈Ω ∆u(ξ) > 0

(3) infξ∈Ω max{|∇u(ξ)|,∆u(ξ)} > 0
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Inverse problem in groundwater flow-4

Case (1): There is no critical point of u . The characteristic curves
start in a boundary point and end in a boundary point and the
whole domain is covered by characteristis. Where the
characteristics start (inflow region) the parameter q has to be
known. Then q can be computed in Ω .
Case (2): There is at most one critical point since u is a strongly
convex function. In a critical point the value of q is known y
looking at the hyperbolic equation. In other points one analyses
the characteristics as in (1).
Case (3): There is at most one critical point since in a critical
point we have local strong convexity, and if there would exist two
critical points there should be at least a saddle point. The key
property which one can deduce is that the domain Ω can be
decomposed in regions where (1) or (2) applies.
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Domain Ω (Just for demonstration)

−∇(q∇u) = −∇q · ∇u + q∆u = r

Characteristic
dξ

ds
=
∇u(ξ)

|∇u(ξ)|
(s arclength )
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Inverse problem in groundwater flow/References

There are various papers which discuss the elliptic identication
from the numerical point of view (mostly by using finite elements).
See for instance

G.R. Richter
Numerical identification of a spatially varying diffusion
coefficient
Mathematics of Computation 36, 1981

R.S. Falk
Error estimates for the numerical identification of a variable
coefficient
Math. Comp. 40, 1983

R. Rannacher and B. Vexler
A priori estimates for the finite element discretization of
elliptic parameter identification problems with pointwise
measurements
SIAM J. Control Optim. 44, 2005
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Calderon problem/Electrical impedance tomography

In 1980 A. P. Calderón published a short paper:

A.P. Calderón
On an inverse boundary value problem
Seminar on Numerical Analysis and its Applications to
Quantum Physics, Rio de Janeiro, 1980

This pioneer contribution motivated many developments in inverse

problems, in particular in the construction of solutions of partial

differential equations to solve several inverse problems. The problem that

Calderón considered was whether one can determine the electrical

conductivity of a medium by making voltage and current measurements

at the boundary of the medium. This inverse method is known as

Electrical Impedance Tomography (EIT). Calderón was motivated by oil

prospection. In the 40’s of the last century he worked as an engineer for

Yacimientos Petroliferos Fiscales, the state oil company of Argentina and

he thought about this problem then although he did not publish his

results until many years later.
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Calderon problem/Electrical impedance tomography-1

Electrical impedance tomography
This is the technique to recover spatially distributed properties in
the inaccessible interior of a body from electrical measurements.
Applications: medical imaging, nondestructive testing, . . . .

Modelling

∇(q∇z) = θ in Ω

q∂νz = g on ∂Ω

z = f on ∂Ω

The problem is overdetermined.

q = q(ξ) electric conductivity inside a body Ω ⊂ IR2/IR3

z electric potential

g (applied) electrical current at the boundary ∂Ω

f (measured) voltage at the boundary ∂Ω
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Neumann to Dirichlet mapping/Smooth conductivity

Admissible parameter:

Qad := {q ∈ C 2(Ω) : γ ≤ q(ξ), ξ ∈ Ω for some γ > 0}

Forward problem: Given q ∈ Qad and g ∈ C 2(∂Ω) solve

∇(q∇z) = θ in Ω

q∂νz = g on ∂Ω

This solution z exists in C 2(Ω) (uniquely determined!).

Consequence: Given q ∈ Qad we may consider

Λq : dom(Λq) 3 g 7−→ z|∂Ω ∈ C 2(∂Ω)

where z = Λq(g) is the solution of the forward problem above.
Here the domain of definition dom(Λq) takes into account a
normalization condition:

dom(Λq) := {g ∈ C 2(∂Ω) :

∫
∂Ω

g ds = 0}
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Neumann to Dirichlet mapping-1

Inverse problem
Determine q from the knowledge of the Neumann to Dirichlet
mapping (NtD) Λq

The classical analysis in IR3 is based on a transformation to a
Schrödinger-type equation. The pair (q, z) is transformed in a pair
(c ,w) by the transformation

w :=
√

qz and c :=
1

4

|∇q|2

q2
− 1

2

∆q

q
.

