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Introduction

We recall:

Mathematical description of nonlinear inverse problems

Let X ,Y be infinite dimensional Banach spaces with norms
‖ · ‖X , ‖ · ‖Y , dual spaces X ∗,Y ∗ and dual pairings 〈·, ·〉X∗×X .
Moreover we denote by τX , τY topologies in X ,Y which are
weaker than the norm topology.

F : D(F ) ⊆ X −→ Y forward operator with domain D(F ).

We must treat the operator equation

F (x) = y (x ∈ D(F ) ⊆ X , y ∈ Y ) (∗∗)

with solution x† ∈ D(F ) and exact right-hand side y = F (x†),
which is in most cases ill-posed and nonlinear.
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Tikhonov-type regularization

For the stable approximate solution of (∗∗) we consider with

convex and stabilizing functional R : D(R) ⊆ X :→ R

and for noisy data yδ assuming a deterministic noise model

‖y − yδ‖Y ≤ δ

variational regularization (Tikhonov-type regularization)

T δ
α(x) :=

1
p
‖F (x)− yδ‖pY + αR(x)→ min,

subject to x ∈ D := D(F ) ∩ D(R), with exponents 1 ≤ p <∞,

regularization parameters α > 0 and minimizers xδα ∈ D(F ).
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Functional analysis for regularization in Banach spaces

Assumption 1
X ,Y are Banach spaces and D(F ) is a convex subset of X .
F is weak-to-weak τX -τY -sequentially continuous and
D(F ) is τX -weakly closed, hence F weak-to-weak closed.
R is convex and τX -weakly lower semi-continuous.
D = D(F ) ∩ D(R) 6= ∅.
R is stabilizing, which means that for every c ≥ 0 the
sublevel sets

MR(c) := {x ∈ D(F ) : R(x) ≤ c} ,

are τX -weakly sequentially pre-compact in the sense that
every sequence {xk} inMR(c) has a subsequence,
which is τX -convergent in X to some element from X .
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Stabilizing functionals and coercivity

a): For a reflexive Banach space X choose
weak convergence ⇀ as τX -convergence.
If sup

x∈MR(c)
‖x‖X <∞ for all c ≥ 0, then R is stabilizing

since the closed unit ball in X is weakly sequentially
pre-compact.

b): For a non-reflexive Banach space X = Z∗

with predual separable Banach space Z choose
weak∗ convergence ⇀∗ as τX -convergence.
If sup

x∈MR(c)
‖x‖X <∞ for all c ≥ 0, then R is stabilizing

since the closed unit ball in X is weak∗ sequentially
pre-compact (sequential Banach-Alaoglu theorem).
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An element x† ∈ D is called an R-minimizing solution to (∗∗)
if

R(x†) = min {R(x) : x ∈ D, F (x) = y} .

R-minimizing solutions always exist under Assumption 1 and
attainability, i.e. if, for given y ∈ Y , (∗∗) has a solution x ∈ D.

Results on existence, stability and convergence
of R-minimizing solutions x† and regularized solutions xδα
for arbitrary α > 0 can be found in
B H./KALTENBACHER/P./SCHERZER 2007, B PÖSCHL 2008.
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We introduce a general non-negative error measure E(x , x†)
applied to any approximate solution x for evaluating its quality.

The standard case is the norm error

E(x , x†) := ‖x − x†‖X ,

but in (reflexive) Banach space regularization we often exploit

E(x , x†) := BRξ†(x , x
†) ,

the Bregman distance (cf. B BURGER/OSHER 2004) at
x† ∈ D(R) ⊆ X and ξ† ∈ ∂R(x†) ⊆ X ∗ for R with subdifferential
∂R defined as

BRξ†(x , x
†) := R(x)−R(x†)− 〈ξ†, x − x†〉X∗×X .

DB(R) := {x ∈ D(R) : ∂R(x) 6= ∅} is called Bregman domain.
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Partially we also need:

Assumption 2
Let F , R, X , Y and D satisfy Assumption 1.

There exists an R-minimizing solution x† which is an
element of the Bregman domain DB(R).
There is a bounded linear operator F ′(x†) : X → Y such
that we have for the one-sided directional derivative at x†

and for every x ∈ D the equality

lim
t→0+

1
t

(
F (x† + t(x − x†))− F (x†)

)
= F ′(x†)(x − x†) .

