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Outline

Four lectures

1 Calibration and simulation of deformable objects

2 Data manipulation and completion

3 Estimating the trace of a large implicit matrix and applications

4 Numerical analysis in visual computing: not too little, not too much

Please see synopsis at
http://mtm.ufsc.br/∼aleitao/public/impa-pt2017/index.html
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Outline

Collaborators

1 Soft object calibration and simulation, 2015

Bin Wang
Longhua Wu
KangKang Yin
Libin Liu
Hui Huang

2 Ongoing

Edwin Chen
Dinesh Pai
Danny Kaufman & David Levin
Bin & Hui
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Motivation Outline

Outline

Motivation

Deformation capture and modeling of soft objects

Large-step time integration of elastodynamics equations

Optimization
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Motivation Deformable objects

Motivation: the problem

Motion simulation of structures containing flexible soft objects is
ubiquitous in current computer graphics and robotics research.

Many industrial applications, including touching, facial expression,
cloth motion, etc.

Such high quality simulations can be rather costly for articulated
systems or bodies, and the assembly of internal forces through an
often nonlinear stiffness matrix is expensive.

Furthermore, the model typically requires calibration, e.g., specifying
Young modulus and damping properties, which are expressed as
(distributed) parameters in the elastodynamics differential equations
governing the motion.
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Motion simulation of structures containing flexible soft objects is
ubiquitous in current computer graphics and robotics research.

Many industrial applications, including touching, facial expression,
cloth motion, etc.

Such high quality simulations can be rather costly for articulated
systems or bodies, and the assembly of internal forces through an
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Motivation Deformable objects

Motivation: how to handle this challenge

1 For a given calibration, semi-discretize elastodynamics equations in
variational form using (co-rotated) FEM on a coarse moving
tetrahedral mesh.

2 To obtain parameters (i.e., calibrate model), acquire position data in
controlled environment and solve inverse problem.

3 Use physics-based simulation: in many applications, require result to
look good, rather than be accurate to within tol. In particular:

It’s the motion simulation results, rather than accuracy of parameters,
that is eventually observed.
Can often use semi-implicit methods with large time steps to dampen
invisible high oscillations.
(Some aspects of this remind me of geometric integration methods.)
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Motivation Deformable objects

Fine surface mesh Coarser volumetric mesh
[Wang, Wu, Yin, A., Liu & Huang ’15]

[Muller et al., 2002; Kim & Pollard, 2011]
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Motivation Deformable objects

Motion capture
[Wang, Wu, Yin, A., Liu & Huang ’15]
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Deformable object simulation Outline

Outline

Motivation

Deformation capture and modeling of soft objects

Large-step time integration of elastodynamics equations

Optimization
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Deformable object simulation Challenges to address

Challenges from deformation capturing and
modeling work

Discretizing ODE system in presence of high frequencies

Highly non-convex, highly nonlinear optimization

Somewhat dubious statistics

Heterogeneous material: homogenization

More realistic damping model

Better measurements (for Poisson ratio), better equipment

etc.
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Large step elastodynamics simulation

Outline

Motivation

Deformation capture and modeling of soft objects

Large-step time integration of elastodynamics equations

Optimization
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Large step elastodynamics simulation

Outline

Soft material models

Large-step methods

Backward Euler (BE) and semi-implicit (SI)
Generalized α method
When we don’t want to conserve total energy: decoupling
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Large step elastodynamics simulation Soft material models

Simulating soft object motion:
Elastodynamics

Large deformation in 3D leads to nasty partial differential
systems [Ciarlet ’93]

Convenient to semi-discretize without even forming PDEs, e.g., using
mass-spring system, or at the variational level using FEM and possibly
co-rotated FEM.

Obtain ODE system

Mq̈(t) = ftot(q, v)

≡ fels(q) + fdmp(q, v) + fext.

[Note change of notation from x to q: sorry]
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Large step elastodynamics simulation Soft material models

An elastodynamics ODE system

Equations of motion (v = q̇ are node velocities)

Mq̈(t) = fels(q) + fdmp(q, v) + fext,

with the elastic and damping forces

fels(q) = −
∂

∂q
W (q(t)), fdmp(q, v) = Dv(t),

where W (q(t)) is the elastic potential of the corresponding model.

