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Lotus root tomography

Video: thanks to Tatiana Bubba, Andreas Hauptmann and Juho Rimpeläinen

YouTube search: “lotus tomography”

www.youtube.com/watch?v=eWwD_EZuzBI&t=7s

https://www.youtube.com/watch?v=eWwD_EZuzBI&t=7s


Outline

X-ray tomography

Mathematical model of X-ray attenuation

Tomography with few data: ill-posed inverse problem

Regularized inversion

A real-world example



Wilhelm Conrad Röntgen invented X-rays and was
awarded the first Nobel Prize in Physics in 1901



Godfrey Hounsfield and Allan McLeod Cormack
developed X-ray tomography

Hounsfield (top) and Cormack
received Nobel prizes in 1979.



Reconstruction of a function from its line integrals
was first invented by Johann Radon in 1917

Johann Radon (1887-1956)

f (P) = −1
π

∫ ∞
0

dFp(q)

q



Contrast-enhanced CT of abdomen,
showing liver metastases



Diagnosing stroke with X-ray tomography
Ischemic stroke

CT image from Jansen 2008

Hemorrhagic stroke

CT image from Nakano et al. 2001



Unusual variant of the Nutcracker Fracture
of the calcaneus and tarsal navicular

[Gajendran, Yoo & Hunter, Radiology Case Reports 3 (2008)]



Outline

X-ray tomography

Mathematical model of X-ray attenuation

Tomography with few data: ill-posed inverse problem

Regularized inversion

A real-world example



X-ray intensity attenuates inside matter,
here shown with a homogeneous block

https://www.youtube.com/watch?v=IfXo2S1xXCQ

https://www.youtube.com/watch?v=IfXo2S1xXCQ


Formula for X-ray attenuation
along a line inside homogeneous matter

An X-ray with intensity I0 enters a homogeneous physical body.

I0 I1• -︸ ︷︷ ︸
s

The intensity I1 of the X-ray when it exits the material is

I1 = I0e
−µs ,

where s is the length of the path of the X-ray inside the body and
µ > 0 is X-ray attenuation coefficient.



X-ray intensity attenuates inside matter,
here shown with two homogeneous blocks

https://www.youtube.com/watch?v=Z_IBFQcn0l8

https://www.youtube.com/watch?v=Z_IBFQcn0l8


A digital X-ray detector counts how many
photons arrive at each pixel

X-ray source

1000

photon
count

1000• -

Detector



Adding material between the source and detector
reveals the exponential X-ray attenuation law

1000

1000

1000

photon
count

1000

500

250

• -

• -

• -



We take logarithm of the photon counts to
compensate for the exponential attenuation law

log

6.9

6.2

5.5

1000

1000

1000

photon
count

1000

500

250

• -

• -

• -



Final calibration step is to subtract the logarithms
from the empty space value (here 6.9)

log

6.9

6.2

5.5

1000

1000

1000

photon
count

1000

500

250

• -

• -

• -

line
integral

0.0

0.7

1.4



Formula for X-ray attenuation along a line:
Beer-Lambert law

Let f : [a, b]→ R be a nonnegative function modelling X-ray
attenuation along a line inside a physical body.

Beer-Lambert law connects the initial and final intensities:

I1 = I0e
−

∫ b
a f (x)dx .

We can also write it in the form

− log(I1/I0) =

∫ b

a

f (x)dx ,

where I0 is known from calibration and I1 from measurement.



After calibration we are observing how much
attenuating matter the X-ray encounters

https://www.youtube.com/watch?v=TKqcrDGPsAI

https://www.youtube.com/watch?v=TKqcrDGPsAI


This sweeping movement is the data collection
mode of first-generation CT scanners

https://www.youtube.com/watch?v=TbLaQo3rgEE

https://www.youtube.com/watch?v=TbLaQo3rgEE


Rotating around the object allows us to form
the so-called sinogram

https://www.youtube.com/watch?v=5Vyc1TzmNI8

https://www.youtube.com/watch?v=5Vyc1TzmNI8


Modern CT scanners look like this
W
ikim

edia
com

m
ons



Modern scanners rotate at high speed
H
ellerhoff

&
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This is an illustration of the standard
reconstruction by filtered back-projection



Outline

X-ray tomography

Mathematical model of X-ray attenuation

Tomography with few data: ill-posed inverse problem

Regularized inversion

A real-world example



Let us study a simple two-dimensional example of
tomographic imaging

4 4 5

1 3 4

1 0 2



Tomography is based on measuring densities of
matter using X-ray attenuation data

13 (=4+4+5)
4 4 5

1 3 4

1 0 2

X-ray source
• -

Detector



A projection image is produced by parallel X-rays
and several detector pixels (here three pixels)

13 (=4+4+5)

8 (=1+3+4)

3 (=1+0+2)

4 4 5

1 3 4

1 0 2

• -

• -

• -

Detector



For tomographic imaging it is essential to record
projection images from different directions

4 4 5

1 3 4

1 0 2

6 7 11
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The length of X-rays traveling inside each pixel is
important, thus here the square roots

4 4 5

1 3 4

1 0 2
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The direct problem of tomography is to find the
projection images from known tissue
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1 0 2
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The inverse problem of tomography is to
reconstruct the interior from X-ray data

? ? ?