The operator F ′(x†) has Gâteaux derivative like properties,
and there is an adjoint operator F ′(x†)∗ : Y ∗ → X ∗
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Example: Standard situation in Hilbert spaces

X ,Y Hilbert spaces,

R(x) := ‖x − x̄‖2X , x† is called x̄-minimum norm solution

T δ
α(x) :=

1
2
‖F (x)− yδ‖2Y + α ‖x − x̄‖2X

D(R) = DB(R) = X , since ∂R(x) is singleton

ξ† := R′(x†) = 2(x† − x̄)

BRξ†(x , x
†) = ‖x − x†‖2X .
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Example: Regularization with differential operators

X ,Y Hilbert spaces, p := 2

R(x) := ‖Sx‖2X with unbounded s.a. operator S : D(S) ⊂ X → X

T δ
α(x) :=

1
2
‖F (x)− yδ‖2Y + α ‖Sx‖2X

D(R) = X̃ Hilbert space with stronger norm ‖x‖X̃ := ‖Sx‖X

ξ† := R′(x†) = 2S2x†

BRξ†(x , x
†) = ‖S(x − x†)‖2X with DB(R) = D(S2)
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Example: Power-type penalties in Banach spaces

X ,Y Banach spaces, R(x) :=
1
q
‖x‖qX ,

T δ
α(x) :=

1
p
‖F (x)− yδ‖pY +

α

q
‖x‖qX (p,q ≥ 1)

D(R) = DB(R) = X , since R(x) is differentiable with

ξ† := R′(x†) = Jq(x†) with Jq : X → X ∗ duality mapping

BRξ†(x , x
†) =

1
q
‖x‖qX −

1
q
‖x†‖qX − 〈Jq(x†), x − x†〉X∗×X .
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Factors influencing the error and link conditions

We search for convergence rates

E(xδα, x
†) = O(ϕ(δ)) as δ → 0

with index functions ϕ.

We call a function ϕ : (0,∞)→ (0,∞) index function if
it is continuous and strictly increasing with lim

t→+0
ϕ(t) = 0.

Rate results require

Appropriate choices of the regularization parameter
a priori as α = α(δ) and
a posteriori as α = α(δ, yδ).
The appropriate interplay of all model components.
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The attainability of convergence rates will depend on the
interplay of the following four relevant ingredients, as these are:

(i) the smoothness of the solution x†,
(ii) the nonlinearity structure of the forward operator F ,
(iii) properties of the penalty R,
(iv) and the character of the error measure E(x , x†).

Link conditions are necessary for combining the four factors.

In Hilbert spaces solution smoothness can be expressed by
variable Hilbert scales and general source conditions
(see B PEREVERZYEV, MATHÉ, HEGLAND).

B. Hofmann Mini-Course 02: Regularization methods in Banach spaces – Part B 20



Outline

1 Introduction

2 Learning from Hilbert space situations

3 Rates based on variational source conditions

4 When do variational inequalities occur?

5 No common source conditions but variational inequalities in
`1-regularization when the sparsity assumption fails

6 References

B. Hofmann Mini-Course 02: Regularization methods in Banach spaces – Part B 21



Learning from Hilbert space situations

For Hilbert spaces X and Y we consider now the classical
version of Tikhonov regularization. We omit for simplicity
norm indices in this section.

T δ
α(x) := ‖F (x)−yδ‖2 +α ‖x −x‖2 → min, s.t. x ∈ D(F )

with regularization parameters α > 0 and
minimizers (regularized solutions) xδα ∈ D(F ).
x ∈ X plays the role of a reference element (initial guess).
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First preliminary assumption
X ,Y are Hilbert spaces and D(F ) is a convex subset of X .
F is weakly sequentially closed.

Under this assumption there exist x-minimum-norm solutions
x† ∈ D(F ) of (∗∗) with F (x†) = y and

‖x† − x‖ = min{‖x − x‖ : F (x) = y , x ∈ D(F )}

for arbitrarily chosen reference elements x ∈ X .

Moreover, there exist regularized solutions xδα for all α > 0
and arbitrary data elements yδ ∈ Y .
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Second preliminary assumption

For all x-minimum-norm solutions x† there exists a
bounded linear operator F ′(x†) : X → Y such that

lim
t→+0

F (x† + t(x − x†)− F (x†)
t

= F ′(x†)(x − x†)

holds for all x ∈ D(F ).
For all x-minimum-norm solutions x† there are a constant
K > 0 and a radius r > 0 of the ball Br (x†):={z∈X : ‖z−x†‖≤r}
such that

‖F (x)− F (x†)− F ′(x†)(x − x†)‖ ≤ K ‖x − x†‖2 (Lip)

holds for all x ∈ D(F ) ∩ Br (x†) .

B. Hofmann Mini-Course 02: Regularization methods in Banach spaces – Part B 24



Seminal conv. rate result by B ENGL/KUNISCH/NEUBAUER 1989

Under both preliminary assumptions and for an a priori
parameter choice α = α(δ) ∼ δ we have a convergence rate

‖xδα − x†‖ = O(
√
δ) as δ → 0

if the benchmark source condition

x† = x +
1
2

F ′(x†)∗v (BSC)

for an x-minimum-norm solution x† and the smallness condition

K ‖v‖ < 1 (SMC)

for the source element v ∈ Y are satisfied.
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Whenever for the choice of α > 0 the limit conditions

α→ 0 and
δ2

α
→ 0 as δ → 0

hold, then xδα converges in the sense of subsequences to
x-minimum-norm solutions of (∗∗).

