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How to choose the regularization parameter
in the total variation (TV) functional?

Heuristics: Rullgård 2008

Balancing `1 and TV: Clason, Jin
& Kunisch 2010

Local variance: Dong, Hinter-
müller & Rincon-Camacho 2011

Discrepancy principle:
Wen & Chan 2012

S-curve method: Kolehmainen,
Lassas, Niinimäki & S 2012

Dantzig estimation: Frick, Mar-
nitz & Munk 2012

Quasi-optimality principle and
Hanke-Raus rules: Kindermann,
Mutimbu & Resmerita 2013

KKT system: Chen, Loli Piccolo-
mini & Zama 2014

Discrepancy principle:
Toma, Sixou & Peyrin 2015

Cross validation,
Stein’s unbiased risk estimates,
L-curve method, . . .

No single choice rule works perfectly
for all applications. Therefore, it is
good to have a collection of rules.



The continuous tomographic model needs to
be approximated using a discrete model
Continuous model:

Discrete model:

In this schematic setup we have 5
projection directions and a 10-pixel
detector. Therefore, the number of
data points is 50.



The resolution of the discrete model can be freely
chosen according to computational resources
Continuous model:

Discrete models:

In this schematic setup we have 5
projection directions and a 10-pixel
detector. Therefore, the number of
data points is 50.

The number of degrees of freedom
in the three discrete models below
are 16, 64 and 256, respectively.



We define the total variation (TV) norm
consistently for continuous and discrete cases
Continuous anisotropic TV norm for
attenuation coefficient f : Ω→ R:∫

Ω

(∣∣∣ ∂f
∂x1

∣∣∣+
∣∣∣ ∂f
∂x2

∣∣∣)dx .
Discrete anisotropic TV norm for an
image matrix of size n × n:

1
n

∑
|fκ − fκ′ | ,

where the sum is over horizontally
and vertically neighboring pixel val-
ues fκ and fκ′ .

The above is based on this approximate two-dimensional computation:∫
Ω

∣∣∣∣∣ f (x1 + 1
n , x2)− f (x1, x2)

1/n

∣∣∣∣∣ dx ≈ (1/n)2
∑∣∣∣∣ fκ − fκ′

1/n

∣∣∣∣ ,
where the sum is over horizontally neighboring pixel values fκ and fκ′ .
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We collected X-ray projection data of a walnut
from 1200 directions

Laboratory and data collection by
Keijo Hämäläinen and Aki Kallonen,
University of Helsinki.

The data is openly available at
http://fips.fi/dataset.php, thanks to
Esa Niemi and Antti Kujanpää



Reconstructions of a 2D slice through the walnut
using filtered back-projection (FBP)

FBP with comprehensive data
(1200 projections)

FBP with sparse data
(20 projections)



Low-noise TV reconstructions of a walnut
using several regularization parameters

α = 0.001 α = 1 α = 1000

Too small α Just right α Too large α

Computations by Kati Niinimäki using a primal-dual interior point method.



Low-noise TV reconstructions of a walnut
using several regularization parameters

α = 0.001 α = 1 α = 1000

Too small α Just right α Too large α

What happens when we compare reconstructions
at different resolutions?



Low-noise TV reconstructions of a walnut at many
resolutions using α = 0.001

128× 128 192× 192 256× 256



Low-noise TV reconstructions of a walnut at many
resolutions using α = 1

128× 128 192× 192 256× 256



Low-noise TV reconstructions of a walnut at many
resolutions using α = 1000

128× 128 192× 192 256× 256



TV norms of low-noise reconstructions with
various resolutions and parameters α

Resolution
α 128× 128 192× 192 256× 256
10−4 1.51 2.29 3.64
10−3 1.51 2.29 3.46
10−2 1.50 2.23 2.97
10−1 1.43 1.85 1.93
100 1.08 1.11 1.11
101 0.78 0.78 0.77
102 0.48 0.48 0.48
103 0.12 0.12 0.12
104 0.04 0.04 0.04
105 0 0 0
106 0 0 0



TV norms of low-noise reconstructions with
various resolutions and parameters α

Resolution
α 128× 128 192× 192 256× 256
10−4 1.51 2.29 3.64
10−3 1.51 2.29 3.46
10−2 1.50 2.23 2.97
10−1 1.43 1.85 1.93
100 1.08 1.11 1.11
101 0.78 0.78 0.77
102 0.48 0.48 0.48
103 0.12 0.12 0.12
104 0.04 0.04 0.04
105 0 0 0
106 0 0 0

What happens when we add noise to the data?



