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Outline

Four lectures

Calibration and simulation of deformable objects

Data manipulation and completion

Estimating the trace of a large implicit matrix and applications

Numerical analysis in visual computing: not too little, not too much

Uri Ascher IMPA thematic program October 2017 2 / 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Motivation Randomized algorithms

References

van den Doel & A., Adaptive and stochastic algorithms for EIT and
DC resistivity problems with piecewise constant solutions and many
measurements, SIAM J. SISC, 2012.

Roosta-Khorasani, van den Doel & A., Stochastic algorithms for
inverse problems involving PDEs and many measurements, SIAM J.
SISC, 2014.

Roosta-Khorasani & A., Improved bounds on sample size for implicit
matrix trace estimators. J. FOCM, 2015.
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Implicit matrix trace estimation Trace estimators

Estimating matrix trace: choose n

Let A be an s × s symmetric positive semi-definite (SPSD) matrix.

Assume that A is not available and is only given implicitly: effectively,
can only carry out matrix-vector products A ∗ v with this matrix.

Goal: estimate the trace of A, denoted tr(A), effectively.

Let w be drawn from a probability distribution satisfying
E(wwT ) = I . Then

tr(A) = tr(BTB) = ∥B∥2F = E((Bw)T (Bw)) = E(wTAw).

Approximating expectation ⇔ Approximating the trace tr(A)
Monte-Carlo approximation

tr(A) ≈ 1

n

n∑
j=1

wT
j Awj .

Note we can obtain exact trace using n = s samples with wj a scaled
jth column of identity; but we want n≪ s.
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Implicit matrix trace estimation A randomized algorithm

Which probability distribution?

Can choose from several:

Gaussian: normal distribution

Hutchinson: Rademacher distribution – for w = (w1, . . . ,ws)
T ,

Pr(wj = 1) = Pr(wj = −1) = 1/2

Random subset (RS) of scaled columns of the identity matrix.

Selling features:

Hutchinson (1990) showed that Rademacher has smaller variance
than normal distribution. This made the Hutchinson choice popular in
industry, too.

RS applies to general matrices, unlike the other two. On the other
hand, for SPSD matrices, RS is somewhat slower than the other two.
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Implicit matrix trace estimation Probabilistic bound

Probabilistic bounds, Roosta & A.

[Roosta-Khorasani & A., 2015; Avron & Toledo, 2011] following [Achlioptas,

2001], want n smallest for a desired quality, look for probabilistic bounds.

Given pair (ε, δ) positive and small

Probability distribution ∆

Want lower bound on n such that

Pr
(
|trn∆(A)− tr(A)| ≤ ε tr(A)

)
≥ 1− δ

trn∆(A) =
1

n

n∑
j=1

wT
j Awj

with wj drawn from probability distribution ∆
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Implicit matrix trace estimation Sufficient bounds

General sufficient bounds

Given a pair (ε, δ), denote

c = c(ε, δ) = ε−2 ln(2/δ).

Assume A is an s × s SPSD matrix.

1 Theorem 1a. Using Gaussian probability distribution, the
probabilistic bound holds if

n ≥ 8c(ε, δ)

2 Theorem 2a. Using [Hutchinson, 1990], namely, for
w = (w1, . . . ,ws)

T , Pr(wi = 1) = Pr(wi = −1) = 1/2, the
probabilistic bound holds if

n ≥ 6c(ε, δ)

Note that these bounds are independent of matrix properties! They are
interesting for large size s and mild tolerance ε.
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Implicit matrix trace estimation Sufficient bounds

More specific sufficient bounds

1 Theorem 1b. Using Gaussian probability distribution, let KG = ∥A∥
tr(A) .

Then the probabilistic bound holds if

n > 8KGc(ε, δ)

2 Theorem 2b. Using [Hutchinson, 1990], let KH = maxj
∑

k ̸=j

a2k,j
a2jj

.