Consequently, if multiple x-minimum-norm solutions exist,
then only one of them can satisfy the benchmark source
condition together with the smallness condition.
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If the benchmark source condition (BSC) or at least (SMC) fail,
then more qualified nonlinearity conditions are required for
convergence rates under low order source conditions:

1. Hölder source conditions with small exponents 0 < ν < 1
2 :

x† = x + (F ′(x†)∗F ′(x†))ν w , w ∈ X ,

for α ∼ δ
2

2ν+1 yielding: ‖xδα − x†‖ = O
(
δ

2ν
2ν+1

)
as δ → 0.

2. Logarithmic source conditions:

x† = x+f (F ′(x†)∗F ′(x†)) w , w ∈ X , f (t) := (− log t)−µ, µ > 0,

for α ∼ δ yielding: ‖xδα − x†‖ = O ((− log δ)−µ) as δ → 0.
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Nonlinearity conditions

Most powerful is the tangential cone condition

‖F (x)−F (x†)−F ′(x†)(x − x†)‖ ≤ C ‖F (x)−F (x†)‖ (TCC)

for some constant 0 < C <∞ and all x ∈ Br (x†) ∩ D(F ), often
with focus on 0 < C < 1 in iterative regularization methods. But
the verification is still missing or cannot be proven for large
relevant classes of nonlinear inverse problems.

The same can be said for weaker conditions of the form

‖F (x)−F (x†)−F ′(x†)(x−x†)‖ ≤ C ϕ(‖F (x)−F (x†)‖), (Phi)

where ϕ is a concave index function ϕ : (0,∞)→ (0,∞).
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Convergence rates under (BSC) and (Phi) B H./MATHÉ 2012

Provided that (Lip) is replaced by (Phi), then we have under
the benchmark source condition (BSC) a convergence rate

‖xδα − x†‖ = O(
√
ϕ(δ)) as δ → 0

if the regularization parameter α > 0 is selected a priori as
α(δ) = δ2

ϕ(δ) or a posteriori by using the sequential discrepancy
principle.
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By using the method of approximate source conditions:

Conv. rates under approximate SC and (Phi) B BOŢ/H. 2010

Provided that (Lip) is replaced by (Phi), then we have with the
auxiliary function Ψ(R) = dx†(R)2/R and for the distance
function

dx†(R) = min{‖x† − x − 1
2

F ′(x†)∗w‖ : w ∈ Y , ‖w‖ ≤ R} → 0

as R →∞ a convergence rate

‖xδα − x†‖ = O
(

dx†(Ψ−1(ϕ(δ))
)

as δ → 0

if the regularization parameter α > 0 is selected appropriately.

Technical assumption here: F ′(x†) is injective linear operator.
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To obtain Hölder rates 1. and logarithmic rates 2.
there are two more options B KALTENBACHER JIIP 2008:

Left-side rotation:

F ′(x) = R(x , x†)F ′(x†), ‖R(x , x†)−I‖Y→Y ≤ CR ‖x−x†‖κ (L)

for 0 < κ ≤ 1, 0 < CR <∞, and all x ∈ Br (x†) ⊆ D(F )

Right-side rotation:

F ′(x) = F ′(x†)R(x , x†), ‖R(x , x†)−I‖Y→Y ≤ CR ‖x−x†‖κ (R)

for 0 < κ ≤ 1, 0 < CR <∞, and all x ∈ Br (x†) ⊆ D(F )

B. Hofmann Mini-Course 02: Regularization methods in Banach spaces – Part B 31



For (L) the mean value theorem in integral form yields

‖F (x)− F (x†)− F ′(x†)(x − x†)‖

= ‖
∫ 1

0
[F ′(x† + t(x − x†))− F ′(x†)](x − x†)dt‖

≤ ‖
∫ 1

0
[R(x† + t(x − x†), x†)− I] F ′(x†)(x − x†) dt‖

≤ CR

(∫ 1

0
tκ dt

)
‖F ′(x†)(x − x†)‖ ‖x − x†‖κ

and hence

‖F (x)−F (x†)−F ′(x†)(x−x†)‖ ≤ CR

1 + κ
‖F ′(x†)(x−x†)‖ ‖x−x†‖κ.

B. Hofmann Mini-Course 02: Regularization methods in Banach spaces – Part B 32



‖F (x)−F (x†)−F ′(x†)(x−x†)‖ ≤ CR

1 + κ
‖F ′(x†)(x−x†)‖ ‖x−x†‖κ

implies on the one hand that

‖F (x)−F (x†)−F ′(x†)(x − x†)‖ ≤ C̃ ‖F ′(x†)(x − x†)‖ (Prime)

holds for some constant 0 < C̃ <∞ and all x ∈ Br (x†).

