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Outline

Four lectures

Calibration and simulation of deformable objects

Data manipulation and completion

Estimating the trace of a large implicit matrix and applications

Numerical analysis in visual computing: not too little, not too much
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Two examples Cloth simulation

Numerical linear algebra in cloth simulation

Cloth simulation:
1 Use a mass-spring system
2 Assemble large ODE system Mq̈(t) = fels(q) + fdmp(q, v) + fext
3 Elastic forces include stretching, bending and shearing. Stretching can

be stiff.
[Barraf & Witkin, ’98]

1 Simulate using large time steps, not reproducing rapid solution
oscillations.

2 Apply semi-implicit backward Euler (SI). To implement this, need to
solve at each time step a linear algebraic system Ax = b.

3 Here x = vn+1 are the particle velocities, some obeying the discretized
ODE, others constrained.

4 Devise modified preconditioned conjugate gradient (MPCG) method.
[A.& Boxerman, ’03]

1 Explain and improve this MPCG method.
2 So here, math analysis has proved useful! Not only we understand

B&W better and have a convergence proof, also the algorithm
efficiency has been improved in the process.
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Two examples Cloth simulation

MPCG

B & W defined 3× 3 matrix “filters” Si to eliminate components

v
(n+1)
i in constrained directions. Set S = diag{S1, S2, . . . , SN} and

solve SAx = Sb using a modified CG.

A & B noticed that S is an orthogonal projection: can write

u = Sx, w = (I − S)x, x = u+w, uTw = 0.

So, equations of motion hold in range(S), while solution is prescribed
in range(I − S):

SAx = Sb, (I − S)x = (I − S)z.

To enable convergence theorem, had to assume initial MPCG starting
point x0 = Svn + (I − S)z .
Compared to original guess x0 = z this improved convergence speed
by 25-50%.
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Two examples Fluid flow simulation

Pressure-Poisson equation (PPE)

[Gundelman, Selle, Locasso & Fedkiw, ’05] :
“Coupling Water and Smoke to Thin Deformable and Rigid Shells”

They devise a multi-splitting method, adding various aspects and
contributions in sequence.

Concentrate on fluid simulation: in a time step from tn to tn+1,
1 advect velocity un and add gravity to get u∗,
2 project u∗ obtaining un+1 by computing pressure to enforce

incompressibility.

What’s behind this cryptic description?

This step in itself can be considered as a splitting method.
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Two examples Fluid flow simulation

Incompressible Navier-Stokes (INS)

For simplicity, write (simplified) equations in two space dimensions:
u = (u, v)–velocity, p–pressure, ν–viscosity constant.

ut + uux + vuy + px = ν∆u,

vt + uvx + vvy + py = ν∆v ,

ux + vy = 0.

We know how to handle advection equations, so separate them from
the rest by splitting.
However, coupling in this PDE system is too strong: want 3rd eqn to
be “for the pressure”.
Differentiate 1st eqn by x , 2nd by y , and add, using 3rd. Obtain
pressure-Poission equation (PPE)

∆p ≡ pxx + pyy = −
(
(ux)

2 + 2uyvx + (vy )
2
)
.

[Gresho & Sani ’87; Sidilkover & A. ’95]
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Two examples Fluid flow simulation

Splitting INS

Assume ν = 0 (good for crisp animations).

ut + uux + vuy + px = 0,

vt + uvx + vvy + py = 0,

pxx + pyy = −
(
(ux)

2 + 2uyvx + (vy )
2
)
.

At time level n:
1 Solve for velocities

ut + unux + vnuy + pnx = 0,

vt + unvx + vnvy + pny = 0.

Call result un+1 = u, vn+1 = v .
2 Solve for pressure

pxx + pyy = −
(
(un+1

x )2 + 2un+1
y vn+1

x + (vn+1
y )2

)
.

Call result pn+1 = p.
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Two examples Fluid flow simulation

Splitting INS

The order of the split (fractional) steps matters.

The first fractional step can be carried out using a semi-Lagrangian
method, avoiding stability restriction on time step.

The second fractional step involves solving Poisson’s equation (PPE).
The latter is the expensive item. Can in some situations be solved on
a coarser spatial mesh.

Some mathematicians frown upon this method because the space in
which solution resides changes and boundary condition issues arise.