? ? ?

? ? ?
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The limited-angle problem is harder than
the full-angle problem
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We write the reconstruction problem
in matrix form

f1 f4 f7

f2 f5 f8

f3 f6 f9
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@

@
@
@

@
@
@

@@

@
@

@
@

@
@
@

@
@
@@

@
@
@

@
@
@

@
@

@
@@

Measurement model: m = Af + ε

f =



f1
f2
f3
f4
f5
f6
f7
f8
f9


, m =



m1
m2
m3
m4
m5
m6

 ,

m
1

m
2

m
3

m4

m5

m6



This is the matrix equation related to
the above measurement

m1
m2
m3
m4
m5
m6

 =



0
√
2 0 0 0

√
2 0 0 0√

2 0 0 0
√
2 0 0 0

√
2

0 0 0
√
2 0 0 0

√
2 0

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1





f1
f2
f3
f4
f5
f6
f7
f8
f9


+



ε1
ε2
ε3
ε4
ε5
ε6



f1 f4 f7

f2 f5 f8

f3 f6 f9
@

@
@
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@
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@@
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In limited-angle imaging, different objects may
produce the same data

4 4 5

1 3 4

1 0 2

@
@
@

@
@
@

@
@
@

@@

@
@

@
@

@
@
@

@
@
@@

@
@
@

@
@
@

@
@

@
@@ 5 6 2

1 5 2

4 0 -1
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1 0 7

3 0 0

Mathematically this means that
the matrix A has nontrivial kernel.
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We can solve the limited-angle problem using
minimum norm solution

Consider the matrix equation Af = m, where f ∈ Rn and m ∈ Rk

and A has size k × n.

Definition. A vector f̃ ∈ Rn is called a least-squares solution of the
equation Af = m if

‖Af̃ −m‖ = min
z∈Rn
‖Az −m‖.

Furthermore, f̃ is called the minimum norm solution if

‖f̃ ‖ = inf{‖z‖ : z is a least-squares solution of Af = m}.



This is the minimum norm solution for our
limited-angle case
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This is the non-negative minimum norm solution
for our limited-angle case
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Non-negative
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Let us construct a more complicated example,
first in L2(R2)



f = 0

f = 0.44

0.16 0.16

Let us construct a more complicated example,
first in L2(R2)



The continuous tomographic model needs to
be approximated using a discrete model
Continuous model:

Discrete model:

In this schematic setup we have 5
projection directions and a 10-pixel
detector. Therefore, the number of
data points is 50.



The resolution of the discrete model can be freely
chosen according to computational resources
Continuous model:

Discrete models:

In this schematic setup we have 5
projection directions and a 10-pixel
detector. Therefore, the number of
data points is 50.

The number of degrees of freedom
in the three discrete models below
are 16, 64 and 256, respectively.



Discretize the unknown by dividing it into pixels

Target (unknown) 32×32 pixel grid



System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown



System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown



System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown



System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown



System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown



System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown



System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown



System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown



What can we expect to see from sparse data?

Object Sinogram

@
�

A

[Cormack 1963], [Smith, Solmon & Wagner 1977, Theorem 4.2]



Naive reconstruction using the minimum norm
solution (ATA)−1ATm

Original phantom, values between
zero (black) and 0.44

Reconstruction: minimum pixel value
−1.5 ·1014, maximum value 1.3 ·1014



Naive reconstruction using the minimum norm
solution with non-negativity constraint

Original phantom, values between
zero (black) and 0.44

Reconstruction: minimum value 0,
maximum value 2.3



Illustration of the ill-posedness of sparse
tomography

Difference 0.00992
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Illustration of the ill-posedness of sparse
tomography

Difference 0.00983
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Singular Value Decomposition for k×n matrix A:
A = UDV T with UUT= I =UTU and VV T= I =V TV

A = UDV T = U



d1 0 · · · 0 · · · 0

0 d2
...

...
. . .

dr
0

...
. . .