On the other hand, by using the triangle inequality we even
derive the tangential cone condition (TCC) in the case of
sufficiently small r > 0, which is also a consequence of (L).
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There is a complete deficit in low order convergence rates if

(a) the benchmark source condition fails, which means that
x† is too non-smooth.

and moreover

(b) (L) and (R) fail and there is no concave index function ϕ
such that (Phi) holds, which means that the structure of
nonlinearity of F is too poor.
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The autoconvolution equation in the real space L2(0,1)

In this paragraph, we consider the autoconvolution operator F
on the space X = Y = L2(0,1) of quadratically integrable real
functions over the unit interval [0,1]. Then (∗∗) attains the form

[F (x)](s) :=

s∫
0

x(s − t)x(t)dt = y(s), 0 ≤ s ≤ 1, (∗∗)

with F : L2(0,1)→ L2(0,1) and D(F ) = L2(0,1). This operator
equation of quadratic type occurs in physics of spectra, in
optics and in stochastics, often as part of a more complex task.
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We recall for nonlinear operator equations (∗∗) the local
well-posedness and ill-posedness concept with some verbal
reformulations:

Local ill-posedness and well-posedness
We call a nonlinear operator equation (∗∗) locally well-posed at
a solution point x† ∈ D(F ) if there is a closed ball
Br (x†) := {x ∈ X : ‖x − x†‖ ≤ r} around x† with radius r > 0
such that, for every sequence {xn}∞n=1 ⊂ Br (x†) ∩ D(F ), the
limit condition lim

n→∞
‖F (xn)− F (x†)‖ = 0 implies that

lim
n→∞

‖xn − x†‖ = 0. Otherwise the equation is called locally

ill-posed at x† ∈ D(F ), which means that, for arbitrarily small
radii r > 0, there exist sequences {xn}∞n=1 ⊂ Br (x†) ∩ D(F )
such that lim

n→∞
‖F (xn)− F (x†)‖ = 0, but lim

n→∞
‖xn − x†‖ = 0 fails.
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Local ill-posedness everywhere for autoconvolution

The simple example of a sequence belonging to Br (x†),

xn(t) =

{
x†(t) if 0 ≤ t ≤ 1− 1

n
x†(t) + r

√
n if 1− 1

n < t ≤ 1
(n = 2,3, ...),

with ‖xn − x†‖ = r , but

‖F (xn)− F (x†)‖ ≤ 2r

1/n∫
0

|x†(t)|dt ≤ 2r√
n
‖x†‖ → 0 as n→∞,

shows that the equation (∗∗) is locally ill-posed at every point
x† ∈ L2(0,1).
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This ill-posedness occurs although the nonlinear
autoconvolution operator F is not compact,
but has a compact Fréchet derivative

[
F ′(x)h

]
(s) = 2

s∫
0

x(s − t)h(t)dt , 0 ≤ s ≤ 1, h ∈ L2(0,1).

Based on Titchmarsh’s theorem it can be shown that F ′(x†)
is just an injective operator if

sup{ t ∈ [0,1] : x†(t) = 0 a.e. on [0, t ]} = 0. (Inj)

If a solution x† to (∗∗) satisfies the condition (Inj), then
x† and −x† are the two solutions of this equation.
Moreover, F is weakly sequentially closed and F ′(x) is
Lipschitz continuous and satisfies the condition

‖F (x)− F (x†)− F ′(x†)(x − x†)‖ = ‖F (x − x†)‖2 ≤ ‖x − x†‖2

for all x , x† ∈ L2(0,1), hence (Lip) with K = 1 and for all r > 0.
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Proposition
For the autoconvolution operator F under consideration here,
mapping in L2(0,1), and any element x† ∈ L2(0,1) there is no
index function η in combination with a radius r > 0 such that

‖F (x)− F (x†)‖ ≤ Ĉ η(‖F ′(x†)(x − x†)‖) (Eta)

for some constant 0 < Ĉ <∞ and all x ∈ Br (x†).
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Proof: To construct a contradiction it is enough to find a
sequence {xn}∞n=1 ⊂ Br (x†) such that ‖F ′(x†)(xn − x†)‖ → 0
as n→∞, but lim

n→∞
‖F (xn)− F (x†)‖ > 0. We consider the

sequence of functions xn = x† + ∆n ∈ Br (x†) with
∆n(t) =

√
2r sin(πnt) and ‖∆n‖ = r > 0. Taking into account

the weak convergence xn − x† ⇀ 0 in L2(0,1) we have
‖F ′(x†)(xn − x†)‖ → 0 and for any index function η also
η(‖F ′(x†)(xn − x†)‖)→ 0 as n→∞, because F ′(x†) is a
compact operator. However, F is not compact and
lim

n→∞
‖F (xn)− F (x†)‖ = lim

n→∞
‖(2x† + ∆n) ∗∆n‖ =

lim
n→∞

‖∆n ∗∆n‖ = r2
√

6
> 0. This proves the proposition.