Then the probabilistic bound holds if

n > 2KHc(ε, δ).
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Implicit matrix trace estimation Sufficient bounds

Sufficient bounds for RS (aka random unit
vector)

Given a pair (ε, δ), denote

c = c(ε, δ) = ε−2 ln(2/δ).

Let U1 and U2 refer to the uniform distribution of unit vectors with and
without replacement, respectively.

Theorem 3. Let KU = max1≤i ,j≤s
i ̸=j

s
tr(A) |aii − ajj |.

Then, using RS distribution, the probabilistic bound holds with U1 if

n >
K2

U

2
c(ε, δ) ≡ F

and with U2 if

n ≥ s + 1

1 + s−1
F

Generally, RS shines where the other two cannot be used.
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Implicit matrix trace estimation Sufficient bounds

Example (s = 1000, ε = δ = 0.2)

Consider A = xxT/∥x∥2, where x ∈ Rs , and for some θ > 0,
xi = exp(−iθ), 1 ≤ i ≤ s. Then (denoting r = rank(A))

tr(A) = 1, r = 1.
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Implicit matrix trace estimation Sufficient bounds

Preferring to work with...

The Hutchinson method has a smaller variance.

Our sufficient theoretical bounds are occasionally better for
Hutchinson than for the Gaussian.

However, we also want necessary bounds, and have been able to
obtain the latter only for the Gaussian distribution.

Fortunately, for the inverse problem applications we have considered,
experience indicates that the Gaussian distribution is not worse.
Moreover, rank(A) = l ≪ s is relatively low.

So, we’ll work with the Gaussian distribution (without
forgetting RS for tough situations).
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Stopping criterion and tolerance Outline

Probabilistic relaxation of stopping criterion

[A. & Roosta, 2016]

Importance of stopping criterion

Inverse problem setting and regularization

Many data sets

How large should n be?
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Stopping criterion and tolerance Stopping criterion

Stopping criterion and stopping tolerance

A typical iterative algorithm in scientific computing requires a
stopping criterion:

Given a tolerance ρ and some mechanism for estimating error, stop
algorithm execution at first iteration k such that

error estimate(k) ≤ ρ.

But, is ρ really given?!

(Relatedly: to what extent is the stopping criterion adequate?)

The numerical analyst designs algorithm and writes general-purpose
software, and thus expects ρ or invents it as needed.
The practitioner, or the customer of numerical algorithms and math
software, often would not know such a precise value.

This gap can lead to surprises, and occasionally, advantages.
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Stopping criterion and tolerance Inverse problem

Probabilistic relaxation of stopping criterion

Importance of stopping criterion

Inverse problem setting and regularization

Many data sets

How large should n be?
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Stopping criterion and tolerance Inverse problem

Inverse problem setting

Given observed data d ∈ Rl and a forward operator f(m) which
provides predicted data for each instance of distributed parameter
function m, find m (discretized and reshaped into m) such that the
predicted and observed data agree to within noise:

d = f(m) + η.

Consider a case where a PDE must be solved to evaluate the forward
operator, i.e., f(m) = Pu = PG (m)q, where G is a discrete Green’s
function.
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Stopping criterion and tolerance Inverse problem

Example: electromagnetic data inversion in
mining exploration

G is Green’s function for Maxwell’s equations in time or frequency domain,
m is conductivity or resistivity. [Haber, A. & Oldenburg, 2004]
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Stopping criterion and tolerance Inverse problem

Discrepancy principle

Given observed data d ∈ Rl and a forward operator f(m) which
provides predicted data for each instance of distributed parameter
function m, find m (discretized and reshaped into m) such that the
predicted and observed data agree to within noise:

d = f(m) + η.

