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Introduction

Let us consider a very simple ordinary differential equation modelling a
system:

z ′ + pz = f

Suppose we want to determine the parameter p . This determination
should be done during the operation of the system in the time interval
[0,∞) by observation of the state z .

Idea Consider a reference system which parallels the dynamic of the
process model, feed this reference system by a parameter t 7−→ q(t)
which is adapted by matching the state of the modelled system and the
state of the reference system.

Implementation

u′ + u − z(t) + q(t)z(t) = f , u(0) = u0

q′ − x(t)(u − z(t)) = 0 , q(0) = q0

If we define the error quantities e := u− z , r := q− p we obtain the error
system
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Introduction-1

e′ + e + rz(t) = 0 , e(0) = u0 − x(0)
r ′ − z(t)e = 0 , r(0) = q0 − p

Now we multiply the first equation by e, the second equation by r , and
add the equations. This gives at the time t

e′(t)e(t) + |e(t)|2 + r(t)z(t)e(t) + r ′(t)r(t)− z(t)e(t)r(t) = 0

and we see that the error system becomes

d

dt
L(e(t), r(t)) = −|e(t)|2

where L(e) := 1
2 |e|

2 + 1
2 |r |

2 can be considered as a Ljapunov-function for
the error system. Integrating this from t0 to T gives

1

2
|e(T )|2 +

1

2
|r(T )|2 +

∫ T

t0

|e(t)|2dt =
1

2
|e(t0)|2 +

1

2
|r(t0)|2 , T ≥ t0 .
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Introduction-2

Fact

(1) T 7−→ |e(T )|2 + |r(T )|2 is monotone decreasing (but not
T 7−→ |r(T )|2, in general).

(2) supt≥0{|e(t)|2 + |r(t)|2}+
∫∞
0
|e(t)|2dt <∞

Observation

It should be
”
easy“ to prove limt→∞ e(t) = 0 .

The goal property limt→∞ r(t) = limt→∞(q(t)− p) = 0 cannot be
proved without an addidional assumptions; see the case
f = 0, z(0) = 0 .

We could try compute p by the formula

p =
1

z(t)
(f (t)− z ′(t))

(by using numerical differentiation if the data z are noisy).
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Modelling

Model equation

Dtw + A0(w) + A(q,w) = f (t) in V∗, t ∈ (0,∞); w(0) = ζ

Compare for example with

Dtw + cw −∇(q∇w) = f (t), t ∈ (0,∞); w(0) = ζ

c known, q unknown.

(Model data)



V,H,Q,P Hilbert spaces
V ↪→ H ↪→ V∗ , Q ↪→ P ↪→ Q∗
A0(·) : V −→ V∗ linear
w(t) ∈ V state at time
Qad ⊂ Q set of admissible parameters
q ∈ Qad parameter (to be identified)
A(·, ·) : Q× V −→ V∗ bilinear
ζ ∈ H initial state
f : (0,∞) −→ V∗
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Weak solution and properties of the plant

Weak solution w : [0,∞) −→ H with

w(t) ∈ V, t > 0,

〈Dtw(t), v〉+ 〈A0(w(t)), v〉+ 〈A(q,w(t)), v〉 = 〈f (t), v〉
for all t > 0, v ∈ V

w(0) = ζ

Assumptions

(1) A0 : V −→ V∗ linear and continuous, i.e.
|〈A0(u), v〉| ≤ c0‖u‖V‖v‖V , u, v ∈ V, with a constant c0 ≥ 0 .

(2) A(·, ·) : Q× V −→ V∗ bilinear and with a constant cq ≥ 0

|〈A(q, u), v〉| ≤ cq‖u‖V‖v‖V , u, v ∈ V, q ∈ Qad,

(3) 〈A0(v), v〉+ 〈A(q, v), v〉+ β0‖v‖2H ≥ c1‖v‖2V for all (q, v) ∈
Qad × V where β0, c1 ∈ IR with c1 > 0 .

(4) f ∈ L2(0,T ;V∗) for all T > 0
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Weak solutions

Fact

If assumptions above hold then there exists for each q ∈ Qad a
uniquely determined weak solution w of the model equation which
satisfies:

z ∈W ((0,T );V) for all T > 0 , z ∈ C ([0,∞);H) .

The space W ((0,T );V) is defined as follows:

W ((0,T );V) := {w : (0,T ] −→ V : Dtw(t) ∈ V∗ for all t ∈ (0,T ]} .