Then (c ,w) solves

∆w + cw = f on ∂Ω

Identifiability:
c is identifiable due to the denseness of the products of harmonic
functions in the space of L2(Ω)-functions with values in C .
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Neumann to Dirichlet mapping – additional references

For a self-contained proof see

B. Kaltenbacher

Parameter identification in partial differential equations

Lecture Notes, University Stuttgart,2008

For the solution of the problem in IR2 see

A.I. Nachman

Global uniqueness for a two dimensional inverse boundary value
problem

Ann. of Mathematics 143, 1996

K. Astala and Päivärinta

Calderóns inverse conductivity problem in the plane

Ann. of Mathematics 163, 2006

Conclusion

The identification problem by using the Neumann to Dirichlet map may

be considered solved if the parameter is assumed to be smooth.
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Neumann to Dirichlet mapping/Factorization analysis

Now: The body Ω is homogeneous except in cavities C1, . . .Cl .

C := ∪li=1Ci .

Assumption: C ⊂ Ω , Ω\C connected

How to decide in a nondestructive way whether a point ζ ∈ Ω
belongs to C ?

Compare the solutions u, u0 of

∆u = θ in Ω\C ∆u0 = θ in Ω
∂νu = g on ∂Ω ∂νu0 = g on ∂Ω
∂νu = θ on ∂C

where

u ∈ H1
♦(Ω\C ) :=

{
v ∈ H1(Ω\C ) :

∫
∂Ω

v ds = 0

}
u0 ∈ H1

♦(Ω) :=

{
v ∈ H1(Ω) :

∫
∂Ω

v ds = 0

}
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Cavities (Just for demonstration)

C = O ∪ D

O

D·

∆u = θ in Ω\C ∆u0 = θ in Ω

∂νu = g on ∂Ω ∂νu0 = g on ∂Ω
∂νu = θ on ∂C

u = f on ∂Ω u0 = f 0 on ∂Ω
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Neumann to Dirichlet mapping/Factorization analysis-1

Result: Two (NtD)s:

Λ : L2
♦(∂Ω) 3 g 7−→ f ∈ L2

♦(∂Ω)

Λ0 : L2
♦(∂Ω) 3 g 7−→ f 0 ∈ L2

♦(∂Ω) .

Here: L2
♦(∂Ω) :=

{
g ∈ L2(∂Ω) :

∫
∂Ω g ds = 0

}
.

Observation The difference in the boundary potentials,
h := f − f 0, is a function in the range of the operator L := Λ− Λ0 .
Hence, ran(L) should be used to decide whether there are cavities.

Idea Find for each point ζ ∈ Ω a function hζ with the property
hζ ∈ ran(L) iff ζ ∈ C . Actually, this works with a slightly change.
Hence, we have to take our focus on properties of L .
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Neumann to Dirichlet mapping/Factorization analysis-2

Fact

The operator L := Λ− Λ0 : L2
♦(∂Ω) −→ L2

♦(∂Ω) posesses the
following properties:

(1) L is linear and bounded.

(2) L is selfadjoint.

(3) L is positive definite.

(4) L is compact and ran(L) dense in L2
♦(∂Ω) but not closed.

A. Kirsch

An Introduction to the Mathematical Theory of Inverse Problems

Springer, Second Edition, 2011
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Neumann to Dirichlet mapping/Factorization analysis-3

Since L is selfadjoint, positive definite and compact, L has an
eigenvalue decomposition

L =
∞∑
j=1

λj〈e j | ·〉e j

with λj > 0, j ∈ IN, limj λj = 0, 〈e j , e i 〉 = δij , i , j = 1, . . . ,∞ .
From

L =
∞∑
j=1

λj〈e j | ·〉e j

we obtain the family (Ls)s>0 of operators generated by L where

Ls =
∞∑
j=1

λsj 〈e j | ·〉e j

with

ran(Ls) = {g ∈ L2
♦(∂Ω) :

∑∞

j=1
λ2s
j |〈e j |g〉|2 <∞} .
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Neumann to Dirichlet mapping/Factorization analysis-5

Consequence:
Each Ls has the properties linearity, selfadjointness, compactness.

Let ζ ∈ Ω and let

Dζ(ξ) :=
1

ωd

(ζ − ξ) · a
|ζ − ξ|d

, ξ ∈ Ω\{ζ}

the dipole in ζ with axis a ∈ IRd , |a| = 1 . Here ωd is the surface
measure of the unit sphere in IRd . Let uζ be the solution of

∆uζ = 0 in Ω

∂νu = −∂νDζ on ∂Ω
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Neumann to Dirichlet mapping/Factorization analysis-6

Fact

(1) Hζ := Dζ + uζ is harmonic in Ω\{ζ} .

