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Introduction

Let X and Y denote infinite dimensional Hilbert spaces,
equipped with norms || - || and inner products (-, -).

We consider also here linear inverse problems in form of
linear operator equations

Ax =y (xeX,yey) (%)

with a bounded linear forward operator A € £(X, Y) and

nonlinear inverse problems in form of nonlinear equations

F(x) =y (xeD(F)C X, yeY). ()

We denote again by x' solutions to equations (x) and (xx).
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We recall Nashed’s ill-posedness concept for (x)

Definition (> Naskep 1987)

We call a linear operator equation (x) well-posed in the sense
of Nashed if the range R(A) of A is a closed subset of Y,
consequently ill-posed in the sense of Nashed if the range is
not closed, i.e. R(A) # R(A)" . In the ill-posed case, the
equation (x) is called ill-posed of type I if the range R(A)
contains an infinite dimensional closed subspace, and

ill-posed of type Il otherwise.
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We recall local ill-posedness concept for (xx)

Definition ( > HOFMANN/SCHERZER 1994)

The operator equation (xx) is called locally well-posed at the
solution xT € D(F) if there is a closed ball B,(x') with radius

r > 0 and center x' such that for every sequence

{xn}22, C B(x") N D(F) the convergence of images

limp o0 || F(xn) — F(xT)|| = 0 implies the convergence of the
preimages limp_, ||x, — xT|| = 0.

Otherwise (xx) is called locally ill-posed at x.

N,

Stable approximate solution of ill-posed linear problems (x)
and locally ill-posed nonlinear problems (xx) requires some
kind of stabilization. We consider conditional stability,
Tikhonov regularization and Lavrentiev regularization as
different such approaches.
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9 Tikhonov regularization and conditional stability
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Tikhonov regularization and conditional stability

For ill-posed equations (xx) and a general situation of F,
classical Tikhonov regularization is a very popular method,
see, e.g., > ENGL/HANKE/NEUBAUER 1996 (Chapter 10),

with regularized solutions x3 which are minimizers of

|F(x)—y°||?+a || x—X|2 — min,  subjectto x e D(F). (Tik)

For a priori parameter choices o, = a..(9) or a posteriori
parameter choices o, = a..(y?, §) of the regularization
parameter « > 0 satisfying
52
ax — 0 and — =0 as d—0, ()

Ol

we have, under conditions on F and D(F), norm convergence
in X of xJ_ to Xx-minimum norm solutions x' of (+x) as § — 0.
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The convergence is based on the minimizing property
IF(x2) = y° 1P +allxg = x|1? < |F(xN) =y’ |2 +alx"—x|>  (MP)

of the regularized solution x’ € D(F), which yields

- 52 -
I 5l < ) 5 4 - K

and

IFOC) — ¥l < /82 + allxt — X2

If F is weakly sequentially closed, then we have weak
convergence (in subsequences) of xé* to X-minimum norm
solutions under (N,) as 6 — 0. Since Hilbert spaces have

the Kadec-Klee property, this yields even norm convergence.
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Convergence rates for Tikhonov regularization

To obtain convergence rates, solution smoothness with respect
to the forward operator is needed, which is expressed by some
kind of source condition.

We recall a form expressed by variational inequalities:

Variational source condition (VSC)

We assume to have a constant 0 < 8 < 1 and a concave index
function ¢ such that

B lx=x1|? < |Ix=x|2=|Ix"=X|2+o(| F(x)-F(x)]) VxeM.

The function ¢ : [0, 00) — [0, o) is called an index function if it
is continuous and strictly increasing with ¢(0) = 0.
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Under variational source conditions (VSC)

52
900

is an appropriate a priori choice of the regularization parameter.

Qi

For practical use, however, discrepancy principles are more
important. Consider for prescribed 0 < g < 1 and large ag > 0

Ag = {ozj: aj::qjozo, j:1,2,...}.

