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Outline

.. Four lectures

Calibration and simulation of deformable objects

Data manipulation and completion

Estimating the trace of a large implicit matrix and applications

Numerical analysis in visual computing: not too little, not too much
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Motivation Outline

.. Outline

Motivation

Completing scarce (sparse) data

Uncertainty in data locations

Forced to cut corners

Randomized algorithms for many data sets

Conclusions
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Motivation Doing what you’re not supposed to do

.. Here is the T-shirt
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Motivation Doing what you’re not supposed to do

.. Data completion and manipulation

The practice of manipulating given observed data for solving inverse
problems is known to have its perils: loss of statistical relevance,
danger of calibrating a model to handle our own generated errors, etc.

And yet it seems to be everywhere in practice!
...1 “Completing scarce data” by some interpolation/extrapolation or other
approximation

...2 Preferring to see data given at regular mesh nodes, or otherwise having
a hidden uncertainty in the location of data values

...3 “Completing data” to obtain a more efficient algorithm

...4 “Completing data” to obtain a “more solid theory”

...5 Manipulating data because we don’t know how to solve the problem
otherwise.

When is it OK to do this?!

Attempt to get more insight by considering case studies.
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Motivation Doing what you’re not supposed to do

.. Our case studies

...1 Inverting Maxwell’s equations and DC resistivity in exploration
geophysics
[Haber, A. & Oldenburg, 2004]

...2 Recovering local volatility surface in financial mathematics
[Albani, A., Yang & Zubelli, 2017; A., A. & Z., 2017]

...3 Denoising of surface triangle mesh
[Huang & A., 2008]

...4 Calibrating and simulating soft bodies in computer graphics
[Wang, Wu, Yin, A., Liu & Huang, 2015]

...5 Obtaining union of observation locations for many data sets
[Roosta-Khorasani, van den Doel & A., 2014]
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Motivation Inverse problem

.. Inverse problem setting

Given observed data d ∈ Rl and a forward operator f(m) which
provides predicted data for each instance of distributed parameter
function m, find m (discretized and reshaped into m) such that the
predicted and observed data agree to within noise:

d = f(m) + η.

Consider a case where a PDE must be solved to evaluate the forward
operator, i.e., f(m) = Pu = PG (m)q, where G is a discrete Green’s
function.
Iterative algorithm on m to reduce objective. Assuming
η ∼ N (0, σ2I ), the maximum likelihood (ML) data misfit function is

ϕ(m) = ∥f(m)− d∥22
The discrepancy principle yields the stopping criterion

ϕ(m) ≤ ρ, where ρ = σ2l

. Uri Ascher IMPA thematic program October 2017 7 / 56
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Scarce data Outline

.. Outline

Motivation

Completing scarce (sparse) data

Uncertainty in data locations

Forced to cut corners

Randomized algorithms for many data sets

Conclusions
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Scarce data EM data inversion in geophysics

..

Example (CS1): scarce data in
electromagnetic data inversion

G is Green’s function for Maxwell’s equations in time or frequency domain,
m is conductivity or resistivity. [Haber, A. & Oldenburg, 2004]
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Scarce data EM data inversion in geophysics

.. EM data inversion in geophysics

Use Tikhonov-type regularization: a prior penalizing lack of smoothness in
surface function m through gradient.
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Top: misfit. Bottom: recovered m.
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Scarce data Local volatility surface in finance

.. Dupire’s equation (CS2)

[Dupire, 1994]: replace the Black-Scholes equation for option price by a
parabolic PDE of the form

∂C

∂τ
=

1

2
σ2(τ,K )K 2 ∂

2C

∂K 2
− bK

∂C

∂K
, τ > 0,K ≥ 0,

s.t. initial and boundary conditions (for calls)

C (τ = 0,K ) = (S0 − K )+,

lim
K→∞

C (τ,K ) = 0, lim
K→0

C (τ,K ) = S0.