Note that we have used in this context the limit
lim

n→∞
‖x† ∗∆n‖ = 0, which is again a consequence of the

compactness of linear convolution operators.
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Corollary
For the autoconvolution operator F from (∗∗) mapping in
L2(0,1) a condition (Prime) and consequently a nonlinearity
condition (L) cannot hold. Moreover also the tangential cone
condition (TCC) cannot hold with a small constant 0 < C < 1.

Proof: From (Prime) would have by the triangle inequality

‖F (x)−F (x†)‖ ≤ ‖F (x)−F (x†)−F ′(x†)(x−x†)‖+‖F ′(x†)(x−x†)‖

≤ (C̃ + 1) ‖F ′(x†)(x − x†)‖ and hence (Eta) with η(t) = t , which
contradicts the above proposition. Moreover, (TCC) would yield

‖F (x)−F (x†)‖ ≤ ‖F (x)−F (x†)−F ′(x†)(x−x†)‖+‖F ′(x†)(x−x†)‖

≤ C ‖F (x)− F (x†)‖+ ‖F ′(x†)(x − x†)‖, and in particular with
0 < C < 1

‖F (x)− F (x†)‖ ≤ 1
1− C

‖F ′(x†)(x − x†)‖,

which contradicts again the proposition.
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The above proposition, however, says nothing about the validity
of the tangential cone condition (TCC) with constants C ≥ 1.

Conjecure
For the autoconvolution operator F from (∗∗) mapping in
L2(0,1) and x† 6= 0 there is no concave index function ϕ in
combination with a radius r > 0 such that

‖F ′(x†)(x − x†)‖ ≤ C̃ ϕ(‖F (x)− F (x†)‖) (Dif )

holds for some constant 0 < C̃ <∞ and all x ∈ Br (x†).

If the conjecture is true, then for the autoconvolution operator
also (Phi) and in particular (TCC) cannot hold for x† 6= 0.
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Critical inspection of (TCC): What does it mean for x† ≡ 1?

H(s) :=

s∫
0

h(t)dt for h ∈ L2(0,1)

‖h∗h‖ ≤ C ‖2H +h∗h‖ for all h ∈ L2(0,1) : ‖h‖ ≤ r (TCC)

Is there always a sequence {hn} with primitives {Hn} such that

lim
n→∞

‖2Hn + hn ∗ hn‖
‖hn ∗ hn‖

= 0 ?
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One more chance: nonlinearity condition (R)? But:

Proposition
For the autoconvolution operator F from (∗∗) mapping in
L2(0,1) a nonlinearity condition (R) cannot hold.

A proof was given by Steven Bürger 2015 in his PhD thesis
(two full pages A4).
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To our best knowledge convergence rates for this
autoconvolution equation (∗∗) have been established
only if the benchmark source condition

x†(t) = x(t) +

1∫
t

x†(s − t) v(s)ds, 0≤t≤1, v∈L2(0,1), (BSC)

is satisfied under the smallness condition

‖v‖ < 1 . (SMC)
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Proposition
Apart from the trivial case x = x†, for the autoconvolution
operator F from (∗∗) mapping in L2(0,1), the conditions (BSC)
and (SMC) can only hold if the reference element x ∈ L2(0,1)
is chosen such that

‖x† − x‖
‖x†‖

< 1 (Rel)

and x† − x is a continuous function on [0,1] with x(1) = x†(1).
Hence, for the appropriate choice of x the value x†(1) must be
known. Furthermore, for the choice x = 0 there is no x† 6= 0
which satisfies both conditions.

Remark: For x = 0 the solutions x† and −x† have the same
distance to the reference element and if x† satisfies both
conditions so also does −x†. This is a contradiction.
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Proof: For x = x† , both conditions are always satisfied with
v = 0. By using the norm-conserving linear transformation
v 7→ ṽ in L2(0,1) defined as ṽ(t) := v(1− t), 0 ≤ t ≤ 1, we can
rewrite (BSC) as

x†(1− t)− x(1− t) =

t∫
0

ṽ(t − s) x†(s)ds, 0 ≤ t ≤ 1,

or short in convolution form as x† − x = ṽ ∗ x† . Therefore, the

transformation x(t) 7→ x(t) +
1∫
t

x(s − t)v(s)ds in L2(0,1) is a

contractive, affine linear mapping and, for fixed ‖v‖ < 1, by
Banach’s fixed point theorem there is a uniquely determined
solution x† ∈ L2(0,1) satisfying (BSC).
For x = 0 we have x† = 0 as solution to that equation for all
such source elements v .
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Now we can estimate ‖x† − x‖ ≤ ‖x†‖‖v‖ < ‖x†‖, for all
nonzero solutions x†, which yields the necessary condition
(Rel). Moreover, x† − x is a continuous function as the result
of the convolution of the two functions ṽ and x† from L2(0,1),
and thus we have x(1) = x†(1) as another necessary condition.
This proves the proposition.
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Rates based on variational source conditions

Now we are back to Banach spaces X and Y from the
introduction. For expressing solution smoothness we use
variational source conditions (variational inequalities) in a
form developed independently by FLEMMING and GRASMAIR

2010-11

Assumption 3 (variational source condition - VSC)

We assume to have a constant 0 < β ≤ 1, and a concave
index function ϕ such that

β E(x , x†) ≤ R(x)−R(x†)+ϕ(‖F (x)−F (x†)‖Y ) for all x ∈M.