Nonetheless this is a favourite method in some computer graphics
applications. Indeed, what may bother mathematicians is of no great
concern in this physics-based setting.
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Deformable objects simulation, calibration, control

Outline

Case studies

Two examples to start
Calibration and large-step time integration in elastodynamics
Image and surface processing

Conclusions

Visual computing: where the “eyeball-norm” rules
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Deformable objects simulation, calibration, control Soft material models

Soft object simulation, calibration, control
and fabrication

[Edwin Chen, Dinesh Pai; Danny Kaufman, Dave Levin;
Bin Wang, Hui Huang]

Ubiquitous in current computer graphics and robotics research.

High quality simulations can be very expensive.

The model typically requires calibration, e.g., specifying Young’s
modulus and damping properties.

These are expressed as (distributed) parameters in the elastodynamics
differential equations governing the motion.

For control and fabrication may require more accurate simulations
than before.
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Deformable objects simulation, calibration, control Soft material models

Soft object calibration and simulation

1 For a given calibration, semi-discretize elastodynamics equations in
variational form using (co-rotated) FEM on a coarse moving
tetrahedral mesh.

2 To obtain parameters (i.e., calibrate model), acquire position data in
controlled environment and solve inverse problem.

3 Use physics-based simulation: in many applications, require result to
look good, rather than be accurate to within tol. In particular:

It’s the motion simulation results, rather than accuracy of parameters,
that is eventually observed.
Can often use semi-implicit methods with large time steps to dampen
invisible high oscillations.
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Deformable objects simulation, calibration, control Soft material models

Fine surface mesh Coarser volumetric mesh
[Wang, Wu, Yin, A., Liu & Huang ’15]
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Deformable objects simulation, calibration, control Soft material models

Capture data
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Deformable objects simulation, calibration, control Soft material models

Motion tracking
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Deformable objects simulation, calibration, control Soft material models

Equations of motion

Masses times accelerations equal forces (v = q̇)

Mq̈(t) = fels(q) + fdmp(q, v) + fext,

with the elastic and damping forces

fels(q) = −
∂

∂q
W (q(t)), fdmp(q, v) = −Dv(t),

where W (q(t)) is the elastic potential of the corresponding model.

In a linear elasticity model, this elastic potential is quadratic.
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Deformable objects simulation, calibration, control Soft material models

A 1st order ODE system

Rewrite at some time t = tn as u̇(t) = b(u(t)) :

u̇(t) ≡
(
q̇(t)
v̇(t)

)
=

(
v

M−1ftot(q, v)

)
=

(
0 I

−M−1K −M−1D

)(
q(t)
v(t)

)
+

(
0

g(u(t))

)
,

where K = − ∂
∂q fels(q) is the tangent stiffness matrix at q = q(t).

Often there is highly oscillatory stiffness, even though the observed
motion is damped and does not vibrate rapidly. This happens when

the scale of the simulation is large, and/or
the material stiffens under large deformation.

Another example is cloth simulation.

Uri Ascher IMPA thematic program October 2017 18 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deformable objects simulation, calibration, control Soft material models

Large steps methods

Want to use a time step size τ commensurate with the damped
motion.

Can’t use explicit Runge-Kutta (RK) discretization.

Moreover, implicit RK requires solution of nonlinear system at each
step: can be nasty if the step size τ is large.

Can use a semi-implicit (SI) method, i.e., backward Euler (BE) with
only one Newton iteration at each time step starting from un.
[Baraff & Witkin ’98; A. ’08].
This is by far the most popular method in use to date.

However, heavy step-size dependent damping is introduced: not easy
for an artist to work with; and affects different materials differently.

Why does it work at all?
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Deformable objects simulation, calibration, control Soft material models
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Deformable objects simulation, calibration, control Soft material models

Time integration of elastodynamics equations

Backward Euler (BE), semi-implicit (SI) and stabilized SI.

Symplectic: explicit leap-frog, implicit midpoint (IM)

Energy and/or momentum conserving

Mixing: θ methods

Newmark and Generalized α

Exponential time differencing (like SI, no need to solve nonlinear
equations)

Decoupling of fast and slow scales.
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Time integration of elastodynamics equations

Backward Euler (BE), semi-implicit (SI) and stabilized SI.