Sequential discrepancy principle (SDP)

For prescribed = > 1 we say that the regularization parameter
a, € Ag is chosen according to the sequential discrepancy
principle (SDP) if

IFC.) =¥l < 76 < IF(x2, /) = ¥°lI-
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Theorem © HorFMANN/MATHE 2012

Suppose that x obeys (VSC) for some 0 < # < 1 and some
concave index function .

(i) Let a. = ax(d) > 0 be selected according to the a priori
parameter choice o, = %).

(i) For prescribed 7 > 1 let a., = (4, ¥?) > 0 be chosen
according to the sequential discrepancy principle (SDP).

Provided that xJ € M forall 0 < § < §max and some dmax > 0

we have for both parameter choices (i) and (ii) the convergence
rate 5 5
xS, — xT||2 = 0O(p(6)) as & — 0.

a

We mention that both parameter choices in (i) and (ii) satisfy

a, — 0 and — =0 as d—0. N\
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Conditional stability

Stable approximate solutions can also be found by
having conditional stability estimates of the form

[x=xT|2 < o(|F(x)-F(x")|]) forall xeD(F)YnQ  (CSE)
for a concave index function ¢ and an appropriate set Q > {x'}.

Often Q depends on properties of x' and is not known a priori.
Consequently, (CSE) is not directly applicable for finding stable
approximate solutions to (xx). Additional tools are needed.

> CHENG/YAMAMOTO IP 2000 > HOFMANN/YAMAMOTO IP 2010
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Combine (CSE) and Tikhonov regularization: Q = B,(x")

Under || x — xt||2 < o(||F(x) — F(x")|)) for all x € D(F) N B,(x")
the sol. xt is unique in B,(x"), (x*) is locally well-posed at x.
An appropriate a priori choice . = «a.(9) is here

ci® <a,(0) <, 0<c<c<oo, satisfying
ar—0 and 0<1/C<é?/a. <1/c<o0—0 as 6 —0. (—)

From (MP) we derive ||x? — X||2 < & 4 ||xt — |2, consequently

- _ 262 -
%2 = XTI < 2(]x% = X|2 + [IxT = X[%) < = + 4|x" — %]

and hence

\}

6. = xMI? < +4lxT = x]2.

Qe

For r > \/g + 4| xt — X||2 we thus have x5_ € D(F) N By(x").
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(CSE) applies for x3_ € D(F) N B:(x") = D(F) N Q and yields
X3, = xTI1Z < @(IF(xa.) = VIl + I F(xT) = y°ID),

moreover with

IFOE) — ¥l < /82 + aullxt — XI2 < /62 + €02 |xi - x|2.
For concave index functions ¢ we find constant K > 0 such that

Ixa. —xT[|? < K(8) = O(p(6))  as 6 0.

Using regularization under conditional stability
is like putting into the hole Q while playing golf!
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© Oversmoothing regularization in Hilbert scales
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Oversmoothing regularization in Hilbert scales

If in generalized Tikhonov regularization
|F(x)=y°|IP+aR(x) — min, subjectto x € D:=D(F)ND(R),

with convex penalty functionals R, solutions xt € D(F) to ()
are not smooth enough w.r.t. R such that R(x") = oo,

then for regularized solutions x? the minimizing property
IF(x3) = y°I7 + aR(x2) < [F(xT) = y°IIZ + aR(x")  (MP)

does not help anyway. In > HOFMANN/MATHE 2017 we found
situations, where for a, = a.(y?, §) satisfying

|F(Xa.)? — y¥°|| =76, forsome 7>1, (DP)

ax — 0 and — = 0 as d—0. ("
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Precisely, we have extended the rates results of the seminal
paper by > Narterer 1984 from the linear case (x)
to the nonlinear case (xx) formulated in a Hilbert

scale setting generated by an operator B as follows:

For an unbounded linear operator B: D(B) C X — X,
which is self-adjoint and satisfies with some m > 0

||Bx|| > m|x|| vV x € D(B).

The Hilbert scale {X; },cr is based on norms || x|, = ||B"x||.