W ((0,T );V) is a Hilbert space and each function in w ∈W ((0,T );V)
satisfies w ∈ C ([0,T ];H) .
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Plant

Let p ∈ Qad .

Model equation for the process

Dtz + A0(z) + A(p, z) = f (t) in V∗, t ∈ (0,∞); z(0) = ζ

We know by the theorem above that the model equation for the
process has a uniquely determined solution z .

Definition

The pair (p, z) is a plant iff

z is a weak solution of the model equation

|〈A(q, z(t)), v〉| ≤ c2‖q‖Q‖v‖V , t ≥ 0, q ∈ Q, v ∈ V,
with a constant c2 ≥ 0

The second condition is essential the assumption that a plant is in
L∞([0,∞);V) .
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Reference system and adaptive rule

Reference model

Dtu + A0(z(t)) + A(q(t), z(t)) + C (u− z(t)) = f (t) in V∗ , t > 0

(a) How to choose C ?

(b) How to create t 7−→ q(t) ?

(c) limt→∞(q(t)− p) = θ ?

(d) Necessity of limt→∞(u(t)− z(t)) = θ

Adaptation rule/Ansatz:

Dtq + F (z(t), u − z(t)) = θ , t > 0

Error quantities

e(t) := u(t)− z(t), r(t) := q(t)− p , t ≥ 0 .
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Argumentation with a Ljapunov function

Error system

Dte + C (e) + A(r , z(t)) = θ , t > 0 , e(0) = e0 := θ

Dtr + F (z(t), e) = θ , t > 0 , r(0) = r0 := q0 − p .

Goal:
(θ, θ) ∈ P ×H should be a critical point for the

”
most simplest“

Ljapunov function of the error system.

The most simplest Ljapunov function:

L(r , e) :=
1

2
‖r‖2P +

1

2
‖e‖2H

Gradient of the Ljapunov function along a solution of the error
system is (in an informal computation)

〈Dte, e〉+ 〈Dtr , r〉 = −〈C (e), e〉 − 〈A(r , z(t), e〉+ 〈F (z(t), e), r〉
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Adaptation rule

Conclusion

〈A(r , z(t)), e〉 = 〈F (z(t), e), r〉 , t ≥ 0

or more general

〈A(q, z(t)), v〉 = 〈F (z(t), e), q〉 for all t ≥ 0, q ∈ Q, v ∈ V

If (p, z) is a plant then

|〈A(q, z(t)), v〉| ≤ c2‖q‖Q‖v‖V , t ≥ 0, q ∈ Q, v ∈ V

and hence there exists a continuous bilinear mapping
b : V × V −→ Q∗ with

〈A(q, z(t)), v〉 = 〈b(z(t), v), q) for all t ≥ 0, q ∈ Q, v ∈ V .
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Model reference adaptive system

Let (p, z) be a plant, then

Dtz + A0(z) + A(p, z) = f (t) in V∗, t ≥ 0, z(0) = ζ

and the model reference adaptive system is given by

(MRAS)
Dtu + C (u − z(t)) + A0(z(t)) + A(q, z(t)) = f (t) in V∗, t > 0,

u(0) = ζ
Dtq − b(z(t), u − z(t)) = θ in Q∗, t > 0,

q(0) = q0

Resulting error system:

Dte + Ce + A(r , z(t)) = θ , t > 0, e(0) = θ ,

Dtr − b(z(t), e) = θ , t > 0, r(0) = r0 := q0 − p .
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Parabolic example

Consider the model system

Dtz − (pz ′)′ = f (s, t) , (s, t) ∈ (0, 1)× (0,∞)

z(0, t) = z(1, t) = 0 , t > 0

z(s, 0) = ζ(s)

Here, p is the parameter which should be identified.

We choose

H := L2(0, 1),V = H1
0 (0, 1),P = L2[0, 1],Q = H1[0, 1]

endowed with the usual inner products. Then we have

〈A(q, u), v〉 =

∫ 1

0

q(s)u′(s)v ′(s) ds =

and we obtain the adaptation rule Dtq − z ′(s, t)(u′ − z ′(s, t)) = 0 .
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Parabolic example-1

The model reference adaptive system can be designed in a classical
formulation as follows:

Dtu − u′′ + z ′′(s, t)− (qz ′(s, t))′ = f (s, t) , (s, t) ∈ (0, 1)× (0,∞)

u(s, t) = u(1, t) = 0 , t > 0

u(s, 0) = ζ(s) , s ∈ (0, 1)

Dtq − z ′(s, t)(u′ − z ′(s, t)) = θ , (s, t) ∈ (0, 1)× (0,∞)

q(s, 0) = q0(s)