...
0 · · · · · · 0


V T

The singular values dj satisfy d1 ≥ d2 ≥ · · · ≥ dr > 0
and dr+1 = dr+2 = · · · = dmin{k,n} = 0. Note that r = rank(A).

If n = k and all singular values are positive, then A is invertible.
However, the condition number cond(A) := d1/dr may be large.
In that case A−1 is a numerically unstable matrix.



Singular value decomposition A = UTDV

1 200 400 600 735

10
-15

10
-10

10
-5

10
0

Singular values of A
(diagonal of D)

735×1024 system matrix A,
only nonzero elements shown



We have object and data for the inverse problem

@
�

A

f ∈ R32×32 Af ∈ R49×39



Illustration of the ill-posedness of tomography

Difference 0.00254

@
�

@
�

A

A



Illustration of the ill-posedness of tomography

Difference 0.00124
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Illustration of the ill-posedness of tomography

Difference 0.00004

@
�

@
�

A

A



Outline

X-ray tomography

Mathematical model of X-ray attenuation

Tomography with few data: ill-posed inverse problem

Regularized inversion

A real-world example



Recall Hadamard’s conditions for a well-posed
problem

Hadamard (1903): a problem is well-posed
if the following conditions hold.

1. A solution exists,
2. The solution is unique,
3. The solution depends
continuously on the input.

Ill-posed inverse problem:
Input noisy data m = Af + ε, recover f .



Hadamard’s conditions in a linear inverse problem
with forward map given by a matrix A

Rn RkA -

Ker(A)

(Ker(A))⊥

Coker(A)

Range(A)

• f0

• f

•m

The matrix A maps bijectively between (Ker(A))⊥ and Range(A).
However, decreasing singular values may make this bijection unstable,
leading to trouble with Hadamard’s condition 3.



The Moore-Penrose pseudoinverse takes care of
Hadamard’s conditions 1 and 2

A† = VD†UT = V



1/d1 0 · · · 0 · · · 0

0 1/d2
...

...
. . .

1/dr
0

...
. . .

...
0 · · · · · · 0


UT

The minimum norm solution is given by x† = A†m.



Tikhonov regularization is the classical method for
noise-robust tomographic reconstruction

Write a penalty functional

Φ(f ) = ‖Af −m‖22 + α‖f ‖22,

where 0 < α <∞ is a regularization parameter. Define Γα(m) by

Φ(Γα(m)) = min
f ∈X
{Φ(f )}.

We denote
Γα(m) = argmin

f ∈X
{‖Af −m‖22 + α‖f ‖22}.



Tikhonov regularization can be expressed as
filtering the singular values of the matrix A

Γα(m) = V



d1

d2
1 + α

0 · · · 0

0 . . . ...
... . . . 0

0 · · · 0
dmin{k,n}

d2
min{k ,n} + α


UTm

In large-scale computations it is better to use the formula

Γα(m) = (ATA + αI )−1ATm.



Standard Tikhonov regularization
argmin

f ∈Rn

{
‖Af −m‖22 + α‖f ‖22

}

Original phantom Reconstruction
Relative square norm error 12%



Non-negative Tikhonov regularization
argmin

f ∈Rn
+

{
‖Af −m‖22 + α‖f ‖22

}

Original phantom Reconstruction
Relative square norm error 10%



Recall the Lp norms for Rn

Let f ∈ Rn. The Lp norms for 1 ≤ p <∞ are defined by

‖f ‖p =
( n∑
j=1

|fj |p
)1/p

.

In particular we use the following two cases:

‖f ‖22 =
n∑

j=1

|fj |2, ‖f ‖1 =
n∑

j=1

|fj |.



Total variation (TV) regularization is a technique
for preserving edges in the reconstruction

We consider calculating the minimizer of the TV functional

‖Af −m‖22 + α {‖LHf ‖1 + ‖LVf ‖1}

= ‖Af −m‖22 + α
{∑

j

∑
i

(
|fi(j+1) − fij |+ |f(i+1)j − fij |

)}
where LH and LV are horizontal and vertical first-order difference
matrices. [Rudin, Osher and Fatemi 1992]



TV tomography: argmin
f ∈Rn

{‖Af −m‖22 + α‖∇f ‖1}

1992 Rudin, Osher & Fatemi: denoise images by taking A = I
1998 Delaney & Bresler
2001 Persson, Bone & Elmqvist
2003 Kolehmainen, S, Järvenpää, Kaipio, Koistinen, Lassas, Pirttilä