Symplectic: explicit leap-frog, implicit midpoint (IM)

Energy and/or momentum conserving

Mixing: θ methods

Newmark and Generalized α

Exponential time differencing (like SI, no need to solve nonlinear
equations)

Decoupling of fast and slow scales.
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Time integration of elastodynamics equations

Backward Euler (BE), semi-implicit (SI) and stabilized SI.

Symplectic: explicit leap-frog, implicit midpoint (IM)

Energy and/or momentum conserving

Mixing: θ methods

Newmark and Generalized α

Exponential time differencing (like SI, no need to solve nonlinear
equations)

Decoupling of fast and slow scales.
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Time integration of elastodynamics equations

Backward Euler (BE), semi-implicit (SI) and stabilized SI.

Symplectic: explicit leap-frog, implicit midpoint (IM)

Energy and/or momentum conserving

Mixing: θ methods

Newmark and Generalized α

Exponential time differencing (like SI, no need to solve nonlinear
equations)

Decoupling of fast and slow scales.
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Deformable objects simulation, calibration, control Soft material models

Standard integration methods

u̇ = b(u)

= Ju+ c(u), where J =
∂b

∂u
.

Step from t = tn to t = tn+1 = tn + τ .

Backward Euler (BE)

un+1 − un = τb(un+1)

Implicit midpoit (IM)

un+1 − un = τb((un+1 + un)/2)

Semi-implicit backward Euler (SI):
Apply to BE just one Newton iteration starting at un towards solving
for un+1.
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Deformable objects simulation, calibration, control Soft material models
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Deformable objects simulation, calibration, control Soft material models

Exponential Rosenbrock Euler (ERE)

[Chen, A. & Pai, ’17]

Approximate

u(tn+1) = exp(τJ)un +

∫ tn+1

tn

exp((tn+1 − s)J)c(u(s))ds

to obtain

un+1 = exp(τJn)un + τϕ1(τJn)cn(un)

= un + τϕ1(τJn)b(un)

with ϕ1(z) = z−1(exp(z)− 1).

This basic form does not require the elastic energy to be convex.

Can carry out step through evaluating

un+1 =
[
IN 0N×1

]
exp (τAn) ũn, where

An =

[
Jn cn(un)

01×N 0

]
, ũn =

[
un
1

]
,
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Exponential Rosenbrock Euler (ERE)
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∫ tn+1

tn

exp((tn+1 − s)J)c(u(s))ds

to obtain

un+1 = exp(τJn)un + τϕ1(τJn)cn(un)

= un + τϕ1(τJn)b(un)

with ϕ1(z) = z−1(exp(z)− 1).

This basic form does not require the elastic energy to be convex.

Can carry out step through evaluating

un+1 =
[
IN 0N×1

]
exp (τAn) ũn, where
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Deformable objects simulation, calibration, control Soft material models

Twisted bar: neo-Hookean material
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Dancer cape
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Deformable objects simulation, calibration, control Soft material models

Controlling soft objects

[Chen, Levin, Matusik & Kaufman, ’17]
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Deformable objects simulation, calibration, control Soft material models

Analysis for the simplest case

Consider the scalar constant-coefficient ODE

q̈ + dq̇ + ω2q = 0,

where d ≥ 0 is a damping parameter, and ω > d/2 is a real-valued
frequency.

Setting d = 0 apply numerical discretization.

Associate resulting decay with artificial damping factor dmethod.
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Deformable objects simulation, calibration, control Soft material models

BE artificial damping curve
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Deformable objects simulation, calibration, control Soft material models

Energy and momentum conserving variants

Implicit midpoint and all other conservative methods do not have
artificial damping for the simpliest case: dmethod ≡ 0 when d = 0.

Can sacrifice symplecticity but gain energy conservation in time. e.g.,
average vector field (AVF) methods.

Can have an implicit Newmark midpoint-trapezoidal variant [Kane,
Marsden, Ortiz & West ’00] that is symplectic and conserves
momentum when D = 0:

vn−1/2 = vn−1 −
τ

4
(Knqn + Kn−1qn−1 + Dnvn + Dn−1vn−1)

+
τ

2
gn−1/2,

vn = 2vn−1/2 − vn−1,

qn = qn−1 + τvn−1/2.

These methods can be extended for problems with damping D > 0.
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Deformable objects simulation, calibration, control Soft material models

Cloth after colliding with a sphere

Top – left: ERE, right: SI
Bottom – left: IM, right: BE
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Deformable objects simulation, calibration, control Soft material models

Example cont.

