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Introduction

Let us consider a very simple ordinary differential equation modelling a
system:
Z+pz="F

Suppose we want to determine the parameter p. This determination
should be done during the operation of the system in the time interval
[0,00) by observation of the state z.

Idea Consider a reference system which parallels the dynamic of the
process model, feed this reference system by a parameter t — g(t)
which is adapted by matching the state of the modelled system and the
state of the reference system.

Implementation

v+ u—z(t) + q(t)z(t) f ,u(0)=1u°
q —x(t)(u - 2(1)) 0 .q(0)=¢

If we define the error quantities e := u— z,r := g — p we obtain the error
system
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Introduction-1

e +e+rz(t) = 0 ,e(0)=u’—x(0)
rr—z(tle = 0 ,r(0)=q¢°—p

Now we multiply the first equation by e, the second equation by r, and
add the equations. This gives at the time t

e'(t)e(t) + |e(t)* + r(t)z(t)e(t) + r'(t)r(t) — z(t)e(t)r(t) =0
and we see that the error system becomes

d
Jp Le(t), r(1)) = ~le(t)?

where L(e) := %|e[?> + 1|r|? can be considered as a Ljapunov-function for

the error system. Integrating this from ty to T gives

1 1 T 1 1
Sle(MP + Z|r(T)PP + / le(t)Pdt = Zle(to)]* + = |r(t)*, T > to.
2 2 , 2 2
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(1) T — |e(T)|?>+|r(T)|? is monotone decreasing (but not
T +—— |r(T)|?, in general).

(2) supeso{le(t)? +|r(t)P} + [5 le(t)[Pdt < oo

Observation
@ It should be ,easy"” to prove lim;_ e(t) =0.

@ The goal property lim; oo r(t) = lime0(g(t) — p) = 0 cannot be
proved without an addidional assumptions; see the case
f=0,2(0)=0.

@ We could try compute p by the formula

(by using numerical differentiation if the data z are noisy).
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Modelling

Model equation

Diw + Ap(w) + A(g,w) = f(t) in V*,t € (0,00); w(0) = ¢ |

Compare for example with
Diw + cw — V(qVw) = f(t),t € (0,00); w(0) = ¢

¢ known, g unknown.

V,H, Q, P Hilbert spaces

Vo HoV, QP — QF

Ao(*) : YV — V* linear

w(t) € V state at time

(Model data) Qaq C Q set of admissible parameters
g € Qa4 parameter (to be identified)
A(-,-) 1 @ xV — V* bilinear

¢ € H initial state

f:(0,00) — V*
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Weak solution and properties of the plant

Weak solution w : [0,00) — H with

o w(t)eV,t>0,

o (Dew(t),v) + (Ao(w(t)), v) + (Alg, w(t)), v) = (f(t),v)

forallt>0,vey

o w(0) = ¢
Assumptions
(1) Ap:V — V* linear and continuous, i.e.

[{Ao(u), v)| < oollullv]lv]ly, u, v € V, with a constant ¢g > 0.

(2) A(,+): @xV — V* bilinear and with a constant ¢; > 0

[{A(g, v), V)| < cqllullvlivilv, u,v €V, q € Qag,

(3) (Ao(v),v) + (A(q; ), v) + Bollvll3, > allvf3; for all (q,v) €
Q.4 X V where By, c1 € R with ¢; > 0.

(4) f e (0, T;V*)forall T>0
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Weak solutions

If assumptions above hold then there exists for each q € Q. a
uniquely determined weak solution w of the model equation which
satisfies:

ze W((0, T);V) forall T >0, ze C([0,00); H) .

The space W((0, T); V) is defined as follows:

W((0, T);V) = {w: (0, T] — V: Dew(t) € V* forall t € (0, T]}. J

W((0, T); V) is a Hilbert space and each function in w € W((0, T); V)
satisfies w € C([0, T]; H) .
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Let p € Q.q.

Model equation for the process

D:z + Ao(z) + A(p,z) = f(t) in V*,t € (0,00); z(0) = ¢ I

We know by the theorem above that the model equation for the
process has a uniquely determined solution z.

Definition

The pair (p, z) is a plant iff
@ z is a weak solution of the model equation

o [(A(qg,z(t),v)| < collqllellvily, t>0,g € Q,v eV,
with a constant ¢c; > 0

The second condition is essential the assumption that a plant is in
Lo ([0, 0); V).
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Reference system and adaptive rule

Reference model
Diu—+ Ao(z(t))+ A(q(t), z(t)) + C(u—z(t)) = f(t)inV*, t>0

a) How to choose C?