The assumptions above can be verified. A plant z is a function
satisfying the model system in the weak sense and satisfying∣∣∣ ∫ 1

0
q(s)z ′(s, t)v ′(s)ds

∣∣∣ ≤ c2‖q‖P‖v‖V , t ≥ 0, q ∈ Q, v ∈ V,

with a constant c2 ≥ 0 . This holds if z ′ ∈  L∞([0,∞);V) .
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Properties of (MRAS)

Let us come back to (MRAS). We have

〈Dte(t), e(t)〉+ 〈Dtr(t), r(t)〉+ 〈C (e(t), e(t)〉 = 0

Since the gradient of the Ljapunov function L is given by

〈Dte(t), e(t)〉+ 〈Dtr(t), r(t)〉

we should have:
〈C (e(t)), e(t)〉 > 0 .

Assumption:

(1) C : V −→ V∗ is coercive, i.e.
〈C (u), u〉 ≥ c5‖u‖2V , u ∈ V, with a constant c5 > 0 .

(2) C : V −→ V∗ is a linear mapping which is continuous, i.e.
|〈C (u), v〉| ≤ c6‖u‖V‖v‖V , u, v ∈ V, with a constant c6 ≥ 0 .
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Properties of (MRAS)-1

Fact

Let (p, z) be a plant and let the additional assumptions be
satisfied. Then there exists a uniquely determined solution (e, r) of
the error system which satisfies

e ∈W ((0,T );V) for all T > 0 .

e ∈ C ([0,∞);H) ∩ L∞((0,∞);H) ∩ L2((0,∞);V), .

r ∈W ((0,T ),Q) for all T > 0 .

r ∈ C ([0,∞);Q) ∩ L∞((0,∞);P) .

Dtr ∈ L∞((0,∞);Q∗) .
E : (0,∞) 3 t 7−→ E (t) := L(e(t), r(t)) :=
1
2‖e(t)‖2H + 1

2‖r(t)‖2P ∈ IR is nonincreasing.

For 0 ≤ t0 ≤ t

‖e(t)‖2H+‖r(t)‖2P+2c5

∫ t

t0

‖e(s)‖2V ds ≤ ‖e(t0)‖2H+‖r(t0)‖2P .
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Properties of (MRAS)-2

Moreover

Fact

(1)

sup
t∈(0,∞)

(‖e(t)‖2H + ‖r(t)‖2P) +

∫ ∞
0
‖e(s)‖2V ds <∞

(2) Given l > 0 we have

lim
t0→∞

(
sup

t∈[t0,t0+l ]
‖e(t)‖2H +

∫ t0+l

t0

‖e(s)‖2V ds

)
= 0 .

The property (2) above is a key ingredient in proving
output-identifiabilty.
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Output-identifiability

Fact

Let (p, z) be a plant and let the additional assumptions be
satisfied. We have

lim
t→∞

‖u(t)− z(t)‖H = 0 , r∗ := lim
t→∞

‖q(t)− p‖P exists .

Proof:

L∗ := limt→∞(‖u(t)− z(t)‖2H + ‖q(t)− p‖2P) exists due to
monotonicity of L . If limt→∞ ‖u(t)− z(t)‖H = 0 then r∗ exists.

Assume by contradiction: limt→∞ ‖e(s)‖H does not hold.

If l > 0 we have limt0→∞ ‖e‖[t0,t0+l ] = 0 uniformly in l where

‖e‖[t0,t0+l ] := sup
t∈[t0,t0+l ]

‖e(t)‖H +

(∫ t0+l

t0

‖e(t)‖2V dt

) 1
2
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Output-identifiability-2

∀τ > 0∀κ > 0∃t0 > 0∀ t1, t2 ≥ t0(
|t2 − t1| ≤ κ implies

∣∣ ‖e(t2)‖H − ‖e(t1)‖H
∣∣ < τ

)
Then there exists δ > 0 and a sequence (tn)n∈IN with

tn > 0, tn+1 − tn ≥ 2, n ∈ IN, lim
n
‖e(s)‖2H ≥ δ .

By using the fact ‖v‖H ≥ ‖v‖V we obtain∫ ∞
0
‖e(s)‖2V ds =∞

which is a contradiction.

Parameter identifiability: limt→∞‖q(t)− p‖P = 0 . ???

