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Course team

Markus Juvonen

Alexander Meaney

Matlab instruction: please ask Alexander or Markus!
The session is after Friday’s lecture.



Links to open computational resources

Open CT datasets:
•Finnish Inverse Problems Society (FIPS) dataset page

Matrix-based parallel-beam reconstruction algorithms:
FIPS Computational Blog
•Truncated SVD
•Total Variation regularization

Matrix-free large-scale reconstruction algorithms:
•Matlab page of Mueller-S 2012 book
•ASTRA toolbox
•TVReg: Software for 3D Total Variation Regularization

http://fips.fi/dataset.php
https://blog.fips.fi/uncategorized/simple-simulation-of-x-ray-tomography/
https://blog.fips.fi/uncategorized/total-variation-regularization-for-x-ray-tomography/
https://wiki.helsinki.fi/display/mathstatHenkilokunta/Matrix-free+X-ray+tomography+with+sparse+data
http://www.astra-toolbox.com/
http://www.imm.dtu.dk/~pcha/TVReg/
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We consider small specimens of human bone
imaged using microtomography

Slice of 3D reconstruction by FDK
based on 596 angles

Three-dimensional structure



We pick out a smaller region of interest
for osteoarthritis analysis

Slice of 3D reconstruction by FDK
based on 596 angles

Slice of 3D region of interest
after binary thresholding



We use two numerical quality measures applied
to segmented three-dimensional bone structure

Trabecular thickness Trabecular separation

[Bouxsein, Boyd, Christiansen, Guldberg, Jepsen, & Müller 2010]



The goal is to reduce measurement time
by recording fewer radiographs

3D FDK reconstruction
based on 40 angles

3D shearlet-sparsity reconstruction
based on 40 angles



Healthy bone

Osteoarthritic bone

Thickness Separation

Thickness Separation

8.1 15.3

5.9 21

[Purisha, Karhula, Rimpeläinen, Nieminen, Saarakkala & S, submitted]

Bone quality parameters from ground truth



Thickness Separation
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Projections: 596

Projections: 120
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[Purisha, Karhula, Rimpeläinen, Nieminen, Saarakkala & S, submitted]

Results from FDK reconstructions



Thickness Separation
8.1 15.3

5.9 21

Projections: 596

Projections: 120
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Projections: 120

Projections: 60

Projections: 40

[Purisha, Karhula, Rimpeläinen, Nieminen, Saarakkala & S, submitted]

Results from 3D shearlet-sparsity reconstructions
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Daubechies, Defrise and de Mol introduced
a revolutionary inversion method in 2004

Consider the sparsity-promoting variational regularization

argmin
f ∈Rn

{
‖Af −m‖22 + µ‖Wf ‖1

}
,

where W is an orthonormal wavelet transform. The minimizer can
be computed using the iteration

fj+1 = W−1SµW
(
fj + AT (m − Afj)

)
,

where the soft-thresholding operation

Sµ(x) =


x + µ

2 if x ≤ −µ
2 ,

0 if |x | < µ
2 ,

x − µ
2 if x ≥ µ

2 ,

is applied to each wavelet coefficient separately.



We modify the method so that non-negativity
constraint has rigorous mathematical foundation

The minimizer

argmin
f ∈Rn

+

{
1
2
‖Af −m‖22 + µ ‖Wf ‖1

}

can be computed using this iteration:

y (i+1) = PC

(
f (i) − τ∇g(f (i))− λW T v (i)

)
v (i+1) =

(
I − Sµ

)(
Wy (i+1) + v (i)

)
f (i+1) = PC

(
f (i) − τ∇g(f (i))− λW T v (i+1)

)
where τ > 0, λ > 0 and g(f ) = 1

2‖Af −m‖22. Here PC denotes
projection to the non-negative “quadrant.”

[Loris & Verhoeven 2011], [Chen, Huang & Zhang 2016]



Illustration of the Haar wavelet transform



Sparse-data reconstruction of the walnut using
Haar wavelet sparsity

Filtered back-projection Constrained Besov regularization
argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖f ‖B1

11

}



How to choose the thresholding parameter µ?
Here it is too small.