This elastic potential can be

quadratic in a linear elasticity model;
quartic in a linear FEM model with StVK material;
nonlinear for co-rotated FEM for linear material;
nonlinear for neo-Hookean material and artificially designed material
[Xu et al. ’15]
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Large step elastodynamics simulation Soft material models

A 1st order ODE system

Rewrite at some t = tn as

u̇(t) ≡
(
q̇(t)
v̇(t)

)
=

(
v(t)

M−1ftot(q, v)

)
=

(
0 I

−M−1K M−1D

)(
q(t)
v(t)

)
+

(
0

g(u(t))

)
,

g(u(t)) = ftot +M−1Kq(t),

where K = ∂
∂q fels(q) is the tangent stiffness matrix at q = q(tn).

Note that the (symmetric) stiffness matrix is not always positive
definite! The elastic energy need not be always convex.

Further, often there is highly oscillatory stiffness, even though the
observed motion is damped and does not vibrate rapidly. This
happens when

the scale of the simulation is large, and/or
the material stiffens under large deformation.
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Large step elastodynamics simulation SI and BE damping

Large steps methods

Want to use a time step size τ commensurate with the damped
motion.

Can’t use explicit Runge-Kutta (RK) discretization.

Moreover, implicit RK requires solution of nonlinear system at each
step: can be nasty if the step size τ is large.

Can use a semi-implicit (SI) method, i.e., backward Euler (BE) with
only one Newton iteration at each time step starting from un.
[Baraff & Witkin ’98; Ascher ’08].
This and generalized α are the most popular methods in use to date.

However, heavy step-size dependent damping is introduced: not easy
for an artist to work with; and affects different materials differently.
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Large step elastodynamics simulation SI and BE damping

Large steps methods

Want to use a time step size τ commensurate with the damped
motion.

Can’t use explicit Runge-Kutta (RK) discretization.

Moreover, implicit RK requires solution of nonlinear system at each
step: can be nasty if the step size τ is large.

Can use a semi-implicit (SI) method, i.e., backward Euler (BE) with
only one Newton iteration at each time step starting from un.
[Baraff & Witkin ’98; Ascher ’08].
This and generalized α are the most popular methods in use to date.

However, heavy step-size dependent damping is introduced: not easy
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Large step elastodynamics simulation SI and BE damping

Large steps methods

Want to use a time step size τ commensurate with the damped
motion.

Can’t use explicit Runge-Kutta (RK) discretization.

Moreover, implicit RK requires solution of nonlinear system at each
step: can be nasty if the step size τ is large.

Can use a semi-implicit (SI) method, i.e., backward Euler (BE) with
only one Newton iteration at each time step starting from un.
[Baraff & Witkin ’98; Ascher ’08].
This and generalized α are the most popular methods in use to date.

However, heavy step-size dependent damping is introduced: not easy
for an artist to work with; and affects different materials differently.
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Large step elastodynamics simulation SI and BE damping

Twisted bar: neo-Hookean material
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Large step elastodynamics simulation SI and BE damping

Twisted bar dressed
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Large step elastodynamics simulation numerical damping scalar case

The simplest case

To see what happens with SI and BE, consider the scalar
constant-coefficient ODE

q̈ + dq̇ + ω2q = 0,

where d ≥ 0 is a damping parameter, and ω > d/2 is a real-valued
frequency.

Setting q(t) = exp(λt), obtain λ2 + dλ+ ω2 = 0, so

λ =
1

2
[−d ±

√
d2 − 4ω2].

In particular, for the undamped case d = 0, the modes are exp(λt)
with λ = ±ıω , i.e., these are oscillatory, undamped modes.

Furthermore, for d ≥ 0, the modes damping is

| exp(λtn)| = exp(Re(λ)tn) = exp

(
−d

2
tn

)
.
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Large step elastodynamics simulation numerical damping scalar case

SI/BE damping

Rewrite as a 1st order system and employ BE≡SI at tn = nτ :(
qn
vn

)
=

1

1 + τd + τ2ω2

(
1 + τd τ
−τω2 1

)(
qn−1

vn−1

)
.