Consider a case where a PDE must be solved to evaluate the forward
operator, i.e., f(m) = Pu = PG (m)q, where G is a discrete Green’s
function.
Assuming η ∼ N (0, σ2I ), the maximum likelihood (ML) data misfit
function is

ϕ(m) = ∥f(m)− d∥22

The discrepancy principle yields the stopping criterion

ϕ(m) ≤ ρ, where ρ = σ2l

.
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Stopping criterion and tolerance Stopping criterion and tolerance

Stopping criterion assessment

Here we have a meaningful tolerance for an interesting class of
problems!

However:

Idealized statistical assumptions often do not quite hold in practice.

In computations, under these possibly unrealistic assumptions,
wanting to fit data but not noise, we typically reduce ϕ(m) to about
≈ 1.5ρ.

Importantly, we are really after minimizing ∥m∗ −m∥, not ϕ(m).
It’s just that the latter is what we have to work with.

So, assuming that a known tolerance ρ must be satisfied could be too
rigid.
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Stopping criterion and tolerance Stopping criterion and tolerance

For the EM data inversion example

G is Green’s function for Maxwell’s equations in frequency domain,
m is conductivity or resistivity.
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Stopping criterion and tolerance Stopping criterion and tolerance

Regularization and constrained formulations

Typically, solve iteratively and approximately a regularized problem

min
m

ϕ(m) + βR(m),

where R(m) ≥ 0 is a prior, β > 0 a parameter.

Equivalent constrained formulation:

min
m

ϕ(m), s.t. R(m) ≤ τ.

Another equivalent constrained formulation:

min
m

R(m), s.t. ϕ(m) ≤ ρ.

The non-negative parameters ρ, τ, β are related to one another in a
nontrivial manner.

In the above context we may know ρ to a higher certainty level than
the other two!

Uri Ascher IMPA thematic program October 2017 23 / 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stopping criterion and tolerance Many data sets

Probabilistic relaxation of stopping criterion

Importance of stopping criterion

Inverse problem setting and regularization

Many data sets

How large should n be?
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Stopping criterion and tolerance Many data sets

PDE inverse problems & many data sets

Nonlinear parameter function estimation problems involving partial
differential equation (PDE) constraints

Many measurements for obtaining credible reconstructions

Applications

Electromagnetic data inversion in mining exploration
Seismic data inversion in oil exploration
Direct current (DC) resistivity
Electrical impedance tomography (EIT)
Diffuse optical tomography (DOT)
Quantitative photoacoustic tomography (QPAT)
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Stopping criterion and tolerance Many data sets

Example: full waveform inversion
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Stopping criterion and tolerance Many data sets

Example: EIT
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Stopping criterion and tolerance Many data sets

Inverse problem with s data sets

After discretization and for our problems of interest:

di = fi (m) + ηi , i = 1, 2, . . . , s

fi (m) = Pui = PG (m)qi

Calculating “G (m)qi” for each i is costly!

di ∈ Rl is the measurement obtained in the i th experiment

fi is the known forward operator for the i th experiment

m ∈ Rlm is the sought-after model

ηi is the noise incurred in the i th experiment

s is the total number of experiments

ui ∈ Rlu is the ith field

qi ∈ Rlu is the ith source

G−1 is a square matrix discretizing the PDE with the BC

P = Pi is the projection matrix for the i th experiment
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Stopping criterion and tolerance Many data sets

Merit function

Assume ηi ∼ N (0, σ2I )
Maximum Likelihood (ML) data misfit:

ϕ(m) =
s∑

i=1

∥fi (m)− di∥22 = ∥F (m)− D∥2F

F ∈ Rl×s with fi (m) for i th column
D ∈ Rl×s with di for i th column

Maximum a Posteriori (MAP) merit function:

ϕR,β(m) = ϕ(m) + βR(m)

R(m) can be implicit (e.g., dynamic regularization)

Seek to reduce merit function to the noise level.
The discrepancy principle gives error criterion

ϕ(m) ≤ ρ, where ρ = σ2ls.