(2) ∂νHζ = θ on ∂Ω .

(3) If hζ := trace (Hζ) on ∂Ω belongs to ran(L) then ζ in C .

(4) In general, there exist ζ ∈ C with hζ 6∈ ran(L) .

(5) ζ ∈ ran(L
1
2 ) iff ζ ∈ C .

Ad (3) This follows from the uniqueness of an extension of the harmonic
function Hζ onto Ω\{ζ} .
Ad (5) We have to refer to the references.

The property (5) above opens the door for a variety of algorithms to
determine the inclusion domain.

Generalization: Reconstruction from current-voltage measurements
from a part Σ of ∂Ω only.

Monotonicity: Testing of L by small anomalities.
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Neumann to Dirichlet mapping/Additional references

B. Harrach
Recent progress on the factorization method for electrical
impedance tomography
Comp. and Math. Methods in Medicine, Article ID 425184,
2013

M. Hanke and M. Brühl
Recent progress in electrical impedance tomography
Inverse Problems 19, 2003

B. Harrach
Inverse coefficient problems in elliptic partial differential
equations
Proceedings, Technical University Munich, 2015

Parameter identification – tools and methods



Lax Milgram Lemma (bounded form)

Theorem (Lax-Milgram)

Let H be a Hilbert space and let a : H×H −→ IR be a bilinear
mapping which satisfies

|a(u, v)| ≤ γ0‖u‖H‖v‖v‖H , u, v ∈ H ,
a(u, u) ≥ γ‖u‖2

H , u ∈ H , with γ > 0 .

Then there is linear mapping A : H −→ H∗ defined by
a(u, v) = 〈A(u), v〉, u, v ∈ H .
Moreover, A is an isomorphism from H onto H∗ with

‖Au‖H∗ ≤ γ0‖u‖H , ‖A−1λ‖H ≤ γ−1‖λ‖H∗ , u ∈ H, λ ∈ H∗ .

Proof:
This theorem follows by an application of the
Zarantonello-Theorem (last lecture).
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Lax Milgram Lemma (unbounded form)

Definition

Let V ↪→ H ↪→ V∗ be a Gelfand triple and let a : V × V −→ IR be a
bilinear mapping.

a is called V-continuous iff |a(u, v)| ≤ γ0‖u‖V‖v‖V , u, v ∈ V .

a is called V-coervive iff a(u, u) ≥ γ‖u‖2
V , u ∈ V .

Here γ0 ≥ 0, γ > 0 .

Theorem (Lax-Milgram)

Let V ↪→ H ↪→ V∗ be a Gelfand triple and let a : V × V −→ IR be a
V-continuous, V-coercive bilinear form. Then there exists a linear
continuous bijective mapping A : V −→ V∗ with

a(u, v) = 〈A(u), v〉 , u, v ∈ V .

Moreover,

A−1 : V∗ −→ V is continuous with ‖A−1λ‖V ≤ γ−1‖λ‖V∗ , λ ∈ V∗ .
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Lax Milgram Lemma (unbounded form)-1

Proof:
Let u ∈ V . Since v 7−→ a(u, v) is linear and continuous there exists (a
uniquely determined) zu ∈ V such that a(u, v) = 〈zu|v〉V for all v ∈ V .
This defines a linear continuous mapping A′ : V 3 u 7−→ zu ∈ V with

a(u, v) = 〈A′u|v〉V , u ∈ V .

Moreover, we read off

‖A′u‖V ≤ γ0‖u‖V , ‖A′u‖V ≥ γ‖u‖V , u, v ∈ V .

This shows that A′ : V −→ V is an isomorphism. Using the Riesz
mapping RV : V −→ V∗ we obtain with A := RV ◦ A′ an isomorphism
A : V −→ V∗ with

〈Au, v〉 = 〈A′u|v〉V = a(u, v) , u, v ∈ V .