Next, apply this to the undamped case: set d = 0 and write the
method as (

qn
vn

)
= T

(
qn−1

vn−1

)
.

The eigenvalues of the propagator T are µ = 1
1±ıτω , so the spectral

radius is

ρ(T ) = max |µ| = 1/
√

1 + (τω)2.

Obviously, (i) ρ < 1 for any τ > 0, (ii) ρ decreases as τω increases,
and (iii) ρ→ 0 as τω →∞ – all of which are BE trademarks.
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Large step elastodynamics simulation numerical damping scalar case

SI/BE artificial damping

But ρ < 1 for d = 0 implies artificial damping!

To see how much artificial damping, equate
exp(−dBE

2 nτ) = ρn = (1 + (τω)2)−n/2. Taking ln and cleaning,
obtain

dBE =
1

τ
ln(1 + (τω)2). or

dBE

ω
=

1

τω
ln(1 + (τω)2).

So, applying BE/SI to the highly oscillatory, undamped ODE
q̈ + ω2q = 0, the solution is best related instead to the exact solution
(mode) of the ghost ODE

q̈ + dBE q̇ + ω2q = 0.
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Large step elastodynamics simulation numerical damping scalar case

BE artificial damping curve
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Large step elastodynamics simulation numerical damping scalar case

SI/BE artificial damping: Case 1

If τ = 1/ω then dBE = ω ln(2). Applying BE/SI to the highly oscillatory,
undamped ODE q̈ + ω2q = 0, the solution is best related instead to the
exact solution (mode) of the ghost ODE

q̈ + ω ln(2)q̇ + ω2q = 0.
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Large step elastodynamics simulation numerical damping scalar case

Example: ω = 20, τ = 1/ω
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Large step elastodynamics simulation numerical damping scalar case

Example: ω = 20, τ = 1/ω
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Large step elastodynamics simulation numerical damping scalar case

SI/BE artificial damping: Case 2

Really large step: if τ = 1 then dBE = ln(1 + ω2) ≈ 2 ln(ω). Applying
BE/SI to the highly oscillatory, undamped ODE q̈ + ω2q = 0, the solution
is best related instead to the exact solution (mode) of the ghost ODE

q̈ + ln(1 + ω2)q̇ + ω2q = 0.
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Large step elastodynamics simulation numerical damping scalar case

Example: ω = 200, τ = 1
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Large step elastodynamics simulation numerical damping scalar case

Example: ω = 200, τ = 1
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Large step elastodynamics simulation comparison with SI, BE and IM

Cloth after colliding with a sphere

Top – left: ERE, right: SI
Bottom – left: IM, right: BE
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Large step elastodynamics simulation comparison with SI, BE and IM

Example cont.

Energy profile of each method in the simulation with cloth collision.
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Large step elastodynamics simulation comparison with SI, BE and IM

Cloth with mixed stiffness after colliding
with a sphere

Top – left: ERE, right: SI
Bottom – left: IM, right: BE
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Large step elastodynamics simulation Generalized α method

Generalized α method

Mechanical engineers often use the Generalized α method [Chung &

Hullbert, ’93, Kobis & Arnold, ’16] rather than backward Euler.

It is a one-step Newmark-type method (discretize
v̇ = a, Ma = f(q, v), rather than v̇ = M−1f(q, v)).

It has a parameter r that can be tuned to select anywhere between
BE-like strong damping of high frequencies and no damping at all.

For any choice of 0 ≤ r ≤ 1 the method is second order in τ .

The size of nonlinear system to solve at each step is minimal.
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Large step elastodynamics simulation Generalized α method

Generalized α method detail

Rewrite ODE system Mq̈ = f(t,q, q̇) as a simple semi-explicit DAE:

q̇ = v, v̇ = a, 0 = Ma− f(t,q, v).

Set α = αm − αf . Step from tn−1 to tn:

qn = qn−1 + hvn−1 +
h2

2
((1− 2β)an−1+α + 2βan+α) ,

vn = vn−1 + h ((1− γ)an−1+α + γan+α) ,

(1− αm)Man+α + αmMan−1+α

= (1− αf )f(tn,qn, vn) + αf f(tn−1,qn−1, vn−1).