(a)
(b) How to create t —— q(t) ?
(c) limisoo(q(t) —p) =07

(d) Necessity of lims_oo(u(t) — z(t)) =6

Adaptation rule/Ansatz:

Diq+ F(z(t),u—z(t))=0,t>0
Error quantities
e(t) .= u(t) — z(t), r(t) :==q(t) —p, t > 0.
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Argumentation with a Ljapunov function

Error system

Die+ C(e) + A(r,z(t)) = 60,t>0, ¢(0)
Dir+ F(z(t),e) = 60,t>0,r(0) =n:=q—p.

Goal:
(0,0) € P x H should be a critical point for the ,, most simplest*
Ljapunov function of the error system.

The most simplest Ljapunov function:
Lo, 1,0
L(re) = 5lrll3 + Sl

Gradient of the Ljapunov function along a solution of the error
system is (in an informal computation)

(Die, e) + (Der,r) = —(C(e), ) = (A(r, 2(t), e) + (F(2(t), e). 1)
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Adaptation rule

Conclusion

or more general
(A(qg,z(t)),v) = (F(z(t),e),q) forall t >0,g € Q,v €V
If (p, z) is a plant then

[{A(g, 2(2)), V)| < elldllelvllv, t >0, € Qv eV

and hence there exists a continuous bilinear mapping
b:VxV — OF with

(A(q, z(t)),v) = (b(z(t),v),q) forall t >0,g € Q,v e V.
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Model reference adaptive system

Let (p, z) be a plant, then
Diz + Ao(z) + A(p,z) = f(t)inV*t>0,2(0) = ¢

and the model reference adaptive system is given by

(MRAS)
Diu+ C(u—z(t)) + Ao(z(t)) + A(g,z(t)) = f(t) inV*t>0,
u(0) = ¢
D:q — b(z(t),u—z(t)) = 0 in Q" t >0,
q(0) = ao

Resulting error system:

Die + Ce+ A(r,z(t)) = 6,t>0,e0) = 0,
Dir — b(z(t), e) 0,t>0,r(0) =rn :=q —p.
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Parabolic example

Consider the model system

Diz — (pz') = f(s,t), (s,t) €(0,1) x (0,0)
z(0,t) = z(1,t) = 0,t>0
z(s,0) = ((s)

Here, p is the parameter which should be identified.

We choose
H = L5(0,1),V = H3(0,1),P = L,]0,1], Q = H*[0,1]
endowed with the usual inner products. Then we have
1
Aa.0).v) = [ a(s)u/ ()0 (5)ds =
0

and we obtain the adaptation rule D;q — z'(s, t)(v' — Z'(s, t)) = 0.
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Parabolic example-1

The model reference adaptive system can be designed in a classical
formulation as follows:

Diu—u" +Z"(s,t) — (qZ'(s,t)) = f(s,t), (s,t) € (0,1) x (0,00)
u(s,t) = u(l,t) = 0,t>0
u(s,0) = ((s),se<(0,1)
Diq — Z'(s,t)(v — Z'(s,t)) = 6, (s,t) €(0,1) x (0,00)
q(s,0) = 4°(s)

The assumptions above can be verified. A plant z is a function
satisfying the model system in the weak sense and satisfying

1
| [ a5)2/(s,007/(9)e8] < elaliplvllv £ 2 0. € Qv e v,
0

with a constant ¢ > 0. This holds if 2/ € £([0,00); V).
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Properties of (MRAS)

Let us come back to (MRAS). We have
(Dre(t), e(t)) + (Der(t), r(t)) + (C(e(t), e(t)) = 0
Since the gradient of the Ljapunov function L is given by

(Dre(t), e(t)) + (Der(t), r(t))

we should have:
(C(e(t)), e(t)) > 0.
Assumption:

(1) C:V — V*is coercive, i.e.
(C(u), u) > cs|ul|3,u €V, with a constant ¢c5 > 0.

(2) C:V — V*is a linear mapping which is continuous, i.e.
[{(C(u), v)| < cellullv|lv]ly, u,v €V, with a constant ¢g > 0.
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Properties of (MRAS)-1

Fact

Let (p, z) be a plant and let the additional assumptions be
satisfied. Then there exists a uniquely determined solution (e, r) of
the error system which satisfies

e ec W((0, T);V) forall T >0.

@ e € (C([0,00); H) N Loo((0,00); H) N L2((0,00); V), .
re W((0,T),Q) forall T >0.

r € C([0,00); Q) N Loo((0,0); P) .

D:ir € Loo((0,00); Q).

E:(0,00) 3t — E(t):= L(e(t),r(t)):=
Llle(®))I3, + 3l r(t)|3> € R is nonincreasing.