How to choose the thresholding parameter µ?
Here it is too large.



Automatic parameter choice using
controlled wavelet-domain sparsity (CWDS)

Assume given the a priori sparsity level 0 ≤ Cpr ≤ 1.
Denote by Cj the sparsity of the jth iterate fj ∈ Rn:

Cj = (number of nonzero elements in Wfj ∈ Rn)/n.

The CWDS iteration is based on proportional-integral-derivative
(PID) controllers:

µ(i+1) = µ(i) + β(C(i) − Cpr).

[Purisha, Rimpeläinen, Bubba & S, arXiv:1703.09798,
to appear in Measurement Science and Technology.]

https://arxiv.org/abs/1703.09798


CWDS choice of the thresholding parameter µ



CWDS choice of the thresholding parameter µ



CWDS choice of the thresholding parameter µ
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Shearlet coefficients at coarse scale 1/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at coarse scale 2/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at coarse scale 3/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at coarse scale 4/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at coarse scale 5/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at coarse scale 6/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at coarse scale 7/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at coarse scale 8/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at medium scale 1/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at medium scale 2/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at medium scale 3/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at medium scale 4/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at medium scale 5/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at medium scale 6/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at medium scale 7/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at medium scale 8/8

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 1/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 2/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 3/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 4/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 5/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 6/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 7/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 8/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 9/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 10/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 11/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 12/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 13/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 14/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 15/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



Shearlet coefficients at fine scale 16/16

We use Shearlab [Kutyniok, Shahram & Zhuang 2012].



The shearlet transform gives multi-resolution and
orientation-aware building blocks for image data

Schematic diagram of the
frequency plane tiling of
several elements of a 2D
shearlet system, for differ-
ent values of dilation and
shearing parameters.



Sparse-data reconstruction of the walnut using
shearlet sparsity

Filtered back-projection Shearlet-sparse reconstruction,
with transform code from
http://www.shearlab.org/
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The transpose matrix AT appears in many
inversion methods, including Tikhonov
regularization

Write a penalty functional

Φ(f ) = ‖Af −m‖22 + α‖f ‖22,

where 0 < α <∞ is a regularization parameter. Define Γα(m) by

Φ(Γα(m)) = min
f ∈X
{Φ(f )}.

We denote

Γα(m) = argmin
f ∈X

{‖Af −m‖22 + α‖f ‖22}.

In large-scale computations it is better to use the formula

Γα(m) = (ATA + αI )−1ATm.



Projected Barzilai-Borwein minimization

Denote ‖f ‖β :=
n∑

i=1

√
(fi )2 + β with β > 0. Minimize

Gβ(f ) :=
1
2
‖Af − g̃‖22 + α (‖LH f ‖β + ‖LV f ‖β) ,

with a non-negativity constraint:

f k+1 = P
(
f k − λk∇Gβ(f k)

)
, k = 0, . . . , kmax − 1.

The step size is

λk =
(f k − f k−1)T (f k − f k−1)

(f k − f k−1)T (∇Gβ(f k)−∇Gβ(f k−1))

and P : Rn → Rn is the projection

(P(f ))i =

{
fi if fi ≥ 0
0 if fi < 0

, i = 1, . . . , n.

Matlab code available at this page.

https://wiki.helsinki.fi/display/mathstatHenkilokunta/Matrix-free+X-ray+tomography+with+sparse+data


Loris and Verhoeven introduced an algorithm
applicable to shearlet-sparsifying inversion

[Loris & Verhoeven 2011] The minimization of

argmin
f ∈Rn

{
‖Af −m‖22 + µ‖T f ‖1

}
can be computed using this iteration:

gj+1 = fj + AT (m − Afj),

wj+1 = Pµ

(
wj + T (gj+1 − T Twj)

)
,

fj+1 = gj+1 − T Twj+1,

where Pµ(u) = u − Sµ.



Let’s take a closer look at the transpose AT ,
also known as back-projection operator

Our tomographic matrix equation is Af = m, where
I f ∈ Rn is the target, and
I m ∈ Rk is the sinogram.