The coefficients are

αm =
2r − 1

1 + r
, αf =

r

1 + r
, β =

(1− α)2

4
, γ =

1

2
− α.

Therefore, −1 ≤ α = r−1
r+1 ≤ 0.
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Large step elastodynamics simulation Generalized α method

Generalized α artificial damping curve

Generalized α (GA) curves dGA/ω as a function of τω, for r = 0 : .25 : 1
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Large step elastodynamics simulation When we don’t want to conserve total energy

Splitting fast and slow components

The problem with generalized α with significant damping is similar to
that with BE: all modes are damped, the fast modes not being
decoupled from slow ones.

Example [Ascher & Reich, ’99]: stiff-spring pendulum.
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Large step elastodynamics simulation When we don’t want to conserve total energy

Stiff-spring pendulum with gravity

1 Stiff-spring pendulum Hamiltonian:

H(r , ϕ, pr , pϕ) =
1

2

[
p2r + r−2p2ϕ + ω2(r − r0)

2
]
+ gr sin(ϕ).

2 Corresponding ODE system:

ṙ = pr

ṗr = −ω2(r − r0) + r−3p2ϕ − g sin(ϕ)

ϕ̇ = r−2pϕ

ṗϕ = −gr cos(ϕ)
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Large step elastodynamics simulation When we don’t want to conserve total energy

Stiff-spring pendulum

ṙ = pr

ṗr = −ω2(r − r0) + r−3p2ϕ − g sin(ϕ)

ϕ̇ = r−2pϕ

ṗϕ = −gr cos(ϕ)

In polar coordinates (radius r , angle ϕ) the radius of the spring
oscillates, faster and with smaller amplitude the larger the frequency
ω, while the angle varies slowly.

But in Cartesian coordinates q = (r cosϕ,−r sinϕ) contains both fast
and slow components.

Visually, high oscillations are not seen, so want them damped away.

Can do this easily in (r , ϕ) coordinate system but not in q.
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Large step elastodynamics simulation When we don’t want to conserve total energy

IMEX of sorts

1 Visually, high oscillations are not seen, so want them damped away.

2 Thus, although the system is Hamiltonian, we don’t want to conserve
the total energy! Only the slow energy matters for visual computing.

3 For large τω, can discretize DEs for r , pr implicitly (by SI, BE, gen.
α...) and eqns for ϕ, pϕ explicitly (e.g., by RK4).

4 Only the slow energy is approximated well.

5 This works very well. But unfortunately, it’s hard to generalize :-(
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Large step elastodynamics simulation When we don’t want to conserve total energy

IMEX of sorts

1 Visually, high oscillations are not seen, so want them damped away.

2 Thus, although the system is Hamiltonian, we don’t want to conserve
the total energy! Only the slow energy matters for visual computing.

3 For large τω, can discretize DEs for r , pr implicitly (by SI, BE, gen.
α...) and eqns for ϕ, pϕ explicitly (e.g., by RK4).

4 Only the slow energy is approximated well.

5 This works very well. But unfortunately, it’s hard to generalize :-(
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Optimization Outline

Outline

Motivation

Deformation capture and modeling of soft objects

Large-step time integration of elastodynamics equations

Optimization
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Optimization Deformable body caliration

Inverse problem for deformable object

Fortunately, the (hopefully few, but nasty) parameters u, including
Young modulus and damping, are only weakly coupled to the (many,
but easy-going) parameters X.

So, apply a splitting scheme, alternately solving for X and u.

Find X by requiring equilibrium (a specialized treatment: see paper).

Optimize with respect to u – how?
Let us concentrate on this latter question.

Uri Ascher IMPA thematic program October 2017 40 / 70



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Optimization Deformable body caliration

Inverse problem for deformable object

Fortunately, the (hopefully few, but nasty) parameters u, including
Young modulus and damping, are only weakly coupled to the (many,
but easy-going) parameters X.

So, apply a splitting scheme, alternately solving for X and u.

Find X by requiring equilibrium (a specialized treatment: see paper).

Optimize with respect to u – how?
Let us concentrate on this latter question.
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Optimization Deformable body caliration

Inverse problem for deformable object

Fortunately, the (hopefully few, but nasty) parameters u, including
Young modulus and damping, are only weakly coupled to the (many,
but easy-going) parameters X.