So, again a reasonably solid error criterion; but how reasonable?
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Stopping criterion and tolerance Many data sets

Merit function

Assume ηi ∼ N (0, σ2I )
Maximum Likelihood (ML) data misfit:

ϕ(m) =
s∑

i=1

∥fi (m)− di∥22 = ∥F (m)− D∥2F

F ∈ Rl×s with fi (m) for i th column
D ∈ Rl×s with di for i th column

Maximum a Posteriori (MAP) merit function:

ϕR,β(m) = ϕ(m) + βR(m)

R(m) can be implicit (e.g., dynamic regularization)

Seek to reduce merit function to the noise level.
The discrepancy principle gives error criterion

ϕ(m) ≤ ρ, where ρ = σ2ls.

So, again a reasonably solid error criterion; but how reasonable?
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Stopping criterion and tolerance Need for large s

Example: DC resistivity

PDE with multiple sources

∇ · (µ(x)∇ui ) = qi , i = 1, . . . , s,

∂ui
∂ν
|∂Ω = 0.

Conductivity µ(x) is expressed as a point-wise function of m(x).

The operator G (m) is the inverse of the above PDE discretized on a
staggered grid.

Use different selections of sources qi , yielding corresponding fields ui .

Data is measured only on part of the domain’s boundary.

Use any prior we may have for this very difficult problem!
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Stopping criterion and tolerance Need for large s

DC resistivity experiment setup

Domain Ω is the unit square. Sources are of the form

qi (x) = δ(x− xi1)− δ(x− xi2)

with x1 positive unit point source on west boundary, x2 negative unit
point source on east boundary. Vary p boundary wall locations to get
s = p2 data sets.

Receivers are all grid points on north and south walls. No sources or
receivers at corners.

Uniform 64× 64 mesh

For bounds set µmax = 1.2maxµ(x), µmin = 1.2−1minµ(x)

PCG inner iteration limit r̃ = 20; cgtol = 1.e-3.
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Stopping criterion and tolerance Need for large s

Example: µI = .1, µII = 1, µIII = .01, noise 2%

(a) True model (b) s=3,969 (c) s=49

Thus, we want s larger for better reconstruction quality.

But the cost of solving the problem grows very fast! (at least linearly
with s). Need to find more efficient approximations for evaluating
misfit function ϕ(m).
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Stopping criterion and tolerance Need for large s

Example: µI = .1, µII = 1, µIII = .01, noise 2%

(d) True model (e) s=3,969 (f) s=49

Thus, we want s larger for better reconstruction quality.

But the cost of solving the problem grows very fast! (at least linearly
with s). Need to find more efficient approximations for evaluating
misfit function ϕ(m).
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Stopping criterion and tolerance Monte Carlo approximation

Approximating misfit function efficiently

Look for inexpensive approximations for ϕ(m)

Define B = F (m)− D and A = BTB SPSD. Then

ϕ(m) = ∥B∥2F = tr(A) = E(∥Bw∥22),

where tr(A) is the trace of A, E is expectation, and w is random
vector drawn from any distribution satisfying E(wwT ) = I .

So, apply Monte Carlo sampling to the expectation:

ϕ̂(m, n) :=
1

n

n∑
j=1

∥B(m)wj∥22 ≈ ϕ(m).

Can achieve this in only n forward operator evaluations because∑s
i=1 f(m,qi )w

(j)
i = f(m,

∑s
i=1 w

(j)
i qi ) for each random vector

realization wj = (w
(j)
1 , . . . ,w

(j)
s )T .
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Stopping criterion and tolerance Monte Carlo approximation

Probabilistic relaxation of stopping criterion

Importance of stopping criterion

Inverse problem setting and regularization

Many data sets

How large should n be?
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Stopping criterion and tolerance Monte Carlo approximation

How large should n be?

Obviously, probabilistically the larger n, the closer is ϕ̂(m, n) to ϕ(m).

This brings again the question how important it is to evaluate ϕ(m)
exactly, which in turn depends on the certainty we have in the error
model and the corresponding stopping criterion.