Here τ is time to maturity, K is strike price, C = C (τ,K ) is value of the
European call option with expiration date T = τ , and σ(τ,K ) is volatility.
Can write all this in operator form as

L̃(σ)C = q̃(S0),

with L̃ a linear differential operator for a given σ.
Assume first that the stock price S0 is a given parameter.
Calibrating the model: solve inverse problem for σ(τ,K ) given C -data.
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Scarce data Local volatility surface in finance

.. Changing variables: log moneyness

To simplify and make problem dimensionless, change K to y = log(K/S0)
(so −∞ < y < ∞), then u(τ, y) = C (τ,S0 exp(y))/S0 and
m(τ, y) = 1

2σ(τ,K (y))2. Obtain

−∂u

∂τ
+m

(
∂2u

∂y2
− ∂u

∂y

)
+ b

∂u

∂y
= 0, τ > 0, y ∈ ℜ,

s.t. side conditions

u(τ = 0, y) = (1− exp(y))+,

lim
y→∞

u(τ, y) = 0, lim
y→−∞

u(τ, y) = 1.

Can write this as L(m)u = q.
Discretize over a mesh with step sizes ∆τ and ∆y ; denote the
corresponding discretization as

Lh(m)uh = qh.
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Scarce data Local volatility surface in finance

.. Example: locations of (real) data

Locations of u-data values for the PBR data set.
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Scarce data Local volatility surface in finance

.. Example: locations of (real) data

Locations of u-data values for the SPX data set.
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Scarce data Local volatility surface in finance

.. Interpolating/extrapolating the data

Several researchers have applied interpolation/extrapolation to this
type of data, followed by assimilation of the resulting data set with
the discretized Dupire PDE problem.

Use [Kahale, 2005] for this purpose. This algorithm applies data
completion with a “financial prior”, insisting that the resulting data
surface reproduce the “smile” effect.

An obvious objection, however, is that the resulting data surface does
not satisfy the discretized differential problem for any m(τ, y), and
vice versa. The assimilation of these two pieces of information may be
more difficult.

Compare this to not modifying the given data, using for both cases a
Tikhonov-type regularization as well as EnKF.
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Scarce data Local volatility surface in finance
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Scarce data Local volatility surface in finance

.. Regularized inverse problem

Maximum likelihood for simplest case of white noise:

ϕ(mh, uh) = ∥Puh − d∥2 = ∥PLh(mh)
−1qh − d∥2

where matrix P projects to data locations: P has many more columns
than rows for original data, whereas P = I for completed data.
Regularize the problem: minimize the maximum a posteriori (MAP)
merit function

ϕR(mh, uh) = ϕ(mh, uh) + R(mh).

Our Tikhonov-like regularization operator is (a0 a known constant)

R(mh) = α1

∑
i

∑
j

(mi ,j − a0)
2

+
α2

∆τ2

∑
j

Mτ∑
i=1

(mi ,j −mi−1,j)
2 +

α3

∆y2

∑
i

My∑
j=1

(mi ,j −mi ,j−1)
2.
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Scarce data Local volatility surface in finance

.. Results for SPX data

Set α1 > 0 and compare working with the given sparse data vs using data
completion by the Kahale algorithm.
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Scarce data Local volatility surface in finance

.. Conclusion for case study CS2

These results clearly show that the data completion approach has not
delivered.

Additional tests for Henry Hub and WTI prices, using bilinear
interpolation for the data completion and different α-weights in the
Tikhonov-type priors, also clearly indicate that it is better to avoid
the extensive data completion required here: the market implied
smile, which has an important relationship with market risk, is better
fitted upon using just the original data.

Both EnKF algorithms we tried [Iglesias, Law & Stuart, 2013; Calvetti,

Ernst & Somersalo 2014] were trivially (and significantly) improved by
adding additional regularization using a0 and first derivatives.

After this improvement the EnKF algorithms were comparable to but
not better than the Tikhonov-type regularization. Big plus: no ad hoc
parameter search was required.
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Scarce data Local volatility surface in finance
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Scarce data Local volatility surface in finance
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Uncertainty in data locations Outline

.. Outline

Motivation

Completing scarce (sparse) data

Uncertainty in data locations

Forced to cut corners

Randomized algorithms for many data sets

Conclusions

Uri Ascher IMPA thematic program October 2017 19 / 56



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Uncertainty in data locations Different forms of location uncertainty

.. Examples

The notion that a (potentially noisy) data value di is given at a known,
deterministic location xi is often violated in practice. Here are some
examples:

Surface triangle mesh denoising
[Huang & A., 2008]

Minimal prospectivity mapping
[Granek & Haber, 2014]

(not considered further)

Local volatility surface with uncertainty in price S0
[Albani, A., Yang & Zubelli, 2015]
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Uncertainty in data locations triangle mesh vs image denoising

.. Typical image denoising (CS3)

Left: noisy image: noisy data at precisely prescribed pixel locations.
Right: exact (ideally denoised?) image.
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Uncertainty in data locations triangle mesh vs image denoising

.. Surface triangle mesh denoising

Left: noisy triangle mesh: the data are nodal values (xi , yi , zi ). No
distinction between data value and location! Uncertainty in higher
dimension.
Right: Our denoised triangle mesh.
[We had set out to generalize multiscale techniques for image denoising
and ended up devising a completely different multiscale method for the
surface mesh.]
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.. Surface triangle mesh denoising
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and ended up devising a completely different multiscale method for the
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Uncertainty in data locations triangle mesh vs image denoising

.. 3D surface triangle mesh
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Uncertainty in data locations triangle mesh vs image denoising

.. Scanned noisy model (25K verts)
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Uncertainty in data locations triangle mesh vs image denoising

.. Smoothed by MSAL
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Uncertainty in data locations Volatility surface with uncertain stock price

.. Uncertainty in S0 (CS2)

Recall Dupire’s equation

∂C

∂τ
=

1

2
σ2(τ,K )K 2 ∂

2C

∂K 2
− bK

∂C

∂K
, τ > 0,K ≥ 0,

C (τ = 0,K ) = (S0 − K )+,

lim
K→∞

C (τ,K ) = 0, lim
K→0

C (τ,K ) = S0.

But now, stock price S0 has (well-quantified) uncertainty, as it is
typically some average of daily prices.

⇒ Add a term α5(S0 − Ŝ0)
2 to regularization prior R = R(mh, S0),

where S0 is now random variable with measured mean (say) Ŝ0.
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Uncertainty in data locations Volatility surface with uncertain stock price

.. Uncertainty in S0 cont.

Furthermore, recall that upon changing variables to log moneyness
y = log(K/S0) (also u(τ, y) = C (τ,S0 exp(y))/S0,
m(τ, y) = 1

2σ(τ,K (y))2), obtain the nicer PDE

−∂u

∂τ
+m

(
∂2u

∂y2
− ∂u

∂y

)
+ b

∂u

∂y
= 0, τ > 0, y ∈ ℜ.

Now the uncertainty in S0 has moved into the independent variable y !
⇒ In addition to adding a term α5(S0 − Ŝ0)

2 to R = R(mh, S0),
update also

ϕ(mh, S0) = α0

l∑
i=1

(
(P(S0)Lh(mh)

−1qh(S0))i − di
)2

+ α4

My∑
j=1

(
(1− exp(yj(S0)))

+ − (1− exp(yj(Ŝ0)))
+
)2

.

(In practice set α5 = 0.)
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Uncertainty in data locations Volatility surface with uncertain stock price

.. Uncertainty in S0 cont.

Splitting method: Alternately freeze S0 and mh while solving for the
other one.

This converges fast because of the weak coupling, even when using
the variable y .

In preliminary experiments we see roughly a 1− 2% change in
adjusted price.
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Forced to cut corners Outline

.. Outline

Motivation

Completing scarce (sparse) data

Uncertainty in data locations

Forced to cut corners?

Randomized algorithms for many data sets

Conclusions
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Forced to cut corners Data completion to the rescue

.. Examples

In some cases, it has been claimed that data completion/manipulation
allows obtaining better results. Here are some examples:

Matrix and tensor completion for seismic applications
[da Silva & Herrmann, 2015; da Silva PhD thesis, 2017]

Motion calibration and simulation of a soft body
[Wang, Wu, Yin, A., Liu & Huang, 2015]
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Forced to cut corners Data completion to the rescue

.. Example: full waveform inversion

Herrmann: use data completion of velocity field in order to solve this
problem.
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Forced to cut corners Calibrating a soft 3D object

.. Motion capture and calibration (CS4)

Physically-based deformation modelling in Computer Graphics

Want to simulate and animate motion of a soft body, such as a plant
under wind or water pressure, cloth, steak, face, etc.