Additional assumption !!!
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Parameter identifiability

Definition

Let (p, z) be a plant. The state z is asymptotically persistently
excited if there exist numbers l > 0, µ > 0 and a sequence (tn)n∈IN
in (0,∞) with limn tn =∞ such that the following condition holds:

∀ h ∈ Q∀ n ∈ IN ∃tn,1, tn,2 ∈ [tn, tn + l ] ∃v ∈ V\{θ}(∣∣∣∣ ∫ tn,2

tn,1

〈A(h, z(t)), v〉 ds

∣∣∣∣ ≥ µ‖h‖P‖v‖V
)

Fact

Let (p, z) be a plant and let the additional assumptions be
satisfied. Suppose that the state z is asymptotically persistently
excited. Then we have parameter-identifiability:

lim
t→∞

q(t) = p in the space P .
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Uniformly persistently excited plant

Definition

The state z is uniformly persistently excited if there exist
numbers l > 0, µ > 0 such that

∀ h ∈ Q∀ t0 ∈ (0,∞)∃t1, t2 ∈ [t0, t0 + l ] ∃v ∈ V\{θ}(∣∣∣∣ ∫ t2

t1

〈A(h, z(t)), v〉 ds

∣∣∣∣ ≥ µ‖h‖P‖v‖V)

The property uniformly persistently excited may be used to show
that the convergence in

lim
t→∞

‖u(t)− z(t)‖H , lim
t→∞

(‖q(t)− p‖P

is exponentially fast.

Clearly, the property uniformly persistently excited is stronger than
the property asymptotically persistently excited.
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Stopping rule/exact data

Fact

Let (p, z) be a plant and let the additional assumptions be
satisfied. Suppose that the state z is uniformly asymptotically
persistently excited and let l , µ be chosen as in Definition of this
property. Then for all t0 > 0 we have

‖r(t0)‖P ≤ µ−1c7 ‖e‖[t0,t0+l ] ,

Stoping rule Let l > 0:

Given an accuracy parameter σ > 0 choose the stopping
time τ > 0 as the smallest time t0 such that

‖e‖[t0,t0+l ] ≤ σ .
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Remarks

Convergence without excitation assumption to a set of
parameters

Small error model & uniformly persitently excitation:
convergence to a small set of parameters

General error model: (MRAS) has to regularized.

Discretization of the scheme may be considered under an error
model

Applicability: ordinary differential equations, differential
equations with delay

Applicability: elliptic, parabolic, hyperbolic equations

Adaptation rules can be realized with different smoothness
requirements

(MRAS) can be realized as an off-line method
(Kaczmarz-type implementation)
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An illustrating example concerning richness

We follow

M.A. Demetriou and I.G. Rosen
On the persistence of excitation in the adaptive estimation of
distributed parameter systems
IEEE Trans. on Autom. Control 39, 1994

Model equation:

Dtz − (pz ′)′ = f (s, t) , (s, t) ∈ [0, 1]× (0,∞)

z(0, t) = z(1, t) = 0, t > 0,

z(s, 0) = 0, s ∈ (0, 1)

with p a positive constant, f (s, t) = α
√

2 sin(nπs) . We choose

H := L2(0, 1),V = H1
0 (0, 1),P = Q = IR,

endowed with the usual inner products and have

〈A(q, u), v〉 = q

∫ 1

0
u′(s)v ′(s) ds .
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An illustrating example concerning richness-1

The model reference adaptive systems is

Dtu − u′′ + z ′′(t)− qz ′′(t) = f (s, t) , (s, t) ∈ (0, 1)× (0,∞)

u(0, t) = u(1, t) = 0 , t ∈ (0,∞)

u(s, 0) = ζ(s) , s ∈ (0, 1)

Dtq − z ′(t)(u′ − z ′(t)) = θ in (0, 1)× (0,∞)

q(s, 0) = q0(s) , s ∈ (0, 1) .

The state z of the plant (p, z) is given as follows:

z(s, t) = Z (t)
√

2 sin(nπs) , (s, t) ∈ (0, 1)× (0,∞) ,

where
Z (t) =

α

pn2π2
(1− exp(−pn2π2)) , t > 0 .
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An illustrating example concerning richness-2

Let t0 ≥ 0, l > 0 . For q ∈ Q\{0}, v ∈ V, ‖v‖V ≤ 1 we have for the
defining inequality of uniformly persistently excited∣∣∣q ∫ t0+l

t0

∫ 1

0
z ′(s, t)v ′(s) dsdt

∣∣∣ ≥ |α|
p

∫ t0+l

t0

(1− exp(−pn2π2t) dt

=
|q||α|

p
(l − exp(−pn2π2t0)

pn2π2
) =: κ

for v(s) := 1
nπ sin(nπs) . For t0 sufficiently large,

κ ≥ µ0|q|‖v‖V with µ0 ≈
|α|
p

l > 0 .
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An illustrating example concerning richness-3

We would expect the following observations:

The larger µ the better should be the convergence of
limt→∞ q(t) = p .