So, apply a splitting scheme, alternately solving for X and u.

Find X by requiring equilibrium (a specialized treatment: see paper).

Optimize with respect to u – how?
Let us concentrate on this latter question.
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Unconstrained optimization Outline

Outline

Case study: soft body deformation and calibration

Unconstrained optimization

Gradient descent methods

Derivative-free (search) methods

Nonconvex problems
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Unconstrained optimization Optimization Problems

Optimization problems

Optimization problem
minimizex f (x)

x = (x1, . . . , xn): optimization variables (unknowns)

f : ℜn → ℜ: objective function

In general, there may be constraints: both equality and inequality.
But we shall assume no constraints.

Optimal solution x∗ = (x∗1 , x
∗
2 , . . . , x

∗
n ) has the smallest value of f .

Uri Ascher IMPA thematic program October 2017 42 / 70



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Unconstrained optimization Optimization Problems

Illustrative Examples

minimizex f (x)

minimizex f (x)
s.t. ℓ ≤ x ≤ u

minimizex cost of flow
st network capacity

flow conservation
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Unconstrained optimization What we concentrate on

Flavours in optimization problems

Continuous vs. discrete optimization

Constrained vs. unconstrained optimization

Global vs. local optimization

Stochastic vs. deterministic optimization

Our domain is in blue: continuous, (mainly) unconstrained and
constrained, (mainly) local, (mainly) deterministic, often but not always
convex (where local=global).
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Unconstrained optimization What we concentrate on

Solving optimization problems

General optimization problems

Algorithms are iterative: starting with an initial guess x0, obtain
sequentially iterates xk that hopefully converge to x∗.

Can be difficult to solve. Most algorithms involve some compromise.

Often not clear which methods work best (may depend on our needs
and the problem).

Ideally recognize the type/class of problem – some are relatively easier

linear least-squares f (x) = ∥Ax− b∥2 =
∑m

i=1(
∑n

j=1 aijxj − bi )
2

convex problems

Structure is often hidden (e.g., the weak coupling allowing splitting in our
case study).
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Unconstrained optimization What we concentrate on

Convex Optimization

The objective function is convex if

f (αx+ βy) ≤ αf (x) + βf (y)

for all α+ β = 1 and α, β ≥ 0.

Convexity generalizes linearity

Includes many important problem classes (in particular, linear
least-squares problems).

Important feature: a local minimizer x∗ is also a global minimizer.
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Unconstrained optimization Simple life with one variable

Minimizing a function in one variable

Many issues simplify when x = x is scalar, n = 1.
Example: find x = x∗ that minimizes

f (x) = 10 cosh(x/4)− x .

From the figure below, this function has no zeros but does appear to
have one minimizer around x = 1.6.

0 0.5 1 1.5 2 2.5 3 3.5 4
9

9.5

10

10.5

11

11.5

x

10
 c

os
h(

x/
4)

−
x
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Unconstrained optimization Simple life with one variable

Conditions for optimum and algorithm

Necessary condition for an optimum:
Suppose f ∈ C 2 and denote g(x) = f ′(x) (the “scalar gradient”).
Then a zero of g is a critical point of f , i.e., where

f ′(x∗) = 0.

To be a minimizer or a maximizer, it is necessary for x∗ to be a
critical point.

Sufficient condition for an optimum:
Denote h(x) = g ′(x) = f ′′(x) (the “scalar Hessian”). A critical point
x∗ is a minimizer if also h(x∗) > 0.

Hence, an algorithm for finding a minimizer is obtained by finding the
roots of g(x), then checking for each such root x∗ if also h(x∗) > 0.

Note: rather than finding all roots of f ′ = g first and checking for
minimum condition later, can do things more carefully and wisely, e.g.
by sticking to steps that decrease f (x).
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Unconstrained optimization Simple life with one variable

Conditions for optimum and algorithm

Necessary condition for an optimum:
Suppose f ∈ C 2 and denote g(x) = f ′(x) (the “scalar gradient”).
Then a zero of g is a critical point of f , i.e., where

f ′(x∗) = 0.

To be a minimizer or a maximizer, it is necessary for x∗ to be a
critical point.