Target
space

Sinogram
space

f ∈Rn -projection A Rk 3 m

Rn �

back-projection AT Rk



Example of the action of AT : point target

-
A



This is why AT is called the back-projection

-
A

�

AT



Example of the action of AT : point sinogram

�

AT



Here is another point sinogram

�

AT



Rotating around the object allows us to form
the so-called sinogram

https://www.youtube.com/watch?v=5Vyc1TzmNI8

https://www.youtube.com/watch?v=5Vyc1TzmNI8


Radon transform

θ

x · ~θ = s

x1

x2

︸︷︷︸ s

The most classical model for X-ray data is the Radon transform

Rf (θ, s) =

∫
x ·θ=s

f (x)dx =

∫
y∈θ⊥

f (sθ + y)dy , θ ∈ S1, s ∈ R,

where S1 is the unit circle, θ⊥ is the orthogonal complement of the
unit vector θ, and x · θ denotes vector inner product.



This is an illustration of the standard
reconstruction by filtered back-projection

https://www.youtube.com/watch?v=ddZeLNh9aac

https://www.youtube.com/watch?v=ddZeLNh9aac


The back-projection operator

To reconstruct f at a point x , the most obvious data related to
f (x) are the integrals over lines passing through x . Let us sum
them all together, call the result Tf (x) and see what we get by
introducing polar coordinates:

Tf (x) =

∫ π

0

∫ ∞
−∞

f (x + tθ)dtdθ

=

∫ 2π

0

∫ ∞
0

f (x + tθ)

t
tdtdθ

=

∫
R2

f (x + y)

|y |
dy

=

∫
R2

f (y)

|x − y |
dy

= (f (y) ∗ 1
|y |

)(x),

where ∗ stands for convolution.



Filtered back-projection

We want to find an inverse operator for T . Note that

1̂
|y |

(ξ) =
1
|ξ|
.

Furthermore, define the Calderón operator Λ in all dimensions Rn by

Λf (x) := F−1|ξ|f̂ (ξ) =
1

(2π)n

∫
Rn

e ix ·ξ|ξ|f̂ (ξ)dξ, (1)

where F−1 is the inverse Fourier transform. Note that Λ can be
thought of as a high-pass filter. Now we see that

T̂f (ξ) =
f̂ (ξ)

|ξ|
,

and therefore f = ΛTf = ΛR∗Rf , where R∗ is a dual operator of
the Radon transform R . See Chapter II.2 of [Natterer 1986].
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Construction of limited-angle sinogram

0◦ 90◦ 180◦
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Construction of limited-angle sinogram
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Construction of limited-angle sinogram
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Construction of limited-angle sinogram

0◦ 90◦ 180◦



Construction of limited-angle sinogram

0◦ 90◦ 180◦



Construction of limited-angle sinogram

0◦ 90◦ 180◦



Singular value decomposition A = UTDV

1 200 400 600 735

10
-15

10
-10

10
-5

10
0

Singular values of A
(diagonal of D)

735×1024 system matrix A,
only nonzero elements shown



Limited data gives only part of the wavefront set

Stable part of wavefront set Unstable part of wavefront set

See [Greenleaf & Uhlmann 1989], [Quinto 1993], and [Frikel & Quinto 2013]



Filtered backprojection

Stable part of WF set Reconstruction by FBP



Constrained total variation (TV) regularization
argmin

f ∈Rn
+

{
‖Af −m‖22 + α‖∇f ‖1

}

Stable part of WF set TV regularized reconstruction
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The VT device was developed in 2001–2012 by
Nuutti Hyvönen
Seppo Järvenpää
Jari Kaipio
Martti Kalke
Petri Koistinen
Ville Kolehmainen
Matti Lassas
Jan Moberg
Kati Niinimäki
Juha Pirttilä
Maaria Rantala
Eero Saksman
Henri Setälä
Erkki Somersalo
Antti Vanne
Simopekka Vänskä
Richard L. Webber



Application: dental implant planning, where a
missing tooth is replaced with an implant



Dental X-ray imaging 100 years ago



It is tedious to interpret a mosaic of overlapping
intraoral X-ray images



Panoramic dental imaging shows all the teeth
simultaneously

Panoramic imaging
was invented by Yrjö
Veli Paatero in the
1950’s.