We consider with D := D(F) n D(B) Tikhonov regularization as

IF(x) = ¥°||2 + a||B(x — X)||2 — min, subjectto x € D.
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We assume that
x € D=D(F)nD(B) and x' € D(F), but x' ¢ D(B)

and that there is some 0 < p < 1 with ||BPxT|| < oc.

Moreover, let for some a > 0 the nonlinearity condition
call B~ (x—xN| < [IF(x) = F(x")|| < Ca||B~3(x—x")|| ¥x €D

hold.
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Theorem = HoFMANN/MATHE 2017

Under the assumptions stated we have for all 0 < p < 1 the
convergence rate

IX2 —xt|| = 0@(s) as 50

whenever the regularization parameter «. is chosen according
to the discrepancy principe (DP).
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e

Classical Tikhonov regularization in Hilbert spaces requires for
finite penalty values at x' to choose «, according to
52
a, —0 and — =0 as d—0. (\)

(o

Under conditional stability we should choose «.. according to
-
ax — 0 and O<Q§a—§C<oo—>0 as d—0, (—)

but in the context of oversmoothing regularization as

a, — 0 and — =00 as o —0. "
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e On Lavrentiev regularization in Hilbert space
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On Lavrentiev regularization in Hilbert space

For a monotone operator F:D(F) C X — X, i.e,
(F(x)— F(X),x—X)>0  Vx,XeD(F), (Mon)

and if (xx) is a model of an inverse problem, then due to
local ill-posedness it makes sense to solve a
singularly perturbed well-posed auxiliary equation

F(x0)+a(x’ —x) = y°. (Lav).

The analog w.r.t. (x) (cf. Example 4 in Part A) attains the form

Ax+a(xi—x)=y°. (Lav).

(67

Lavrentiev regularization is simpler than the Tikhonov
regularization, but its use it restricted to the smaller class of
monotone forward operators.
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Useful assumptions
@ F: X — X, D(F) =X (X separable real Hilbert space).
@ F is a monotone and hemicontinuous operator.

Then F is even maximally monotone and we have a
weak-to-norm sequential closedness as

Xp— X and F(xn) > 20 = F(X)=2.

There occur well-posed and ill-posed situations.
The best situation of global well-posedness is characterized by
strong monotonicity

(F(x)— F(X),x —X) > C|jx — X||2 forall x,Xx e X,
with some constant C > 0, which implies the coercivity

condition
(F(x), x)

= Q.
x|l =00 [|X]]
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Under the above assumptions F : X — X is surjective due to
the Browder-Minty theorem if the coercivity condition holds. If,
moreover, F is strongly monotone, then F is bijective and
F~': X — X is Lipschitz continuous as

~ L 1 ) ) .
IF~'(y)—F 1(y)\léglly—yll forall y,yeX. (Lip)

There are classes of ill-posed inverse problems with monotone
F occurring in natural sciences and engineering, where (Lip)
fails. Then we have operator equations (xx) of the first kind,
but the associated equations of the second kind

G(x)=y with G(x) .= F(x) + ax

satisfy (Lip) with C =« foralla > 0.

This motivates Lavrentiev regularization (Lav) for
stabilizing (xx).
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Example > B. KALTENBACHER

As an ill-posed example we consider the identification of the
source term q in the elliptic boundary value problem

—Au+&u)=qing
u=0o0nd9dg

from measurements of uin G, where £ : R — R is some
Lipschitz continuously differentiable monotonically increasing
function and G C R® a smooth domain.

Then the corresponding nonlinear forward operator
F:X:=L2(G) — H3(G) C L3(G),
mapping q — u, is monotone and hemicontinuous.
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Lavrentiev regularization is always helpful if bijectivity of F
and hence Lipschitz property of F~1 fails, for example because
coercivity fails or well-posedness occurs only in a local sense.