Now, the proof is complete.
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Existence of the parameter to solution

Consider the (BVP)

Lu = f in Ω

u = θ in ∂Ω

where L is given as

Lu = −
d∑

i ,j=1

∂i (aij∂ju)−
d∑

j=1

bj∂ju + cu

This boundary value problem (BVP) should be considered in the
Gelfand triple

V := H1
0 (Ω) ↪→ H := L2(Ω) ↪→ V∗ := H−1(Ω)
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Existence of the parameter to solution map-1

Assumptions:

(1) Ω ⊂ IRd open and bounded.

(2) All coefficients aij , bj , c are L∞-functions.

(3) aij(ξ) = aji (ξ) for all i , j = 1, . . . , d , ξ ∈ Ω .

(4) L is strongly elliptic, i.e. there exists a constant δ > 0 such that

d∑
i,j=1

aij(ξ)ζiζj ≥ δ
d∑

i,j=1

ζ2
i , ξ ∈ Ω, ζ = (ζ1, . . . , ζd) ∈ IRd .

(5) f ∈ H−1(Ω) .

Now, we define the bilinear mapping a on H1
0 (Ω)× H1

0 (Ω) as follows:

a(u, v) :=
d∑

i,j=1

∫
Ω

aij(ξ)∂u(ξ)∂v(ξ)dξ

+
d∑

j=1

∫
Ω

bj(ξ)∂u(ξ)v(ξ)dξ +

∫
Ω

c(ξ)u(ξ)v(ξ)dξ
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Existence of the parameter to solution map-2

Definition

u ∈ H1
0 (Ω) is called a weak solution of the (BVP) iff

a(u, v) = 〈f , v〉 for all v ∈ H1
0 (Ω) .

Due to the assumptions concerning the coefficients we obtain the
following estimates:

|a(u, v)| ≤ γ0‖u‖H1
0
‖v‖H1

0
for all u, v ∈ H1

0 (Ω)

a(u, u) ≥ γ‖u‖2
H0

1 (Ω) − β‖u‖
2
L2(Ω) for all u ∈ H1

0 (Ω)

This enables us to use the Lax Milgram Lemma to get a weak solution in
the case that β vanishes. This is especially the case if the coefficients
bj , c vanish.

Here is reference to an outstandig book on partial differential equations:

L.C. Evans

Partial differential equations

American Mathematical Society, 2010
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Existence of the parameter to solution map-3

The elliptic parameter identification should be considered in the
following framework.

(1) Given a Gelfand triple V ↪→ H ↪→ V∗ of Hilbert spaces which is used
to describe the state.

(2) Given a Gelfand triple Q ↪→ P ↪→ Q∗ of Hilbert spaces which is used
to describe the parameter.

(3) Given for each q ∈ Q a bilinear form a(q; ·, ·) : V × V −→ IR .

(4) Qad is a subset of Q which describes the admissible parameters.

(5) For each q ∈ Qad there exist constants γ0 ≥ 0, γ(q) > 0 such that

|a(q; u, v)| ≤ γ0‖u‖V‖v‖V , a(q; u, u) ≥ γ(q)‖u‖2
V for all u, v ∈ V .

(6) Given f ∈ V∗ .
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Existence of the parameter to solution map-4

Usually, the bilinear map a is decomposed in parameter dependent part
and a parameter independent part:

a(q; u, v) = a0(u, v) + a1(q; u, v)

Then the assumption in (5) above must be replaced by

(5) For each q ∈ Qad there exist constants γ0 ≥ 0, γ1 ≥, γ(q) > 0 such
that

|a0(u, v)| ≤ γ0‖u‖V‖v‖V , |a1(q; u, v)| ≤ γ1‖u‖V‖v‖V , u, v ∈ V

and
a0(u, u) + a1(q; u, u) ≥ γ(q)‖u‖2

V for all u ∈ V ,

for some γ(q) > 0 .
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Existence of the parameter to solution map-5

Parameter to solution mapping (PtS)

F : Qad 3 q 7−→ u ∈ V

where u := F (q) solves the variational equation

a0(u, v) + a1(q; u, v) = 〈f , v〉 for all v ∈ V .

The inverse problem of parameter identification in this framework
consists in solving the equation F (q) = y where q ∈ Q, y ∈ V .
Unfortunately, in practice we have the following situation:

Given the pair (q†, y†) ∈ Qad × V with F (q†) = y† .

Given an approximation yε ∈ H with ‖yε − y†‖H ≤ ε, ε > 0 .

Find a reasonable approximation qε for q† using the data yε only.

Notice that the point to solution mapping should adapted: the image
space of F should be H .
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