The setM of the validity of (VSC) must be large enough such
that it contains x† and all regularized solutions xδα under
consideration for 0 < δ ≤ δmax . This is for example the case if
M =MR(R(x†) + c) for some c > 0.
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Namely, for any fixed parameter choice
α∗ = α∗(δ) or α∗ = α∗(yδ, δ) satisfying

α∗ → 0 and
δp

α∗
→ 0 as δ → 0 (+)

we have convergence for both

R(xδα∗)→ R(x†) and ‖F (xδα∗)−F (x†)‖Y → 0 as δ → 0. (++)

Moreover if δn → 0 then the regularized solutions xδn
α∗ converge

(in the sense of subsequences) with respect to the (weaker)
topology τX of X to R-minimizing solutions x†.
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On a posteriori choices α∗ = α∗(yδ, δ): discrepancy principles

A strong discrepancy principle was used in the literature for
Banach spaces and (VI) ( B RAMLAU ET AL.): For two
constants 1 < τ1 < τ2 <∞ the regularization parameter α∗ has
to satisfy the condition

τ1δ ≤ ‖F (xδα∗)− yδ‖Y ≤ τ2δ.

Duality gaps may destroy its applicability. To avoid this we
suggest to use of the sequential discrepancy principle (SDP)
for which the variational inequality (VSC) is also strong enough
to ensure convergence rates.
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Here we restrict the selection of the regularization parameter to
a discrete exponential grid. Precisely, we select 0 < q < 1,
choose a parameter α0 > 0 large enough and consider the set

∆q :=
{
αj : αj := q jα0, j = 1,2, . . .

}
.

Definition
For prescribed τ > 1 we say that the regularization parameter
α∗ ∈ ∆q is chosen according to the sequential discrepancy
principle (SDP) if

‖F (xδα∗)− yδ‖Y ≤ τδ < ‖F (xδα∗/q)− yδ‖Y .
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In B ANZENGRUBER, H.,MATHÉ 2013 we have proven:

Proposition
For α∗ > 0 from (SDP) we have

α∗ → 0 and
δp

α∗
→ 0 as δ → 0 (+)

whenever the exact penalization veto is satisfied.

Definition
We say that the exact penalization veto is satisfied if, with the
exception of singular cases, for arbitrary α > 0 an R-minimizing
solution x† cannot be a minimizer of

T 0
α(x) :=

1
p
‖F (x)− y‖pY + αR(x)→ min .

The veto is often failed in the case p = 1.
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Convergence rates for a natural a priori parameter choice
and for the sequential discrepancy principle

Theorem B HOFMANN/MATHÉ 2012

Suppose that x† obeys (VSC) for some concave index
function ϕ and some setM.

(i) For p > 1 let α∗ = α∗(δ) > 0 be selected according to the a
priori parameter choice α∗ := δp

ϕ(δ) .

(ii) For prescribed τ > 1 let α∗ = α∗(δ, yδ) > 0 be chosen
according to the sequential discrepancy principle (SDP).

Provided that xδα∗ ∈M for all 0 < δ ≤ δmax and some δmax > 0
we have for both parameter choices (i) and (ii) the convergence
rates

E(xδα∗ , x
†) = O(ϕ(δ)), ‖F (xδα∗)− F (x†)‖Y = O(δ), and

|R(xδα∗)−R(x†)| = O(ϕ(δ)) as δ → 0.
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When do variational inequalities occur?

I. The benchmark case

Here we assume that x† ∈ DB(R) and the subdifferential
ξ† ∈ X ∗ fulfills the benchmark source condition

ξ† = F ′(x†)∗ v ∈ ∂R(x†), for some v ∈ Y ∗. ($)

Such information allows us to bound for all x ∈ X

〈ξ†, x† − x〉X∗×X

= 〈(F ′(x†))∗v , x† − x〉X∗×X = 〈v ,F ′(x†)(x† − x)〉Y∗×Y

≤ ‖v‖Y∗‖F ′(x†)(x − x†)‖Y .