@ For0<ty <t

t
IIe(t)II%HIr(t)II%HCs/ le(s)11% ds < [le(to) 1, +Ir(to) I -
to
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Properties of (MRAS)-2

Moreover

Fact
(1) _
sup ([le(t)|3; + Hr(t)l\%)+/0 le(s)I$ ds < oo

te(0,00)

(2) Given | >0 we have

to+/
i wpudm@+/ le(s)If3 ds | =0.
to

1000\ tefty, to+/]

The property (2) above is a key ingredient in proving
output-identifiabilty.
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Output-identifiability

Let (p, z) be a plant and let the additional assumptions be
satisfied. We have

. B PO B .
Jim J|u(t) = z(t)[3 = 0, r*:= lim |lq(t) — p|lp exists.

Proof:

o L* :=limeoo(||u(t) — z(t)||Z, + |lq(t) — p||%) exists due to
monotonicity of L. If lim,— o ||u(t) — z(t)||2 = O then r* exists.

@ Assume by contradiction: lim;_ ., ||e(s)||% does not hold.

@ If / >0 we have limy o |le|lt, 5+ = O uniformly in / where

to+/ %
el ton == sup [le(t)[ls + / le(t)I5 dt

t€(to,to+] to
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Output-identifiability-2

o V7 > 0Vk > 03tg >0V iy, tr > 1y
(It2 = ta] < r implies | le(t2)ll2 — [le(t)ll5| < 7)
Then there exists § > 0 and a sequence (t,)penN With

tn >0, ty1 — tn >2,n € N, lim|le(s)||3 > 6.
n

By using the fact ||v||3% > ||v||y we obtain

A|Mm@¢=m

which is a contradiction.

Parameter identifiability: lim;—| q(t) — p|lp = 0. 777 J

Additional assumption !!!



Parameter identifiability

Let (p, z) be a plant. The state z is asymptotically persistently

excited if there exist numbers | > 0, u > 0 and a sequence (tp)neN
in (0, 00) with lim, t, = oo such that the following condition holds:

Vhe QVne N3It,q,tho € [tn, ty + /] Iv € V\{6}

(s

Let (p, z) be a plant and let the additional assumptions be
satisfied. Suppose that the state z is asymptotically persistently
excited. Then we have parameter-identifiability:

> M”hHPHVHv>

lim g(t) = p in the space P .
t—00




Uniformly persistently excited plant

The state z is uniformly persistently excited if there exist
numbers | > 0, > 0 such that

VheQVity e (0,00)3t, tp € [to, to + /] Iv € V\{0}

(‘ / (A(h, 2(1)), v) ds

> MHhHPHVHv>

The property uniformly persistently excited may be used to show
that the convergence in

Jim [lu(t) — 2(&)]sc. tim (la(t) - pllp
is exponentially fast.

Clearly, the property uniformly persistently excited is stronger than
the property asymptotically persistently excited.
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Stopping rule/exact data

Fact

Let (p, z) be a plant and let the additional assumptions be
satisfied. Suppose that the state z is uniformly asymptotically
persistently excited and let I, ;u be chosen as in Definition of this
property. Then for all ty > 0 we have

”r(tO)HP < M71C7 HeH[to,toJrI] )

Stoping rule Let / > 0:

Given an accuracy parameter o > 0 choose the stopping
time 7 > 0 as the smallest time ty such that

lellto,t+n < o
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Convergence without excitation assumption to a set of
parameters

Small error model & uniformly persitently excitation:
convergence to a small set of parameters

General error model: (MRAS) has to regularized.

Discretization of the scheme may be considered under an error
model

Applicability: ordinary differential equations, differential
equations with delay

Applicability: elliptic, parabolic, hyperbolic equations
Adaptation rules can be realized with different smoothness
requirements

(MRAS) can be realized as an off-line method
(Kaczmarz-type implementation)
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An illustrating example concerning richness

We follow
¥ M.A. Demetriou and |.G. Rosen

On the persistence of excitation in the adaptive estimation of
distributed parameter systems
|IEEE Trans. on Autom. Control 39, 1994
Model equation:
Diz — (pZ') = f(s,t), (s,t) €[0,1] x (0,00)
z(0,t) = z(1,t) = 0,t>0,
z(s,0) = 0,5€(0,1)
with p a positive constant, f(s, t) = av/2sin(nrs). We choose
H = L5(0,1),V = H3(0,1),P = Q = R,

endowed with the usual inner products and have
1
Aa.wvh=a [ d(s)(s)ds.
0



An illustrating example concerning richness-1

The model reference adaptive systems is

= f(s,t), (s,t) € (0,1) x (0,0)

)
u(0,t) = u(l,t) = 0,te(0,00)
u(s,0) = ((s),s<(0,1)
Dig—Z'(t)(v —Z'(t)) = 6in (0,1) x (0,00)
q(s,0) q°(s), s € (0,1).