This is the classical imaging procedure
of the panoramic X-ray device

https://www.youtube.com/watch?v=QFTXegPxC4U

https://www.youtube.com/watch?v=QFTXegPxC4U


The resulting image shows a sharp layer
positioned inside the dental arc



Nowadays, a digital panoramic imaging device is
standard equipment at dental clinics

A panoramic dental image offers a
general overview showing all teeth
and other structures simultaneously.

Panoramic images are not suitable
for dental implant planning because
of unavoidable geometric distortion.

•

X-ray source

Narrow detector



We reprogram the panoramic X-ray device so that
it collects projection data by scanning

https://www.youtube.com/watch?v=motthjiP8ZQ

https://www.youtube.com/watch?v=motthjiP8ZQ


We reprogram the panoramic X-ray device so that
it collects projection data by scanning
Number of projection images: 11

Angle of view: 40 degrees

Image size: 1000×1000 pixels

The unknown vector f has
7 000 000 elements.



Here the CBCT reconstruction (right) gave 100
times more radiation than VT imaging (middle)

Kolehmainen, Vanne, S, Järvenpää, Kaipio,
Lassas & Kalke 2006
Kolehmainen, Lassas & S 2008
Cederlund, Kalke & Welander 2009
Hyvönen, Kalke, Lassas, Setälä & S 2010
U.S. patent 7269241, thousands of VT units in use



All Matlab codes freely
available at this site!

Part I: Linear Inverse Problems
1 Introduction
2 Naïve reconstructions and inverse crimes
3 Ill-Posedness in Inverse Problems
4 Truncated singular value decomposition
5 Tikhonov regularization
6 Total variation regularization
7 Besov space regularization using wavelets
8 Discretization-invariance
9 Practical X-ray tomography with limited data
10 Projects

Part II: Nonlinear Inverse Problems
11 Nonlinear inversion
12 Electrical impedance tomography
13 Simulation of noisy EIT data
14 Complex geometrical optics solutions
15 A regularized D-bar method for direct EIT
16 Other direct solution methods for EIT
17 Projects

http://wiki.helsinki.fi/display/mathstatHenkilokunta/Inverse+Problems+Book+Page


Finnish Inverse Problems Society offers open
X-ray tomographic datasets

See the website https://www.fips.fi/dataset.php

https://www.fips.fi/dataset.php


The ASTRA toolbox contains important
algorithms

See the website http://www.astra-toolbox.com/

[W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F.
Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg,
and J. Sijbers 2016]

[W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S.
Bals, K. J. Batenburg, and J. Sijbers 2015]

http://www.astra-toolbox.com/


Another great resource is Per Christian Hansen’s
3D tomography toolbox TVreg

TVreg: Software for 3D Total Variation Regularization (for
Matlab Version 7.5 or later), developed by Tobias Lindstrøm
Jensen, Jakob Heide Jørgensen, Per Christian Hansen, and
Søren Holdt Jensen.

Website: http://www2.imm.dtu.dk/ pcha/TVReg/



These books are recommended for learning
the mathematics of practical X-ray tomography
1983 Deans: The Radon Transform and Some of Its Applications
1986 Natterer: The mathematics of computerized tomography
1988 Kak & Slaney: Principles of computerized tomographic imaging
1996 Engl, Hanke & Neubauer: Regularization of inverse problems
1998 Hansen: Rank-deficient and discrete ill-posed problems
2001 Natterer & Wübbeling: Mathematical Methods in Image
Reconstruction
2008 Buzug: Computed Tomography: From Photon Statistics to
Modern Cone-Beam CT
2008 Epstein: Introduction to the mathematics of medical imaging
2010 Hansen: Discrete inverse problems
2012 Mueller & S: Linear and Nonlinear Inverse Problems with
Practical Applications
2014 Kuchment: The Radon Transform and Medical Imaging



Thank you for your attention!
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