After adding the term R(x)−R(x†) on both sides this yields
that

BRξ†(x , x
†) ≤ R(x)−R(x†)+‖v‖Y∗‖F ′(x†)(x−x†)‖Y , x ∈M := D(R).
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The special case of Hilbert space regularization

X Hilbert space, R(x) = ‖x − x̄‖2X , BR
ξ†

(x , x†) = ‖x − x†‖2X .

This implies that

‖x−x†‖2X ≤ ‖x−x̄‖2X−‖x
†−x̄‖2X +‖v‖Y∗‖F ′(x†)(x−x†)‖Y , x ∈ X ,

and for a bounded linear operator F := A : X → Y we have
(VSC)

withM = X , E(x , x†) = ‖x − x†‖2X , β = 1 and ϕ(t) = ‖v‖Y∗ t .

In this Hilbert space setting for linear ill-posed problems
solution smoothness can always be expressed by variational
inequalities (VSC) with general index functions ϕ.
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Also in Banach spaces we obtain for bounded linear operators
such variational inequalities (VSC) with β = 1,
E(x , x†) = BR

ξ†
(x , x†) and ϕ(t) = ‖v‖Y∗ t , t > 0 onM = X .

If the mapping F is nonlinear then we may use certain
structure of nonlinearity to bound
‖F ′(x†)(x − x†)‖Y in terms of ‖F (x†)− F (x)‖Y .

Provided that

‖F ′(x†)(x − x†)‖Y ≤ σ(‖F (x)− F (x†)‖Y ), x ∈M, (&)

holds for some concave index function σ on some set
M⊂ D(F ), then we derive (VSC) onM with
β = 1, E(x , x†) = BR

ξ†
(x , x†) and ϕ(t) = ‖v‖Y∗σ(t), t > 0.
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An alternative structural condition is given in the form

‖F (x)−F (x†)−F ′(x†)(x−x†)‖Y ≤ ηBRξ†(x , x
†), x ∈M, (&&)

again for some setM⊂ D(F ) (cf. B RESMERITA, SCHERZER).
This allows us to bound

‖F ′(x†)(x − x†)‖Y ≤ ηBRξ†(x , x
†) + ‖F (x)− F (x†)‖Y , x ∈M

and further as (VSC) under the smallness condition

η‖v‖Y∗ < 1 ($$)

with 0 < β = 1− η‖v‖Y∗ ≤ 1, E(x , x†) = BR
ξ†

(x , x†) and
ϕ(t) = ‖v‖Y∗ t , t > 0 onM.
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II. Violation of the benchmark

If the source condition ($) is violated then we may use the
method of approximate source conditions to derive
variational using the distance function

dξ†(R) := inf{‖ξ† − ξ‖X∗ : ξ = F ′(x†)∗v , v ∈ Y ∗, ‖v‖Y∗ ≤ R},

which is nonincreasing, continuous and concace for all R > 0
and should obey the limit condition

dξ†(R)→ 0 as R →∞.

As mentioned in BOŢ/HOFMANN 2010 this is the case when
F ′(x†)∗∗ : X ∗∗ → Y ∗∗ is injective.
Additionally this approach presumes q-coercivity

BRξ†(x , x
†) ≥ cq ‖x − x†‖qX for all x ∈M, q ≥ 2, cq > 0.

Such assumption is for example fulfilled if R(x) := ‖x‖qX and
X is a q-convex Banach space.
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Then, for R > 0 one can find vR ∈ Y ∗ and uR ∈ X ∗ such that

ξ† =
(

F ′(x†)
)∗

vR+uR with ‖vR‖Y∗ = R, ‖uR‖X∗ ≤ dξ†(R) ,

and we can estimate for all R > 0 and x ∈M as

−〈ξ†, x − x†〉X∗×X = −〈
(
F ′(x†)

)∗ vR + uR, x − x†〉X∗×X

= −〈vR,F ′(x†)(x − x†)〉Y∗×Y + 〈uR, x† − x〉X∗×X

≤ R ‖F ′(x†)(x − x†)‖Y + dξ†(R) ‖x − x†‖X .

Adding again the difference R(x)−R(x†) gives for x ∈M

BRξ†(x , x
†) ≤ R(x)−R(x†)+R ‖F ′(x†)(x−x†)‖Y +dξ†(R) ‖x−x†‖X .
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Using Young’s inequality and the q-coercivity, for the linear case
F ′(x†) = A, we equilibrate the second and the third term,
depending of R and dξ†(R), respectively, by means of the
auxiliary continuous and strictly decreasing function

Φ(R) :=

(
dξ†(R)

)q∗

R
, R > 0,

1
q

+
1
q∗

= 1 .

By setting R := Φ−1 (‖A(x − x†)‖Y
)

and introducing the index
function

ζ(t) :=
[
dξ†(Φ−1(t))

]q∗
(t > 0)

we get again a variational inequality (VSC):

βBRξ†(x , x
†) ≤ R(x)−R(x†) + K̂ ζ(‖A(x − x†)‖Y ), x ∈M.