The state z of the plant (p, z) is given as follows:
z(s, t) = Z(t)V/2sin(nms), (s, t) € (0,1) x (0,00),

where

_ @ 2_2
Z(t)—m(l—exp(—pn 7)), t>0.
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An illustrating example concerning richness-2

Let to > 0,/ > 0. For g € Q\{0},v € V, |Jv|ly < 1 we have for the
defining inequality of uniformly persistently excited

to+/ 1 |O[| to+/
’q/ / Z'(s, t)V/(s) dsdt’ > — / (1 — exp(—pn®x2t) dt
to 0 p to

lgllal,  exp(—pn*m°to)
= (/- )

p pn?m?
for v(s) := -L sin(nms). For to sufficiently large,
: a
> polgl vl with o = 21> 0.
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An illustrating example concerning richness-3

We would expect the following observations:
@ The larger u the better should be the convergence of
lim:—oo q(t) = p.
@ This convergence is influenced also by the operator C in the
model reference equation. If we use the operator

C(u) := c*u”, we would expect that oszillation of the model
reference state v is damped by a large c*.
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A hyperbolic example

Model equation:
D?z — (p)) = f(t)in (0,1) x (0, 00)

z(0,t) = z(1,t) 0in (0,00)
2(s,0) = 2%(s), D;z(s,0) = z'(s,0) in [0, 1]

Numerical simulation:
p(s) =1+ s,z(s, t) = sin(ns + t),

C(u) :=2u",q(s,0) = s, u(s,0) = sin(rs)
Notice: 2/(1/2,0) = 2/(3/2,0) =0.
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An elliptic example

Model equation

—(pZ'Y = fin(0,1)
z(0) = z(1) = O

Numerical simulation:
p(s) =1+ s,z(s) =sin(ns), q(s,0) = s, u(s, 0) = sin(rs)

Notice: 2/(1/2,0) =0.

e No pointwise convergence in s = 1/2 if we apply the
adaptation rule in Q := [5[0,1].

@ Pointwise convergence in [0, 1] if we apply the adaptation rule
in @ := H[0,1].
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Model equation

D:z + Ao(z) + A(q,z) = f(t) in V*,t € (0,00); z(0) = ¢ |

Inspired by

¥ R. Boiger and B. Kaltenbacher
A online parameter identification method for time dependent
partial differential equations
Inverse Problems, 32 (2016), 28 pp.

Observation
@ Observation operator O :V — Y
e Observation space Y (Hilbert space)
e Observation y(t) := Oz(t),t >0
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Outlook-1

Assumption: O is linear, continuous, surjective

Suppose that O is linear, continuous and surjective. Then:

The pseudo inverse Of exists

O'0:V — V is linear and continuous

ran(OT0) = ker(O)*

P := O'0 is an orthogonal projection onto ker( O)*

Q := | — O'0 is an orthogonal projection onto ker(O)

O'0z is called the observable part of z and | — OTOz is the
unobservable part of z.
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Outlook-2

Notice The assumption O is surjective is crucial: In the most
cases one does not have this property. Then one has to
approximate OO

Now, we consider an linear orthogonal projection P:V — V.
Let @ be the associated linear orthogonal projection / — P. Then
we obtain linear continuous mappings

P* V" — VI Q" VY — VF
defined as follows:

(PP(A),v) = (A P(v)), (Q°(A),v) = (A Q(V)), Ae Vi, ve V.

We set A
Vi=ran(P), V :=ran(Q).
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Outlook-3

(MRAS)
Diu+ C(u—z(t)) + Ao(z(t)) + A(q,z(t)) = f(t) inV*t>0,
u0) = ¢
Diq — b(z(t),u—z(t)) = 6 in Q% t >0,
q(0) = qo
(MRASpro)
Diz+ Ao(2) + A(p,z) = f(t)in V¥,
z(0) = ¢
D:u+ C(Pu — Pz(t)) + P*Ao(Qu + Pz(t))
+P*A(q, Qu+ Pz(t)) + Q*M(Qu) = f(t)in V",
u(0) = ¢
Diq — b(Qu + Pz(t), Pu— Pz(t)) = 0in Q*,
q(0) = qo
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Outlook-4

@ Choose C and M in an appropriate way in order to find a
decoupling for computing & := Pu, il := Qu

@ Once I is computed find a solution of the resulting
computational scheme for & and q.

@ Analyze the assymptotic properties of i, g .

Crucial point: Choice of C.
The property we want to exploit is the fact

This ,,leads us" to the choice

C:V — V* (C(v),V) = (v|V)y, v,V €V with v > 0.
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