Energy profile of each method in the simulation with cloth collision.
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Deformable objects simulation, calibration, control comparison with SI, BE, IM and ERE

Cloth with mixed stiffness after colliding
with a sphere

Top – left: ERE, right: SI
Bottom – left: IM, right: BE
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Deformable objects simulation, calibration, control comparison with SI, BE, IM and ERE

Need them all

Why not just discard SI and BE, concentrating on the good stuff?

Because conservative methods quietly require the step size to be
“large but not larger” (τ = O(1/ω) but not τ2 = O(1/ω))
[A. & Reich, 1999]

Exponential method also loses charm when stiffness is too high

So what can we do?

Reduce artificial damping by mixing methods

Decouple fast and slow scales

Pray
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Why not just discard SI and BE, concentrating on the good stuff?

Because conservative methods quietly require the step size to be
“large but not larger” (τ = O(1/ω) but not τ2 = O(1/ω))
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Deformable objects simulation, calibration, control comparison with SI, BE, IM and ERE

A second order θ method

BDF2 has similar characteristics to BE (although less damping), and
mixing it with IM retains 2nd order accuracy:(

qn
vn

)
=

(
qn−1

vn−1

)
+ τ [θ ∗ (BDF2) + (1− θ) ∗ (IM)],

Moreover, the use of a two-step method can often be accommodated in
computer graphics applications.
Damping plots for θ = 0 : .25 : 1 (the larger θ, the more damping):
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Deformable objects simulation, calibration, control comparison with SI, BE, IM and ERE

Artificial damping when mixing implicit
midpoint and BDF2
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Deformable objects simulation, calibration, control Generalized α method

Generalized α method

Mechanical engineers often use the generalized α method [Chung &

Hullbert, ’93, Kobis & Arnold, ’16] rather than backward Euler.

It is a one-step Newmark-type method (discretize
v̇ = a, Ma = f(q, v), rather than v̇ = M−1f(q, v)).

It has a parameter r = 1− θ that can be tuned to select anywhere
between BE-like strong damping of high frequencies and no damping
at all.

For any choice of 0 ≤ r ≤ 1 the method is second order accurate.

The size of nonlinear system to solve at each step is minimal.
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Deformable objects simulation, calibration, control Generalized α method

Generalized α artificial damping curve

Generalized α (GA) curves dGA/ω as a function of τω, for r = 0 : .25 : 1
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Deformable objects simulation, calibration, control Generalized α method

So...

We have just seen a case study where the need to move from qualitative
to quantitative has caused the computer graphics community to get closer
to the works of numerical analysts and applied mathematicians, e.g., in
geometric integration.
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Image and surface processing Outline

Outline

Case studies

Two examples to start
Calibration and large-step time integration in elastodynamics
Image and surface processing

Conclusions

Visual computing: where the “eyeball-norm” rules

Uri Ascher IMPA thematic program October 2017 38 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Image and surface processing Instances

Image and surface processing

denoising, deblurring, inpainting, completion, salient features...

Simplest example: denoising an image

Next simplest: denoising a surface triangle mesh
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Image and surface processing A popular paradigm

Using PDE-based penalties

Many researchers have considered regularization using diffusion or
anisotropic diffusion: Given image b, find image u that solves

min
u

1

2
∥f (u)− b∥2 + βR(u),

R(u) =

∫
Ω
ρ(|∇u|), β > 0,

diffusion: ρ(s) = s2 (ℓ2 on gradient)
anisotropic diffusion: ρ(s) = s (ℓ1 on gradient, i.e., total variation)
combination of these two (e.g., Huber [A., Haber & Huang ’06])

A huge amount of literature follows this line, e.g., [Perona & Malik ’90,

Rudin,Osher & Fatemi ’91, Weickert ’98... Chan et al., ... A., Huang et al.

...; Desbrun et al.’99,’00 , Hildebrandt & Polthier ’04]
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...; Desbrun et al.’99,’00 , Hildebrandt & Polthier ’04]
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Image and surface processing A popular paradigm

But is this always the best approach?

Indirect: start with discrete image b, ↑ move to function spaces, →
manipulate there, ↓ obtain discrete image u.

Uses a global, not local prior.