B. Hofmann Mini-Course 02: Regularization methods in Banach spaces – Part B 63



Outline

1 Introduction

2 Learning from Hilbert space situations

3 Rates based on variational source conditions

4 When do variational inequalities occur?

5 No common source conditions but variational inequalities in
`1-regularization when the sparsity assumption fails

6 References

B. Hofmann Mini-Course 02: Regularization methods in Banach spaces – Part B 64



No common source conditions but variational
inequalities in `1-regularization
when the sparsity assumption fails

B BURGER/FLEMMING/H. 2012/2013 and B BOŢ/H. 2013

Under a sparsity expectation we consider for X = `1 = (c0)∗

with the weak∗-topology as τX in `1 and F : D(F ) ⊆ `1 → Y
`1-regularized solutions xδα as minimizers of

T δ
α(x) :=

1
p
‖F (x)− yδ‖pY + α ‖x‖`1 → min .

We are searching for convergence rates with respect to the
`1-norm minimizing solution x†.
Benchmark source conditions and approximate source
conditions are not applicable.
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The situation of `1-regularization under consideration

Assumption 4

(a) x† ∈ `1, but the sparsity assumption fails, i.e. x† 6∈ `0;
(b) F ′(x†) ek ⇀ 0 for all k ∈ N;
(c) ek = (F ′(x†))∗fk for some fk ∈ Y ∗ and all k ∈ N.
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Theorem
Under the nonlinearity condition

‖F ′(x†)(x − x†)‖Y ≤ σ(‖F (x)− F (x†)‖Y ) (&)

valid for all x ∈M :=M‖·‖`1 (c), some concave index function σ
and some c > ‖x†‖`1 we have a variational inequality

‖x−x†‖`1 ≤ ‖x‖`1−‖x‖`1 +ϕ(‖F (x)−F (x†)‖Y ) for all x ∈M

with the concave index function

ϕ(t) = 2 inf
n∈N

 ∞∑
k=n+1

|x†k |+

(
n∑

k=1

‖fk‖Y∗
)
σ(t)

 .
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Example: Hölder rates

Consider a polynomial decay and growth σ(t) ≤ K3 tκ, t > 0,

∞∑
k=n+1

|x†k | ≤ K1 n−µ,
n∑

k=1

‖fk‖Y∗ ≤ K2 n ν ,

with exponents 0 < κ ≤ 1, µ, ν > 0 and corresponding
constants K1,K2,K3 > 0. Then by setting n−µ ∼ n ν tκ and
hence n ∼ t

−κ
ν+µ we obtain the Hölder convergence rates

‖xδα∗ − x†‖`1 = O
(
δ
µκ
µ+ν

)
as δ → 0

whenever the regularization parameter α∗ = α(δ, yδ) is chosen
according to the (SDP). The best possible rate arises from the
limit case κ = 1 expressing the tangential cone condition.
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Example: exponentially decaying solution components

In contrast to the last example we consider now an exponential
decay of the solution components

∞∑
k=n+1

|x†k | ≤ K1 exp (−nγ) ,
n∑

k=1

‖fk‖Y∗ ≤ K2 n ν ,

with exponents γ, ν > 0 and corresponding constants
K1,K2 > 0. For simplicity let σ(t) ≤ K3 t , only.
By setting nγ ∼ log(1/t) and hence exp (−nγ) ∼ t the rate

‖xδα∗ − x†‖`1 = O

(
δ

(
log
(

1
δ

)) ν
γ

)
as δ → 0

holds for α∗ from (SDP). The factor
(
log
(1
δ

)) ν
γ prevents

‖xδα∗ − x†‖`1 = O (δ) as δ → 0,

the rate which occurs for sparse solutions x† ∈ `0.
B. Hofmann Mini-Course 02: Regularization methods in Banach spaces – Part B 69



Outline

1 Introduction

2 Learning from Hilbert space situations

3 Rates based on variational source conditions

4 When do variational inequalities occur?

5 No common source conditions but variational inequalities in
`1-regularization when the sparsity assumption fails

6 References

B. Hofmann Mini-Course 02: Regularization methods in Banach spaces – Part B 70



Relevant references:

B M. BURGER, S. OSHER: Convergence rates of convex variational regularization.
Inverse Problems 20 (2004), pp. 1411–1421.

B B. HOFMANN, B. KALTENBACHER, C. PÖSCHL, O. SCHERZER: A convergence
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B B. HOFMANN, P. MATHÉ: Parameter choice in Banach space regularization under
variational inequalities. Inverse Problems 28 (2012), 104006 (17pp).

B M. BURGER, J. FLEMMING, B. HOFMANN: Convergence rates in `1-regularization if
the sparsity assumption fails. Inverse Problems 29 (2013), 025013 (16pp).

B S. W. ANZENGRUBER, B. HOFMANN, P. MATHÉ: Regularization properties of the
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