Can model by elastodynamics and porous media, but need to calibrate
the model.

Do that calibration by fitting example data obtained by sensor
hardware: motion capturing and tracking.

[Wang, Wu, Yin, A., Liu & Huang; siggraph ’15]
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Forced to cut corners Calibrating a soft 3D object

.. Capturing data

Left: three Kinect sensors are placed around the object;
Right: the deformation point cloud sequence is captured at 30Hz .

Uri Ascher IMPA thematic program October 2017 33 / 56



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Forced to cut corners Calibrating a soft 3D object

.. Capturing data cont.

Left: a (high resolution) surface mesh S with 15,368 vertices is used as a
template to track captured point clouds;
Right: its (low resolution) corresponding volumetric mesh T with 9,594
nodes is used for spatial co-rotated linear FEM simulations.
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Forced to cut corners Calibrating a soft 3D object

.. Elastic deformation

Denote reference shape by X and dynamic, deformed positions at a
time instant t by x = x(t).
Element-wise stress-strain relationship using Hooke’s law and
Cauchy’s linear strain tensor is

σ = Eϵ = EBe(xe − Xe),

where the 6× 12 matrix Be = Be(Xe) depends on Xe nonlinearly.

For isotropic materials the 6× 6 matrix E only depends on Young’s
modulus E and Poisson’s ratio ν.

Denoting the per-element rotation matrix obtained from polar
decomposition by Re = Re(xe(t),Xe), the element-wise elastic forces
using the co-rotated linear approximation are

fe(E , ν,Xe, xe(t)) = ReKe(R
T
e xe(t)− Xe),

Ke = VeB
T
e EBe,

Ke is 12× 12 element stiffness matrix and Ve is element volume.
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Forced to cut corners Calibrating a soft 3D object

.. Equations of motion

Assemble force contributions from all FEM elements

Summon Newton’s 2nd law: at time t

Mẍ+Dẋ+ K̂x = (RK)X+ fext, K̂ = RKRT.

Stiffness matrix K̂ is sparse and is assembled from element
contributions. Mass matrix M is lumped.

Use Rayleigh damping: D = αM+ βK̂.

Model calibration parameters in simplest case are

p = (E , ν, α, β), so m = (p,X).

Often have more than one control point, for each of which there is a
Young modulus.
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Forced to cut corners Calibrating a soft 3D object

.. Motion tracking and inverse problem

Motion tracking: physically-based probabilistic tracking: for given p
and X, find captured trajectory x = x̂t .

This tracking problem involves an inference (EM) algorithm.

Inverse problem: deformation parameter estimation:

min
p,X

∑
t

∥xt − x̂t∥2.
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Forced to cut corners Calibrating a soft 3D object

.. Data manipulation to the rescue

Employ a splitting method between p and X. Fortunately this works
very well because of weak coupling between these unknown groups.

Use Nelder-Mead for p as there are many local minima. However, this
is good only for a few unknowns.

Many more nontrivial details are described in the paper.

Nice looking results are obtained! see the videos and a separate talk.

However, the calibration (parameter estimation) part of the process
uses manufactured data.

Attempts to estimate the parameters directly from the point
cloud data have not worked out well
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Forced to cut corners Calibrating a soft 3D object

.. Data manipulation to the rescue

Employ a splitting method between p and X. Fortunately this works
very well because of weak coupling between these unknown groups.

Use Nelder-Mead for p as there are many local minima. However, this
is good only for a few unknowns.

Many more nontrivial details are described in the paper.

Nice looking results are obtained! see the videos and a separate talk.

However, the calibration (parameter estimation) part of the process
uses manufactured data.