Paradigm:

min
u

1

2
∥f (u)− b∥2 + βR(u),

R(u) =

∫
Ω
ρ(|∇u|), β > 0,

ρ(s) = s2 or ρ(s) = s or ρ(s) is a combination of the two.
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Image and surface processing A popular paradigm

But is this always the best approach?

Advantage: can often obtain a more solid theoretical backing to
algorithms.

Disadvantage: may be outperformed by more brute force techniques,
especially if forward operator f is simple and data b is of high quality.

Paradigm:

min
u

1

2
∥f (u)− b∥2 + βR(u),

R(u) =

∫
Ω
ρ(|∇u|), β > 0,

ρ(s) = s2 or ρ(s) = s or ρ(s) is a combination of the two.
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Image and surface processing A popular paradigm

Examples where this paradigm is worthwhile

Basically, whenever the advantages outweighs the disadvanges...

If the forward operator f (u) itself contains differential terms.
But let’s concentrate on cases where the differential operator in the
penalty dominates other differential terms.
If the model approximation in f (u) or the data b (or both) are not of
high quality; e.g., blind deconvolution, time-of-flight data [Heide ...

Heidrich ’16].
Where the paradigm is used to generate primitives for graphics use.
e.g., “kelvinlets” [de Goes & James, ’17].

Paradigm:

min
u

1

2
∥f (u)− b∥2 + βR(u),

R(u) =

∫
Ω
ρ(|∇u|), β > 0,

ρ(s) = s2 or ρ(s) = s or ρ(s) is a combination of the two.Uri Ascher IMPA thematic program October 2017 43 / 55
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Basically, whenever the advantages outweighs the disadvanges...

If the forward operator f (u) itself contains differential terms.
But let’s concentrate on cases where the differential operator in the
penalty dominates other differential terms.
If the model approximation in f (u) or the data b (or both) are not of
high quality; e.g., blind deconvolution, time-of-flight data [Heide ...

Heidrich ’16].
Where the paradigm is used to generate primitives for graphics use.
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Image and surface processing A popular paradigm

Examples where this paradigm is worthwhile

Basically, whenever the advantages outweighs the disadvanges...

If the forward operator f (u) itself contains differential terms.
But let’s concentrate on cases where the differential operator in the
penalty dominates other differential terms.
If the model approximation in f (u) or the data b (or both) are not of
high quality; e.g., blind deconvolution, time-of-flight data [Heide ...

Heidrich ’16].
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Image and surface processing A popular paradigm

Examples where this paradigm is worthwhile

Basically, whenever the advantages outweighs the disadvanges...

If the forward operator f (u) itself contains differential terms.
But let’s concentrate on cases where the differential operator in the
penalty dominates other differential terms.
If the model approximation in f (u) or the data b (or both) are not of
high quality; e.g., blind deconvolution, time-of-flight data [Heide ...

Heidrich ’16].
Where the paradigm is used to generate primitives for graphics use.
e.g., “kelvinlets” [de Goes & James, ’17].
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Image and surface processing Where other approaches are better

Where other approaches are better: triangle
mesh denoising

[Huang & A. ’08]
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Image and surface processing Where other approaches are better

Surface mesh denoising vs image denoising

Relevant literature sample in image processing

Anisotropic diffusion [Perona & Malik ’90; Catte et al. ’92; Black et al.
’98; Weickert ’98]
Bilateral filtering [Tomasi & Manduchi ’98; Sapiro ’01; Barash ’02]
Multi-scale iterative refinement [Tadmor et al. ’04; Osher et al. ’05]

Differences from Image Processing

No separation between mesh locations and intensity heights; vertex drift
Mesh sampling irregularity
Volume shrinkage
Our proposed algorithms do not have direct parallels in image
processing
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Surface mesh denoising vs image denoising

Relevant literature sample in image processing
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’98; Weickert ’98]
Bilateral filtering [Tomasi & Manduchi ’98; Sapiro ’01; Barash ’02]
Multi-scale iterative refinement [Tadmor et al. ’04; Osher et al. ’05]
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Image and surface processing Where other approaches are better

Discrete model

Discrete triangle mesh: vertex set V , edge set E . For each qi ∈ V
define the one-ring neighborhood N (i) ≡ {j | ei ,j = qj − qi ∈ E}.
Vertex normal ni : the average of neighbouring face normals.