Here it is natural to satisfy our original stopping criterion only
within some probability range.

We simplify discussion by assuming that ρ is given and the error
model is approximately valid.
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Stochastic model reduction Outline

Outline

Motivation

Estimating trace of implicit matrix

Probabilistic relaxation of stopping criterion

Stochastic model reduction

Model reduction and implicit matrix trace estimation
Refined theory, including both sufficient and necessary bounds
Algorithm from inverse problem with many right-hand sides
Uncertainty quantification

Numerical experiments: DC resistivity inverse problem

Conclusions
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Stochastic model reduction Outline

Stochastic model reduction

Model reduction and implicit matrix trace estimation

Refined theory, including both sufficient and necessary bounds

Algorithm from inverse problem with many right-hand sides

Uncertainty quantification
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Stochastic model reduction Recall and extend problem definition

Model reduction and stochastic
approximation

Recall, calculating ϕ(m) requires s PDE solves!

In the kth iteration for m, approximate ϕ(m) = ∥F (m)− D∥2F at
m = mk by an unbiased estimator

ϕ̂(m, sk) = ϕ̂(m,W ) =
1

sk
∥(F (m)− D)W ∥2F ,

where W is an s × sk matrix (hopefully sk ≪ s)

W = Wk =
[
w1,w2, . . . ,wsk

]
,

with wj drawn from a distribution satisfying E(wwT ) = I .
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Stochastic model reduction Recall and extend problem definition

Model reduction and stochastic
approximation

Recall, calculating ϕ(m) requires s PDE solves!

In the kth iteration for m, approximate ϕ(m) = ∥F (m)− D∥2F at
m = mk by an unbiased estimator

ϕ̂(m, sk) = ϕ̂(m,W ) =
1

sk
∥(F (m)− D)W ∥2F ,

where W is an s × sk matrix (hopefully sk ≪ s)

W = Wk =
[
w1,w2, . . . ,wsk

]
,

with wj drawn from a distribution satisfying E(wwT ) = I .
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Stochastic model reduction Recall and extend problem definition

The misfit trace

Let B(m) = F (m)− D ∈ Rl×s

Then A = BTB is implicit symmetric positive semi-definite (SPSD);
effectively, can only carry out matrix-vector products A ∗ v with this
s × s matrix.

ϕ(m) = ∥B(m)∥2F = tr(BTB) = E(wTAw).

Approximating expectation⇔ Approximating the trace ϕ(m) = tr(A)
Monte-Carlo approximation

tr(A) ≈ 1

n

n∑
j=1

wT
j Awj =

1

n

n∑
j=1

∥Bwj∥22 .

Note we can obtain exact trace using n = s samples with wj a scaled
jth column of identity; but we want n≪ s.
Link notation with our application: n = sk .
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Stochastic model reduction Refined theory: Roosta, Székely & A. 2015

Stochastic model reduction

Model reduction and implicit matrix trace estimation

Refined theory, including both sufficient and necessary bounds

Algorithm from inverse problem with many right-hand sides

Uncertainty quantification
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Stochastic model reduction Refined theory: Roosta, Székely & A. 2015

Refined necessary & sufficient bounds for
Gaussian probability distribution I

Define Q(n) := 1
nQn, where Qn ∼ χ2

n denotes a chi-squared r.v of
degree n. Note that Q(n) ∼ Gamma(n/2, n/2).

Consider satisfying

Pr
(
trn(A) ≥ (1− ε)tr(A)

)
≥ 1− δ. (1)

Theorem 4.
(i) Sufficient condition: there exists some integer n0 ≥ 1 such that

Pr
(
Q(n0) < (1− ε)

)
≤ δ.