This convergence is influenced also by the operator C in the
model reference equation. If we use the operator
C (u) := c∗u′′, we would expect that oszillation of the model
reference state u is damped by a large c∗ .
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A hyperbolic example

Model equation:

D2
t z − (pz ′)′ = f (t) in (0, 1)× (0,∞)

z(0, t) = z(1, t) = 0 in (0,∞)

z(s, 0) = z0(s),Dtz(s, 0) = z1(s, 0) in [0, 1]

Numerical simulation:

p(s) = 1 + s, z(s, t) = sin(πs + t),

C (u) := 2u′′, q(s, 0) = s, u(s, 0) = sin(πs)

Notice: z ′(1/2, 0) = z ′(3/2, 0) = 0 .
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An elliptic example

Model equation

−(pz ′)′ = f in (0, 1)

z(0) = z(1) = 0

Numerical simulation:

p(s) = 1 + s, z(s) = sin(πs), q(s, 0) = s, u(s, 0) = sin(πs)

Notice: z ′(1/2, 0) = 0 .

No pointwise convergence in s = 1/2 if we apply the
adaptation rule in Q := L2[0, 1] .

Pointwise convergence in [0, 1] if we apply the adaptation rule
in Q := H1[0, 1] .
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Outlook

Model equation

Dtz + A0(z) + A(q, z) = f (t) in V∗, t ∈ (0,∞); z(0) = ζ

Inspired by

R. Boiger and B. Kaltenbacher
A online parameter identification method for time dependent
partial differential equations
Inverse Problems, 32 (2016), 28 pp.

Observation

Observation operator O : V −→ Y
Observation space Y (Hilbert space)

Observation y(t) := Oz(t), t > 0
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Outlook-1

Assumption: O is linear, continuous, surjective

Fact

Suppose that O is linear, continuous and surjective. Then:

The pseudo inverse O† exists

O†O : V −→ V is linear and continuous

ran(O†O) = ker(O)⊥

P := O†O is an orthogonal projection onto ker(O)⊥

Q := I − O†O is an orthogonal projection onto ker(O)

Definition

O†Oz is called the observable part of z and I − O†Oz is the
unobservable part of z .
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Outlook-2

Notice The assumption O is surjective is crucial: In the most
cases one does not have this property. Then one has to
approximate O†O .

Now, we consider an linear orthogonal projection P : V −→ V .
Let Q be the associated linear orthogonal projection I − P . Then
we obtain linear continuous mappings

P∗ : V∗ −→ V∗,Q∗ : V∗ −→ V∗

defined as follows:

〈P∗(λ), v〉 = 〈λ,P(v)〉 , 〈Q∗(λ), v〉 = 〈λ,Q(v)〉 , λ ∈ V∗, v ∈ V .

We set
V̂ := ran(P) , V̆ := ran(Q) .
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Outlook-3

(MRAS)


Dtu + C (u − z(t)) + A0(z(t)) + A(q, z(t)) = f (t) in V∗, t > 0,

u(0) = ζ
Dtq − b(z(t), u − z(t)) = θ in Q∗, t > 0,

q(0) = q0

(MRASpro)



Dtz + A0(z) + A(p, z) = f (t) in V∗,
z(0) = ζ

Dtu + C (Pu − Pz(t)) + P∗A0(Qu + Pz(t))
+P∗A(q,Qu + Pz(t)) + Q∗M(Qu) = f (t) in V∗,

u(0) = ζ
Dtq − b(Qu + Pz(t),Pu − Pz(t)) = θ in Q∗,

q(0) = q0
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Outlook-4

Choose C and M in an appropriate way in order to find a
decoupling for computing û := Pu, ŭ := Qu

Once ŭ is computed find a solution of the resulting
computational scheme for û and q .

Analyze the assymptotic properties of û, q .

Crucial point: Choice of C .
The property we want to exploit is the fact

〈C ŵ , w̆〉 = 0 for ŵ ∈ V̂, w̆ ∈ V̆ .

This
”
leads us“ to the choice

C : V −→ V∗ , 〈C (v), v ′〉 := γ0〈v |v ′〉V , v , v ′ ∈ V with γ0 > 0 .
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