A denoising iteration is derived as updating each vertex qi by

qi ←− qi + τ∆qi + λi (q̂i − qi ),

where {q̂i ; i = 1, . . . ,N} is the given noisy data.

Choose

∆qi =
∑

j∈N (i)

Wi ,jei ,j

Wi ,j = wi ,jnin
T
i .

This way, all sum contributions are proportional to the normal ni

Uri Ascher IMPA thematic program October 2017 46 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Image and surface processing Where other approaches are better

Discrete anisotropic Laplacian

Compute hi = {hi ,j = eTi ,jni | j ∈ N (i)} and define AL operator

∆qi =
1

Ci

 ∑
j∈N (i)

g(hi ,j)hi ,j

ni

Edge stopping function: g(hi ,j) = exp(− h2i,j
2σ2

i
);

Robust local scaling factor: σi = 2 · mean(abs(hi − mean(hi )));

Normalization factor Ci =
∑

j∈N (i) g(hi ,j) yields the step size τ = 1.

Set λi = 0, ∀i . Method can be seen as a simplification of bilateral
filtering with Gaussian splitting.

Very fast (O(N) ops) and effective so long as there are no excessive
texture or sharp edges.
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Image and surface processing Where other approaches are better

MSAL: handling intrinsic texture

Recapture true higher frequency data components by gradually increasing
data fidelity:
for k = 0, 1, 2 . . .

qi ←− qi + ξk∆qi + λi (q̂i − qi ), i = 1, 2 . . .N

τ = ξk , 0 < ξ < 1 ⇐ reduce effect of smoothing gradually.

0 < λi ≤ 1 ⇐ accumulate smoothing contributions monotonically;

λi = σi/σ̄, σ̄ = max{σj ; j = 1, . . . ,N} ⇐ want more data fidelity
where there is more fine scale action;

As k →∞ the process converges at steady state to the given data q̂.
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Image and surface processing Where other approaches are better

Comparing with anisotropic diffusion

(a) (b) (c)

Figure: (a) Fine Igea model (135K verts) with intrinsic texture corrupted by

noise; (b) smoothed by anisotropic diffusion [Hildebrandt & Polthier, 2004], 25

itns, 33 secs; (c) smoothed by MSAL, ξ = 1/2, 4 itns, 13 secs.
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Image and surface processing Where other approaches are better

Where other approaches are better: salient
features and tele-registration

[Huang, Yin, Gong, Lischinski, Cohen-Or, A., Chen ’13]

Example: mending a dish
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Image and surface processing Where other approaches are better

Essential algorithm steps

1 Detect salient curves inside each image piece

2 Attempt to find for each curve a matching curve from an adjacent
piece, across the gap

3 Use this to construct an ambient vector field surrounding all the pieces

4 Transform (translation, rotation and scaling) each piece so salient
curves line up

5 Construct smooth bridging curves that connect such pairs across gaps

6 Fill the gaps using structure-driven synthesis, while any remaining
inside/outside holes are completed using standard inpainting tools
[Barnes et al. ’09, Darabi et al. ’12].
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Image and surface processing Where other approaches are better

Where other approaches are better: salient
features and tele-registration

Example: removing obstruction
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Image and surface processing Where other approaches are better

Where other approaches are better: salient
features and tele-registration

Example: visual archaeology (Banteay Chhmar, Cambodia)

Uri Ascher IMPA thematic program October 2017 53 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusions Conclusions

Conclusions

Incorporating more mathematically sound techniques into methods
and algorithms for computer graphics and image processing.

Significant practical advantages gained in visual computing using
physics-based simulation, data-driven model calibration, etc.

May occasionally be able to use math to obtain solid justification of
algorithms: both on when they work and on when they won’t.

Can even bridge the gap between qualitative and quantitative (which
is our secret wet dream).
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Conclusions Conclusions

Conclusions cont.

Do not get swayed by sheer mathematical prowess.

Watch out for situations where the gap between physics and
physics-based is too wide (e.g., in finding fluid viscosity or damping of
soft body).

Insisting on solving differential equations or satisfying mathematical
topology theorems might lead to inferior algorithms for visual tasks.

“There is always a well-known solution to every human problem – neat,
plausible, and wrong.” [H.L. Mencken, The Economist Espresso 12/9/17]
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