Furthermore, (1) holds for all n ≥ n0.
(ii) Necessary condition: if (1) holds for some n0 ≥ 1, then for all n ≥ n0

P−
ε,r (n) := Pr

(
Q(nr) < (1− ε)

)
≤ δ, r = rank(A).
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Stochastic model reduction Refined theory: Roosta, Székely & A. 2015

Refined necessary & sufficient bounds for
Gaussian probability distribution II

Consider satisfying

Pr
(
trn(A) ≤ (1 + ε)tr(A)

)
≥ 1− δ. (2)

Theorem 5.
(i) Sufficient condition: if the inequality

Pr
(
Q(n0) ≤ (1 + ε)

)
≥ 1− δ

is satisfied for some n0 > ε−1, then (2) holds with n = n0.
Furthermore, there is always an n0 > ε−2 such that this inequality is
satisfied and, for such n0, it follows that (2) holds for all n ≥ n0.

(ii) Necessary condition: if (2) holds for some n0 > ε−1, then

P+
ε,r (n) := Pr

(
Q(nr) ≤ (1 + ε)

)
≥ 1− δ, r = rank(A)

with n = n0. Furthermore, if n0 > ε−2r−2, then this inequality holds
for all n ≥ n0.
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Stochastic model reduction General algorithm for inverse problem

Stochastic model reduction

Model reduction and implicit matrix trace estimation

Refined theory, including both sufficient and necessary bounds

Algorithm from inverse problem with many right-hand sides

Uncertainty quantification
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Stochastic model reduction General algorithm for inverse problem

Algorithm for the many-datasets IP

At iteration k , k = 0, 1, 2, . . . , we update m = mk to

mk+1 = mk + γkδmk

The search direction δmk is obtained using a stabilized Gauss-Newton
(GN) method (although gradient descent and L-BFGS methods may
also be considered), and 0 < γk ≤ 1 is a step size.

Reduce the misfit, ϕ(m), using implicit regularization by applying a
limited number of inner preconditioned conjugate gradient (PCG)
iterations to carry out the kth outer GN iteration.
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Stochastic model reduction General algorithm for inverse problem

Algorithm for the many-datasets IP

At iteration k , k = 0, 1, 2, . . . , we update m = mk to

mk+1 = mk + γkδmk

The search direction δmk is obtained using a stabilized Gauss-Newton
(GN) method (although gradient descent and L-BFGS methods may
also be considered), and 0 < γk ≤ 1 is a step size.

Reduce the misfit, ϕ(m), using implicit regularization by applying a
limited number of inner preconditioned conjugate gradient (PCG)
iterations to carry out the kth outer GN iteration.
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Stochastic model reduction General algorithm for inverse problem

Algorithm for the many-datasets IP

At iteration k , k = 0, 1, 2, . . . , we update m = mk to

mk+1 = mk + γkδmk

The search direction δmk is obtained using a stabilized Gauss-Newton
(GN) method (although gradient descent and L-BFGS methods may
also be considered), and 0 < γk ≤ 1 is a step size.

Reduce the misfit, ϕ(m), using implicit regularization by applying a
limited number of inner preconditioned conjugate gradient (PCG)
iterations to carry out the kth outer GN iteration.
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Stochastic model reduction General algorithm for inverse problem

Gauss-Newton method

For one data set:

min
m

ϕ(m) = ∥f(m)− d∥22, sensitivity J =
∂f

∂m
.

GN solves at each iteration k a linearized least squares problem.
Normal equations: (

JT J
)
δm = −∇ϕ(m)

mk+1 ← mk + δm.

But the linear system is singular!
Moreover, even for one experiment, f(m) = PG (m)q, the Jacobian is
very expensive to calculate and store.
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Stochastic model reduction General algorithm for inverse problem

Stabilized Gauss-Newton method

So, apply a few conjugate gradient (CG) inner iterations,
preconditioned with a Laplacian.

Stabilized GN:

JT (Jδmk) ≈ −∇ϕ(mk)

γk ≈ argminγ ϕ(mk + γδmk)

mk+1 ← mk + γkδmk .