& Somersalo (first TV work with measured X-ray data)
2006 Kolehmainen, Vanne, S, Järvenpää, Kaipio, Lassas & Kalke
2006 Sidky, Kao & Pan
2008 Liao & Sapiro
2008 Sidky & Pan
2008 Herman & Davidi
2009 Tang, Nett & Chen
2009 Duan, Zhang, Xing, Chen & Cheng
2010 Bian, Han, Sidky, Cao, Lu, Zhou & Pan
2011 Jensen, Jørgensen, Hansen & Jensen
2011 Tian, Jia, Yuan, Pan & Jiang
2012–present: hundreds of articles indicated by Google Scholar



There are many computational approaches for
computing the minimum

Primal-dual algorithms Chambolle, Chan, Chen, Esser, Golub, Mulet,
Nesterov, Zhang
Thresholding Candès, Chambolle, Chaux, Combettes, Daubechies,
Defrise, DeMol, Donoho, Pesquet, Starck, Teschke, Vese, Wajs
Bregman iteration Cai, Burger, Darbon, Dong, Goldfarb, Mao, Osher,
Shen, Xu, Yin, Zhang
Splitting approaches Chan, Esser, Fornasier, Goldstein, Langer,
Osher, Schönlieb, Setzer, Wajs
Nonlocal TV Bertozzi, Bresson, Burger, Chan, Lou, Osher, Zhang

We found that quadratic programming works well for us.



Quadratic programming (QP) for TV
regularization

The minimizer of the functional

argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖LHf ‖1 + α‖LVf ‖1

}
can be transformed into the standard form

argmin
z∈R5n

{
1
2
zTQz + cT z

}
, z ≥ 0, Ez = b,

where Q is symmetric and E implements equality constraints.

Large-scale primal-dual interior point QP method was developed in
Kolehmainen, Lassas, Niinimäki & S (2012) and
Hämäläinen, Kallonen, Kolehmainen, Lassas, Niinimäki & S (2013).



Reduction to argmin
z∈R5n

{1
2z

TQz + cT z
}

Denote horizontal and vertical differences by

LHf = u+H − u−H and LVf = u+V − u−V ,

where u±H , u
±
V ≥ 0. TV minimization is now

argmin
f ∈Rn

+

{
f TATAf − 2f TATm + α1T (u+H + u−H + u+V + u−V )

}
,

where 1 ∈ Rn is vector of all ones. Further, we denote

z =


f
u+H
u−H
u+V
u−V

 , Q =


1
σ2A

TA 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , c =


−2ATm
α1
α1
α1
α1

 .



Non-negative TV regularization
argmin

f ∈Rn
+

{
‖Af −m‖22 + α‖∇f ‖1

}

Original phantom TV regularized reconstruction
Relative square norm error 7%



Recall the square phantom

@
�

A

f ∈ R32×32 Af ∈ R49×39



Naive reconstruction using the Moore-Penrose
pseudoinverse; data has 0.1% relative noise

Original phantom, values between
zero (black) and one (white)

Naive reconstruction with minimum
−14.9 and maximum 18.5



Standard Tikhonov regularization
argmin

f ∈Rn

{
‖Af −m‖22 + α‖f ‖22

}

Original phantom Reconstruction
Relative square norm error 35%



Constrained Tikhonov regularization
argmin

f ∈Rn
+

{
‖Af −m‖22 + α‖f ‖22

}

Original phantom Reconstruction
Relative square norm error 13%



Constrained total variation (TV) regularization
argmin

f ∈Rn
+

{
‖Af −m‖22 + α {‖LHf ‖1 + ‖LVf ‖1}

}

Original phantom TV regularized reconstruction
Relative square norm error 3%



Inverse problem of X-ray tomography: given
noisy sinogram, find a stable approximation to f

Model space X = R32×32 Data space Y = R32×49

D(A) A(D(A))

f=

Af =

m

A



Robust solution of ill-posed inverse problems
requires regularization

Model space X = R32×32 Data space Y = R39×49

D(A) A(D(A))

f

Af

m

A
δ

ΓαΓα(m)

We need to define a family of continuous functions Γα : Y → X so that
the reconstruction error ‖Γα(δ)(m) − x‖X vanishes asymptotically at the
zero-noise level δ → 0.



In variational regularization, the penalty term
expresses a priori knowledge about the unknown

Standard Tikhonov regularization:

argmin
f ∈Rn

{
‖Af −m‖22 + α‖f ‖22

}
Non-negativity constrained Tikhonov regularization:

argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖f ‖22

}
Non-negativity constrained Total Variation (TV) regularization:

argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖∇f ‖1

}



Outline

X-ray tomography

Mathematical model of X-ray attenuation

Tomography with few data: ill-posed inverse problem

Regularized inversion

A real-world example



This is Professor Keijo Hämäläinen’s X-ray lab



We collected X-ray projection data of a walnut
from 1200 directions

Laboratory and data collection by
Keijo Hämäläinen and Aki Kallonen,
University of Helsinki.