Sufficient condition for an optimum:
Denote h(x) = g ′(x) = f ′′(x) (the “scalar Hessian”). A critical point
x∗ is a minimizer if also h(x∗) > 0.

Hence, an algorithm for finding a minimizer is obtained by finding the
roots of g(x), then checking for each such root x∗ if also h(x∗) > 0.

Note: rather than finding all roots of f ′ = g first and checking for
minimum condition later, can do things more carefully and wisely, e.g.
by sticking to steps that decrease f (x).
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Unconstrained optimization Simple life with one variable

Conditions for optimum and algorithm

Necessary condition for an optimum:
Suppose f ∈ C 2 and denote g(x) = f ′(x) (the “scalar gradient”).
Then a zero of g is a critical point of f , i.e., where

f ′(x∗) = 0.

To be a minimizer or a maximizer, it is necessary for x∗ to be a
critical point.

Sufficient condition for an optimum:
Denote h(x) = g ′(x) = f ′′(x) (the “scalar Hessian”). A critical point
x∗ is a minimizer if also h(x∗) > 0.

Hence, an algorithm for finding a minimizer is obtained by finding the
roots of g(x), then checking for each such root x∗ if also h(x∗) > 0.

Note: rather than finding all roots of f ′ = g first and checking for
minimum condition later, can do things more carefully and wisely, e.g.
by sticking to steps that decrease f (x).
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Unconstrained optimization Simple life with one variable

Conditions for optimum and algorithm

Necessary condition for an optimum:
Suppose f ∈ C 2 and denote g(x) = f ′(x) (the “scalar gradient”).
Then a zero of g is a critical point of f , i.e., where

f ′(x∗) = 0.

To be a minimizer or a maximizer, it is necessary for x∗ to be a
critical point.

Sufficient condition for an optimum:
Denote h(x) = g ′(x) = f ′′(x) (the “scalar Hessian”). A critical point
x∗ is a minimizer if also h(x∗) > 0.

Hence, an algorithm for finding a minimizer is obtained by finding the
roots of g(x), then checking for each such root x∗ if also h(x∗) > 0.

Note: rather than finding all roots of f ′ = g first and checking for
minimum condition later, can do things more carefully and wisely, e.g.
by sticking to steps that decrease f (x).
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Unconstrained optimization Simple life with one variable

Example

To find a minimizer for

f (x) = 10 cosh(x/4)− x ,

1 Calculate gradient

g(x) = f ′(x) = 2.5 sinh(x/4)− 1

2 Find root of g(x) = 0 using any standard method, obtaining

x∗ ≈ 1.56014.

3 Second derivative

h(x) = 2.5/4 cosh(x/4) > 0 for all x ,

so x∗ is a minimizer.
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Unconstrained optimization The multivariate case

Multivariate Taylor expansion

Consider the problem
min
x∈Rn

f (x)

Assume that f (x) is smooth enough.
Define gradient vector g(x) = ∇f (x) and Hessian matrix
H(x) = ∇2f (x) by

∇f (x) =


∂f
∂x1
∂f
∂x2
...
∂f
∂xn

 , ∇2f (x) =


∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n

 .

Taylor expansion near a point x ∈ Rn:

f (x+ p) = f (x) +∇f (x)Tp+
1

2
pT∇2f (x)p+O(∥p∥3).
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Unconstrained optimization The multivariate case

Example

Given the function

f (x1, x2) = x41 − 2x31x
2
2 + 4x1x

3
2 ,

the gradient at a point x is

g(x) = ∇f (x) =
(
4x31 − 6x21x

2
2 + 4x32

−4x31x2 + 12x1x
2
2

)
;

the Hessian matrix is

H(x) = ∇2f (x) =

(
12x21 − 12x1x

2
2 −12x21x2 + 12x22

−12x21x2 + 12x22 −4x31 + 24x1x2

)
.
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Unconstrained optimization The multivariate case

Critical points

Taylor expansion near a suspected minimum point x∗: in any direction
p with magnitude ∥p∥ small enough, must have f (x∗ + p) ≥ f (x∗).

Hence
∇f (x∗) = 0.

This defines a critical point.