Obtain inexpensive regularization by iterative regularization,
dynamical regularization [Hansen, 1999; van den Doel & A., 2007].
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Stochastic model reduction General algorithm for inverse problem

Algorithm for the many-datasets IP

At iteration k , k = 0, 1, 2, . . . , we update m = mk to

mk+1 = mk + γkδmk

The search direction δmk is obtained using a stabilized Gauss-Newton
(GN) method (although gradient descent and L-BFGS methods may
also be considered), and 0 < γk ≤ 1 is a step size.

Reduce the misfit, ϕ(m), using implicit regularization by applying a
limited number of inner preconditioned conjugate gradient (PCG)
iterations to carry out the kth outer GN iteration.

In our model reduction approach the GN method is further modified.
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Stochastic model reduction General algorithm for inverse problem

Modified stabilized Gauss-Newton method

For the multi-experiment case, rewrite the objective as

ϕ(m) = ∥F (m)− D∥2F ,
F =

[
f1, f2, . . . , fs

]
∈ Rl×s , D =

[
d1,d2, . . . ,ds

]
∈ Rl×s .

At kth GN iteration, use s × sk matrix W = Wk =
[
w1,w2, . . . ,wsk

]
to estimate ϕ by

ϕ̂(m,W ) =
1

sk
∥(F (m)− D)W ∥2F .

Note FW = PG (m)(QW ), Q =
[
q1,q2, . . . ,qs

]
.

The essential GN step now reads(
sk∑
i=1

ĴTi Ĵi

)
δmk = −∇mk

ϕ̂.

Next, apply dynamic regularization (stabilized GN) as before.
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Stochastic model reduction General algorithm for inverse problem
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q1,q2, . . . ,qs

]
.

The essential GN step now reads(
sk∑
i=1
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Stochastic model reduction General algorithm for inverse problem

Algorithm for the many-datasets inverse
problem

At iteration k , k = 0, 1, 2, . . . , we update m = mk to

mk+1 = mk + γkδmk

The search direction δmk is obtained using a stabilized Gauss-Newton
(GN) method (although gradient descent and L-BFGS methods may
also be considered), and 0 < γk ≤ 1 is a step size.

Reduce the misfit, ϕ(m), using implicit regularization by applying a
limited number of inner preconditioned conjugate gradient (PCG)
iterations to carry out the kth outer GN iteration.

In our model reduction approach the GN method is further modified.

Monte-Carlo approximations of ϕ arise when (i) calculating δmk , (ii)
attempting to verify that the current sample is representative, and
(iii) assessing the stopping rule. [Roosta, Doel & A., 2014]
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Stochastic model reduction General algorithm for inverse problem

Algorithm

Given: Q, D, ρ, m0, sufficient decrease indicator κ ≤ 1.

Initialize: m = m0 , s0 = 1.

for k = 0, 1, 2, . . . until termination
1 Draw W f

k ∈ Rs×sk .
2 Fitting: Perform one nonlinear iteration, with W = W f

k .
3 Draw W c

k ∈ Rs×nc ,W u
k ∈ Rs×nu ,W t

k ∈ Rs×nt as needed.
4 Cross validation: if ϕ̂(mk+1,W

c
k ) ≤ κϕ̂(mk ,W

c
k ), then

Uncertainty Check: if ϕ̂(mk+1,W
u
k ) ≤ ρ, then

Stopping Criterion: terminate if ϕ̂(mk+1,W
t
k ) ≤ ρ;

otherwise set sk+1 = sk .

5 else

Sample size Increase: For example set sk+1 = min(2sk , s).
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Stochastic model reduction Uncertainty quantification

Stochastic model reduction

Model reduction and implicit matrix trace estimation

Refined theory, including both sufficient and necessary bounds

Algorithm from inverse problem with many right-hand sides

Uncertainty quantification
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Stochastic model reduction Uncertainty quantification

Uncertainty quantification

But how are the (crucial) matrix widths nc , nu and nt determined?