The data is openly available at
http://fips.fi/dataset.php, thanks to
Esa Niemi and Antti Kujanpää



Reconstructions of a 2D slice through the walnut
using filtered back-projection (FBP)

FBP with comprehensive data
(1200 projections)

FBP with sparse data
(20 projections)



Sparse-data reconstruction of the walnut using
non-negative Tikhonov regularization

Filtered back-projection Constrained Tikhonov regularization
argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖f ‖22

}



Sparse-data reconstruction of the walnut using
non-negative total variation regularization

Filtered back-projection Constrained TV regularization
argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖∇f ‖1

}



Sparse-data reconstruction of the walnut using
Total Generalized Variation (TGV)

Filtered back-projection TGV: thanks to Kristian Bredies!



Daubechies, Defrise and de Mol introduced
a revolutionary method in 2004

The sparsity-promoting iteration works like this:

fn = Sµ(fn−1 + AT (m − Afn−1)),

where the soft-thresholding operator Sµ is defined by

Sµ(g) =
∑
j∈J

Sµ(〈g , ψj〉)ψj(x).

Here ψj are for example wavelets or shearlets, forming a frame, and

Sµ(x) =


x + µ

2 if x ≤ −µ
2

0 if |x | < µ
2

x − µ
2 if x ≥ µ

2 .



Illustration of the Haar wavelet transform



Sparse-data reconstruction of the walnut using
Haar wavelet sparsity

Filtered back-projection Constrained Besov regularization
argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖f ‖B1

11

}



Sparse-data reconstruction of the walnut using
Daubechies 2 wavelet sparsity

Filtered back-projection Constrained Besov regularization
argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖f ‖B1

11

}



Sparse-data reconstruction of the walnut using
shearlet sparsity

Filtered back-projection Thanks to Gitta Kutyniok!
http://www.shearlab.org/

















All Matlab codes freely
available at this site!

Part I: Linear Inverse Problems
1 Introduction
2 Naïve reconstructions and inverse crimes
3 Ill-Posedness in Inverse Problems
4 Truncated singular value decomposition
5 Tikhonov regularization
6 Total variation regularization
7 Besov space regularization using wavelets
8 Discretization-invariance
9 Practical X-ray tomography with limited data
10 Projects

Part II: Nonlinear Inverse Problems
11 Nonlinear inversion
12 Electrical impedance tomography
13 Simulation of noisy EIT data
14 Complex geometrical optics solutions
15 A regularized D-bar method for direct EIT
16 Other direct solution methods for EIT
17 Projects

http://wiki.helsinki.fi/display/mathstatHenkilokunta/Inverse+Problems+Book+Page


Finnish Inverse Problems Society offers open
X-ray tomographic datasets

See the website https://www.fips.fi/dataset.php

https://www.fips.fi/dataset.php


The ASTRA toolbox contains important
algorithms

See the website http://www.astra-toolbox.com/

[W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F.
Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg,
and J. Sijbers 2016]

[W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S.
Bals, K. J. Batenburg, and J. Sijbers 2015]

http://www.astra-toolbox.com/


Another great resource is Per Christian Hansen’s
3D tomography toolbox TVreg

TVreg: Software for 3D Total Variation Regularization (for
Matlab Version 7.5 or later), developed by Tobias Lindstrøm
Jensen, Jakob Heide Jørgensen, Per Christian Hansen, and
Søren Holdt Jensen.

Website: http://www2.imm.dtu.dk/ pcha/TVReg/



These books are recommended for learning
the mathematics of practical X-ray tomography
1983 Deans: The Radon Transform and Some of Its Applications
1986 Natterer: The mathematics of computerized tomography
1988 Kak & Slaney: Principles of computerized tomographic imaging
1996 Engl, Hanke & Neubauer: Regularization of inverse problems
1998 Hansen: Rank-deficient and discrete ill-posed problems
2001 Natterer & Wübbeling: Mathematical Methods in Image
Reconstruction
2008 Buzug: Computed Tomography: From Photon Statistics to
Modern Cone-Beam CT
2008 Epstein: Introduction to the mathematics of medical imaging
2010 Hansen: Discrete inverse problems
2012 Mueller & S: Linear and Nonlinear Inverse Problems with
Practical Applications
2014 Kuchment: The Radon Transform and Medical Imaging



Thank you for your attention!
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