Similar condition also for a maximum or a saddle point.
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Unconstrained optimization The multivariate case

Conditions for unconstrained minimum

min
x∈Rn

f (x).

Assume that f (x) is smooth enough.

A necessary condition for having a local minimum at x∗ is that x∗ be
a critical point

g(x∗) = ∇f (x∗) = 0,

and that the symmetric Hessian matrix H(x∗) = ∇2f (x∗) be positive
semi-definite.

A sufficient condition is that also H(x∗) be positive definite.

NB: a symmetric matrix H is positive definite if for any vector
y ̸= 0, we have yTHy > 0.
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Gradient descent methods Outline

Outline

Case study: soft body deformation and calibration

Unconstrained optimization

Gradient descent methods

Derivative-free (search) methods

Nonconvex problems
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Gradient descent methods gradient-based methods

Descent direction

At point x the vector p is a descent direction if

pTg(x) =
n∑

i=1

pi
∂f

∂xi
< 0.

A small step in a descent direction gives reduction in the objective
function:

f (x+ αp) < f (x)

for scalar step size 0 < α≪ 1.

Therefore, we can construct an iterative method that keeps reducing
f until convergence by using descent directions and controlled step
sizes.

Starting from an initial guess x0, generate iterates
x1, x2, . . . , xk , xk+1, . . . so that f (xk+1) < f (xk).
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Gradient descent methods gradient-based methods

Gradient-based methods

Consider

xk+1 = xk + αkpk , where

pk = −B−1
k g(xk).

If Bk is symmetric positive definite then pk is a descent direction. Note
αk > 0.

1 Gradient descent: Bk = I . How to choose step size αk?

2 Newton: Bk = ∇2f (xk). Set αk = 1 or damped Newton: search for
αk ≤ 1 guaranteeing descent.

3 Secant, or quasi-Newton (e.g., BFGS).

4 Gauss-Newton for nonlinear least squares data fitting.

5 Stochastic gradient descent : the most popular method in machine
learning.
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Gradient descent methods gradient-based methods

Nonlinear least squares

min
x

f (x) =
1

2
∥ϕ(x)− b∥2,

where b is data (m values) and ϕ a nonlinear function of n arguments x.
Jacobian

A(x) =



∂ϕ1
∂x1

∂ϕ1
∂x2

. . . ∂ϕ1
∂xn

∂ϕ2
∂x1

∂ϕ2
∂x2

. . . ∂ϕ2
∂xn

...
...

. . .
...

∂ϕm−1

∂x1

∂ϕm−1

∂x2
. . . ∂ϕm−1

∂xn
∂ϕm

∂x1
∂ϕm

∂x2
. . . ∂ϕm

∂xn


Then

g(x) = ∇f (x) = A(x)T (ϕ(x)− b).
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Gradient descent methods gradient-based methods

Gauss-Newton

Define Bk = A(xk)
TA(xk).

So the iteration is defined by[
A(xk)

TA(xk)
]
pk = −∇f (xk) = A(xk)

T (b− ϕ(xk))

xk+1 = xk + pk .

These are normal equations for

min
p

1

2
∥A(xk)p− (b− ϕ(xk))∥2,

so at each iteration solve a linear least squares problem.
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Gradient descent methods gradient-based methods

(Weak) line search

Suppose that pk is a descent direction at xk . Then for αk > 0 small
enough, f (xk + αkpk) < f (xk).

Here is a simple algorithm (Armijo) for determining step size αk ,
given descent direction pk :
Starting from α = αmax , repeat until sufficient decrease in f is
obtained,

α← α/2.

The result is αk = α, and set xk+1 = xk + αkpk .

For Gauss-Newton, set αmax = 1.

For gradient descent, Bk = I , there is no obvious default value αmax .
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Gradient descent methods gradient-based methods

(Weak) line search
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Here is a simple algorithm (Armijo) for determining step size αk ,
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Gradient descent methods gradient-based methods

Gradient descent vs Gauss-Newton

Gauss-Newton is often faster than gradient descent, significantly so
when the condition number is large ∥ATA∥∥(ATA)−1∥ ≫ 1.

The cost of carrying out the Gauss-Newton step can be significantly
higher than that of gradient descent.

However, line search if needed can be more costly for gradient
descent.