Here, Theorems 4 & 5 help.

Specifically, given three pairs of small numbers (εc , δc), (εu, δu), and
(εt , δt), we can determine nc , nu and nt , respectively, so that the
probabilistic bounds (1) or (2) hold.

This allows treating the stopping criteria probabilistically in a
quantifiable way! Larger values of (ε, δ) correspond to treating the
tolerance with less rigidity, which translates in turn to a cheaper
computational process.

Uri Ascher IMPA thematic program October 2017 52 / 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stochastic model reduction Uncertainty quantification
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Stochastic model reduction Uncertainty quantification

Uncertainty quantification cont.

For instance, consider replacing the termination condition

ϕ(mk+1) ≤ ρ, by either (3a)

ϕ̂(mk+1, nt) ≤ (1− ε)ρ, or (3b)

ϕ̂(mk+1, nt) ≤ (1 + ε)ρ, (3c)

for a suitable n = nt , given (ε = εt , δ = δt).

If (3b) holds, then (3a) holds with probability of at least (1− δ).
If (3c) does not hold, then (3a) does not hold with a probability of at
least (1− δ).

Higher uncertainty in value of ρ is reflected by choosing larger δ.

The probability of false positive/negative is governed by ε.
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Numerical experiments: DC resistivity inverse problem Outline

Outline

Motivation

Estimating trace of implicit matrix

Probabilistic relaxation of stopping criterion

Stochastic model reduction

Numerical experiments: DC resistivity inverse problem

Conclusions

Uri Ascher IMPA thematic program October 2017 54 / 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Numerical experiments: DC resistivity inverse problem Outline

DC resistivity experiments

PDE with multiple sources

∇ · (µ(x)∇ui ) = qi , i = 1, . . . , s,

∂ui
∂ν
|∂Ω = 0.

Conductivity µ(x) is expressed as a pointwise function of m(x).

Domain Ω is unit square. Sources are of the form
qi (x) = δ(x− xi1)− δ(x− xi2) with x1 positive unit point source on
west boundary, x2 negative unit point source on east boundary. Vary
p boundary wall locations to get s = p2 data sets.

Receivers are all grid points on north and south walls. No sources or
receivers at corners.

Uniform 64× 64 grid with s = 3, 969.

For bounds set µmax = 1.2maxµ(x), µmin = 1.2−1minµ(x).

PCG inner iteration limit r̃ = 20; cgtol = 1.e-3.
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Numerical experiments: DC resistivity inverse problem Outline

Example: µI = .1, µII = 1, µIII = .01, noise 2%

Method Vanilla (3,969) Gaussian (3,969) Vanilla (49)

Work 527,877 5,142 5,733

Our algorithm delivers much better reconstructions for the price!

(g) True model (h) Gaussian, s=3,969 (i) Vanilla, s=49
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Numerical experiments: DC resistivity inverse problem Outline

Same with total variation (TV) added

Method Vanilla (3,969) Gaussian (3,969) Vanilla (49)

Work 476,280 4,618 5,978

Sharper reconstruction with randomized s = 3, 969, poorer with vanilla
s = 49! Thus, even with added info that true solution is piecewise
constant, TV can be worse without “sufficient data”.

(j) True model (k) Gaussian, s=3,969 (l) Vanilla, s=49
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Conclusions Conclusions

Conclusions

A rigid, deterministic convergence error tolerance is hardly ever known
in practice. Relaxing requirements accordingly can lead to significant
efficiency improvement.

We have provided necessary and sufficient bounds for the probabilistic
convergence of Monte Carlo methods for trace estimation. This
allows relaxing the notion of an error criterion with a tolerance in a
disciplined manner.

A general algorithm for nonlinear inverse problems with many data
sets has been proposed; efficiency gains up to 2 orders of magnitude
have been demonstrated.

Mais applications, por favor.
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