This is the case if F is locally strongly monotone
(F(x) = F(xT),x = xTy > C|Ix = xT||2  forall x e B,(x'),
with C > 0 and r > 0, or if F is locally uniformly monotone
(F(x)— F(x"),x —x™)y > ¢(|x — xT||)  forall x e B,(x")

with some index function ¢ and r > 0.
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Let local uniform monotonicity of F in B;(x") hold with an index

function ¢ of the form ((t) = 6(¢t) t, t > 0, such that 6 is also an
index function. Then we have a conditional stability estimate

Ix—x'| <0~ Y(|IF(x)—F(x")|) forall xeB(x'), (CSE)

and the operator equation (xx) is locally well-posed at x'.
In the special case ¢(t) = C t? of strong monotonicity we find

Ix — xt| < 15 IF(x) — F(x)|| forall x e B/(x!). (CSE)

v
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One dimensional example

For X := R with || x]|| := |x| we consider (xx) with the continuous
monotone operator F : R — R defined for exponents « > 0 as

—1 if —co<x< -1

—(—x)F if -1<x<0
X" if 0<x<1 ’
1 if 1<x<o

F(x):=

which, however, is not bijective and not coercive.

Then we have local ill-posedness at xT if xt < —1 or xT > 1.
At xt = 0 we have local well-posedness for all k > 0 due to a
local uniform monotonicity condition with ¢(t) = t**' such that

Ix — xt|| < ||[F(x) = F(x")||'/* forall x e By(0). (CSE)

Lavrentiev regularization allows for linear convergence if xk = 1,
Holder convergence rates for x > 1, and there even occurs a
superlinear convergence rate at x' = 0if 0 < k < 1.
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Convergence rates under variational source conditions

Let us consider a variational source condition adapted to the
monotonicity structure:

Variational source condition (VSC-Lav)

We assume to have a constant 0 < 8 < 1 and an index function
@ such that for all x € M

(xT — %, x" — %) < BIxT — x| + p((F(x) = F(x"), x — x7)).

Here, ¢ must be an index function with lim;_, 1o % >c>0.

The next theorem is proved by the general Young inequality

ab < /af(t)dt+/bf‘1(t)dt
0 0

for a, b > 0 and an index function f.
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Theorem > H./KALTENBACHER/RESMERITA 2016

Let (VSC — Lav) be satisfied for a solution to (xx) with M such
that for the choice of a > 0 all regularized solutions x2 from
(Lav) belong to M for sufficiently small § > 0. Then one has
the estimate

1 &2
(1-8)Pa 1-5
for such 6 > 0, where V(«) is introduced as follows:

Let f be an index function such that its gntiderivative
f(s) : fo (H)at satisfies the condition f(¢(s)) < sfors>0

and let G(a) > [ f~'(7)d7. Then we set V(a) := %.

Ixa — xT||? < V(a),
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Theorem cont.
Moreover, for the a priori choice

. (8) ~ ©71(8%)

with ©(\) := A\2W()\), which satisfies

)
a.(6) -0 and m—m as §—0,

this yields the convergence rate

1.~ 1= O vz ) = © (Vete12).

The best possible rate occurs for ¢(t) ~ v/t and W(t) ~ t as

X0 xt = o83 it o, (0) ~ 85,
ax(0)
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Logarithmic type variational source conditions

We consider (VSC — Lav) with

1

o(t) = ft)y=e1 <5

R , 1
G(o) O‘_ma—/o et O(f) ~ R fora,te (0,1)

This yields the logarithmic rate © (N/w(@—1 (52))).

Since the a priori choice o, = o, () ~ ©~1(§2) cannot be
determined explicitly in this logarithmic case, a more
convenient choice is a.(d) ~ /6 which implies

X, — x| =0 (%) |
—1In(9)
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Haolder type variational source conditions

For exponents 1 € (0, 3], we consider (VSC — Lav) with

I

o) = t, f(t)=2;t?, F1(t) = (ut) ™7,

1 2—p

Hs)=sk, Gla)=(1—pmu"mams, o(t)~ 1.
According to the theorem this yields the Holder rate

2(1—p)

X2 — xT[| = 0% ") if @ (d)~6zn.

Note that O (67°7 ) = O (6777 ) for ju:= 5287, 0 < p < §.
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