For very large problems, gradient descent may be favored also
because of fast storage considerations. Such is the case for many
problems in machine learning (ML), where fortunately the condition
number is typically not very large either.
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Gradient descent methods gradient-based methods

Calculating the gradient

Suppose that the gradient g(x) = ∇f (x) exists, but is hard to derive
analytically (for instance, our case study!).

It is possible to consider methods that automatically attempt to
approximate the gradient from values of f .

1 Numerical differencing: for some 0 < h≪ 1,

∂f

∂xj
(y) ≈ f (y1, . . . , yj−1, yj + h, yj+1, . . . , yn)− f (y)

h
, j = 1, 2, . . . , n.

Conceptually simple, and can be very effective for mid-range n values.
However, the cost is n + 1 function evaluations per gradient, which can
be prohibitive for large n.
Moreover, noise is amplified by a factor of O(h−1): so avoid using this
directly on noisy functions f .

2 More special-purpose possibility: automatic differentiation.

In Matlab: fminunc has the option of not requiring derivatives.
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Search methods Outline

Outline

Case study: soft body deformation and calibration

Unconstrained optimization

Gradient descent methods

Derivative-free (search) methods

Nonconvex problems
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Search methods Derivative-free optimization

Derivative-free methods

1 Questions:

What if the function f (x) is continuous but not differentiable? Or we
don’t have the gradient?
Can’t we just sample f at some locations methodically and descend in
this way towards a local minimum?
Could this avoid poor conditioning and skip local minima?

2 Answers:

Yes, indeed, such search methods exist! However, note that in general:
Convergence can be very slow unless the dimension n is small.
(In fact, these methods are good only for small problems.)
Existing theory for such methods is not as complete as before.
In the ML context stochastic gradient methods are more popular.
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Search methods Derivative-free optimization

The Nelder-Mead algorithm: overview

The convex hull of a set of points is a simplex.

The Nelder-Mead algorithm (1965) keeps track of n+ 1 points (vectors) in
ℜn. At each iteration, we seek to replace the point with worst value of f
with another point that has a better f -value, obtained by reflecting,
expanding or contracting the simplex along the line between the worst
vertex and the centroid of the other vertices. If no better point is found in
this way then shrink the simplex by moving all points toward the best
current one.
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Nonconvex problems Outline

Outline

Case study: soft body deformation and calibration

Unconstrained optimization

Gradient descent methods

Derivative-free (search) methods

Nonconvex problems
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Nonconvex problems Solution approaches

What if the problem is non-convex?

All our gradient-based algorithms are local: starting at point x0 in
some locally convex basin, they are likely to converge to the
corresponding local minimum.

In such a situation, gradient-based methods may no longer be always
superior.

Ad hoc approach: choose many initial guesses randomly and solve for
each in parallel.
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Nonconvex problems Solution approaches

Does this happen in practice?

In our case study (deformable body calibration) the optimal Young moduli
can be in a narrow valley.
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Nonconvex problems Solution approaches

Another example

Data q̂t synthesized from function with 0 shift with added 5% noise:

ℓ2-distance of data from same function qt with shift:
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Nonconvex problems Solution approaches

Deformable body calibration

Indeed in [Wang et al. ’15] we used a derivative-free method.

Therefore we were constrained to consider objects that are not far
from homogeneous (because of problem size).

For simple objects can change tack completely, and consider direct
inversion: inverse harmonics [Mandelstahm & Taylor, 1997; Chen, Levin,

Matusik & Kaufman, 2017].

If we are able to modify the objective function responsibly (e.g., by
relaxed optimal mass transport (OMT)) to enlarge the convex region
basins, then a switch to gradient-based methods will naturally follow
[Froese, Engquist, Haber]. (Work in progress.)

Lots of recent work on “convexification” – exploit special structure in
given problem.
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Conclusions Conclusions

Conclusions

Soft object calibration and simulation pose interesting, challenging
computational problems

Physics-based algorithms can occasionally produce impressive visual
results at affordable cost, allowing interactive response rates.

Care must be taken, though, to avoid extending conclusion beyond
reason.

For the SI/BE and generalized α methods, our simple 1D analysis
generally agrees with observed physics-based simulations.
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