Attempts to estimate the parameters directly from the point
cloud data have not worked out well
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Same P for many data sets Outline

.. Outline

Motivation

Completing scarce (sparse) data

Uncertainty in data locations

Forced to cut corners

Randomized algorithms for many data sets

Conclusions
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Same P for many data sets Randomized algorithms

.. Inverse problem with s data sets (CS5)

After discretization and for our problems of interest:

di = fi (m) + ηi , i = 1, 2, . . . , s

fi (m) = Pui = PG (m)qi

Calculating “G (m)qi” for each i is costly!

di ∈ Rl is the measurement obtained in the i th experiment

fi is the known forward operator for the i th experiment

m ∈ Rlm is the sought-after model

ηi is the noise incurred in the i th experiment

s is the total number of experiments

ui ∈ Rlu is the ith field

qi ∈ Rlu is the ith source

G−1 is a square matrix discretizing the PDE with the BC

P = Pi is the projection matrix for the i th experiment
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Same P for many data sets Randomized algorithms

.. Application: DC resistivity

PDE with multiple sources

∇ · (µ(x)∇ui ) = qi , i = 1, . . . , s,

∂ui
∂ν

|∂Ω = 0.

Conductivity µ(x) is expressed as a point-wise function of m(x) (e.g.,
use tanh to incorporate known bounds on µ).

The operator G (m) is the inverse of the above PDE discretized on a
staggered grid.

Use different selections of sources qi , yielding corresponding fields ui .

Data is measured only on part of the domain’s boundary.

Use any prior we may have for this very difficult problem!
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Same P for many data sets Randomized algorithms

.. DC resistivity experiment setup

Domain Ω is the unit square. Sources are of the form

qi (x) = δ(x− xi1)− δ(x− xi2)

with x1 positive unit point source on west boundary, x2 negative unit
point source on east boundary. Vary p boundary wall locations to get
s = p2 data sets.

Receivers are all grid points on north and south walls. No sources or
receivers at corners.

Uniform 64× 64 mesh

For bounds set µmax = 1.2maxµ(x), µmin = 1.2−1minµ(x)

PCG inner iteration limit r = 20; cgtol = 1.e-3.
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Same P for many data sets Randomized algorithms

.. Example: µI = .1, µII = 1, µIII = .01, noise 2%

(a) True model (b) s=3,969 (c) s=49

Thus, we want s larger for better reconstruction quality.

But the cost of solving the problem grows very fast! (at least linearly
with s). Need to find more efficient approximations for evaluating
misfit function ϕ(m).

Uri Ascher IMPA thematic program October 2017 43 / 56



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Same P for many data sets Randomized algorithms

.. Example: µI = .1, µII = 1, µIII = .01, noise 2%

(d) True model (e) s=3,969 (f) s=49

Thus, we want s larger for better reconstruction quality.

But the cost of solving the problem grows very fast! (at least linearly
with s). Need to find more efficient approximations for evaluating
misfit function ϕ(m).
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Same P for many data sets Randomized algorithms

.. Monte Carlo to approximate the misfit trace

Let B(m) = F (m)− D ∈ Rl×s . In kth iteration, m = mk .

Then A = BTB is implicit symmetric positive semi-definite (SPSD);
effectively, can only carry out matrix-vector products A ∗ v with this
s × s matrix.

ϕ(m) = ∥B(m)∥2F = tr(BTB) = E(wTAw).

Approximating expectation ⇔ Approximating the trace ϕ(m) = tr(A)
Monte-Carlo approximation

tr(A) ≈ 1

sk

sk∑
j=1

wT
j Awj =

1

sk

sk∑
j=1

∥Bwj∥22 .

Note we can obtain exact trace using sk = s samples with wj a scaled
jth column of identity; but we want sk ≪ s.
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Same P for many data sets Randomized algorithms

..

Using stabilized Gauss-Newton with total
variation (TV) added

Method Vanilla (3,969) Gaussian (3,969) Vanilla (49)

Work 476,280 4,618 5,978

(g) True model (h) Gaussian, s=3,969 (i) Vanilla, s=49

BUT what if P = Pi varies with i , i.e., data for different experiments is
not given at same locations?
Can no longer write

∑s
i=1 wiPG (m)qi =

∑s
i=1 PG (m)(wiqi ), and the

magic of the randomized algorithm is gone.
Uri Ascher IMPA thematic program October 2017 45 / 56
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Same P for many data sets Randomized algorithms

..

Using stabilized Gauss-Newton with total
variation (TV) added

Method Vanilla (3,969) Gaussian (3,969) Vanilla (49)

Work 476,280 4,618 5,978

(j) True model (k) Gaussian, s=3,969 (l) Vanilla, s=49

BUT what if P = Pi varies with i , i.e., data for different experiments is
not given at same locations?
Can no longer write

∑s
i=1 wiPG (m)qi =

∑s
i=1 PG (m)(wiqi ), and the

magic of the randomized algorithm is gone.
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.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Same P for many data sets Data completion

.. Data approximation methods

Let receivers of ith data set be in Γi ⊂ ∂Ω, i = 1, 2, . . . , s. Want to
extend data to the union Γ =

∪
Γi ⊆ ∂Ω.

...1 DCT, wavelets, curvelets for each i . Advantage: leverage the recent
advances in compressive sensing and sparse ℓ1 methods.

...2 Piecewise linear interpolation for each vi . Advantage: very simple.

...3 L2G: data completion function vi ∈ H1(Γ) solves discretization of

min
v

∥v − di∥2L2(Γi ) + β ∥∇Sv∥2L2(Γ) .

...4 Data completion function vi ∈ H2(Γ) solves discretization of

min
v

∥v − di∥2L2(Γi ) + β ∥∆Sv∥2L2(Γ) .

Which method to use?
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Same P for many data sets Data completion

.. Choosing data approximation method

Use Mathematics, not Politics, to select method: this approach can
work in practice.

Concentrate on EIT / DC resistivity with piecewise smooth
conductivity µ(x).

...1 If µ’s discontinuities are all away from boundary, then u ∈ H2(Γ).
So, use regularization with Laplacian (Option 4).

...2 If µ has discontinuities which extend to boundary, then u ∈ H1(Γ).
So, use L2G (Option 3).

See [ Roosta, Doel & A., 2014] for theorems justifying the above.
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Same P for many data sets Data completion

.. Choosing data approximation method

Experiments with 50% data completion and 5% noise:

Left: Laplacian for u ∈ H2(Γ). Right: L2G for u ∈ H1(Γ)
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Same P for many data sets Data completion

.. µI = .1, µII = 1, noise 3%, s = 961, comp. 20%

Compare using Gaussian distribution with data completion vs random
subset which does not require data completion.

Method Random Subset Data Completion

Work 3,367 1,597

Left: true. Center: RS. Right: DC
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Same P for many data sets Data completion

.. µI = .1, µII = 1, noise 3%, s = 961, comp. 20%

Compare using Gaussian distribution with data completion vs random
subset which does not require data completion.

Method Random Subset Data Completion

Work 6,302 2,769

Left: true. Center: RS. Right: DC
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Same P for many data sets Data completion

.. µI = 1, µII = .1, noise 5%, s = 961, comp. 50%

Compare using Gaussian distribution with data completion vs random
subset which does not require data completion.

Method Random Subset Data Completion

Work 5,139 2,320

Left: true. Center: RS. Right: DC
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Same P for many data sets Data completion

.. µI = 1, µII = .1, noise 5%, s = 961, comp. 50%

Compare using Gaussian distribution with data completion vs random
subset which does not require data completion.

Method Random Subset Data Completion

Work 5,025 1,818

Left: true. Center: RS. Right: DC
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Same P for many data sets Data completion

.. Summary and moreover

In the accompanying paper there are also 3D results, similar to the
ones for the case with the same receivers.

Both variants with and without level set method were tried.

The Data Completion method was always faster than Random Subset
by a factor of at least 2 and up to 4.

Data completion of up to ≈ 50% works fine. But reconstructions
deteriorate upon completing scarcer data!
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Conclusions Conclusions

.. Conclusions

Data completion and other statistically unholy manipulations such as
ignoring location uncertainty are not an ideal undertaking from a
theoretical point of view.

But in practical situations it is often quietly done by
mathematicians, computer scientists and engineers alike.

We have seen instances where (more massive) such practices should
be avoided.

We have seen instances where such practices can be tolerated,
typically when other uncertainties dominate.

We have seen instances where such practices seem essential for
obtaining plausible results, and where better algorithms are further
sought.

The larger the proportion of missing data, the harder it is to produce
an adequate completed set.
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Conclusions Conclusions

.. Bayes made me do it
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