5% noise TV reconstructions of a walnut at many
resolutions using α = 0.001

128× 128 192× 192 256× 256



5% noise TV reconstructions of a walnut at many
resolutions using α = 10

128× 128 192× 192 256× 256



5% noise TV reconstructions of a walnut at many
resolutions using α = 10000

128× 128 192× 192 256× 256



TV norms of reconstructions using various
noise levels, resolutions and parameters α

Low noise 5% noise
α 1282 1922 2562 1282 1922 2562

10−4 1.51 2.29 3.64 2.42 5.05 8.71
10−3 1.51 2.29 3.46 2.43 5.05 8.59
10−2 1.50 2.23 2.97 2.42 5.01 8.59
10−1 1.43 1.85 1.93 2.37 4.83 8.16
100 1.08 1.11 1.11 1.99 3.50 5.12
101 0.78 0.78 0.77 0.86 0.86 0.88
102 0.48 0.48 0.48 0.48 0.48 0.48
103 0.12 0.12 0.12 0.12 0.12 0.12
104 0.04 0.04 0.04 0.04 0.04 0.04
105 0 0 0 0 0 0
106 0 0 0 0 0 0

[Niinimäki, Lassas, Hämäläinen, Kallonen, Kolehmainen, Niemi & S,
SIAM Journal on Imaging Sciences 2016]
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There are some related results in the literature

1992 Vainikko: On the discretization and regularization of
ill-posed problems with noncompact operators

We use geometric arguments similar to those here:
1995 Chambolle: Image Segmentation by Variational Methods:
Mumford and Shah Functional and the Discrete Approximations.

These works consider TV functionals and Γ-convergence when
discretization is refined, but without a measurement operator:
2009 Chambolle, Giacomini & Lussardi
2012 Gennip & Bertozzi
2013 Bellettini, Chambolle & Goldman
2013 Trillos & Slepc̆ev

This paper achieves a result analogous with ours,
using wavelet frames in the finite-dimensional functionals:
2012 Cai, Dong, Osher & Shen



Assumptions on the linear forward map A

Assume either (A) or (B) about the linear operator A:

(A) A : L2(D)→ L2(Ω) is compact and A : L1(D)→ D′(Ω) is
continuous with some open and bounded set Ω ⊂ R2.
This covers the case of classical Radon transform with image
domain D and sinogram domain Ω. We denote the set of
distributions by D ′(Ω).

(B) A : L1(D)→ RM is bounded.
This covers the practically important discrete pencil beam
model of tomographic measurements.



Definition of discrete and continuous
regularization functionals

Let D be the square [0, 1]2 ⊂ R2. Use anisotropic BV (D) norm

‖u‖BV = ‖u‖L1 + V (u) = ‖u‖L1 +

∫
D

( ∣∣∣∣∂u(x)

∂x1

∣∣∣∣+

∣∣∣∣∂u(x)

∂x2

∣∣∣∣ )dx .
Define S∞ : BV (D)→ R and Sj : BV (D)→ R ∪ {∞} by

S∞(u) = ‖Au −m‖2L2(Ω) + α1‖u‖L1(D) + αV (u)

with positive regularization parameters α1 > 0 and α > 0, and

Sj(u) =

{
S∞(u), for u ∈ Range(Tj),
∞, for u 6∈ Range(Tj).

Linear operator Tj projects to functions that are piecewise constant
on a regular 2j×2j square pixel grid.



Our main theorem ensures the convergence of
regularized solutions as resolution grows

I There exists a minimizer ũj ∈ argmin(Sj) for all j = 1, 2, 3, . . .
I There exists a minimizer ũ∞ ∈ argmin(S∞).
I Any sequence ũj ∈ argmin(Sj) of minimizers has a

subsequence ũj(`) that converges weakly in BV (D) to some
limit w ∈ BV (D). Furthermore, lim

`→∞
V (ũj(`)) = V (w).

I The limit w is a minimizer: w ∈ argmin(S∞).

[Niinimäki, Lassas, Hämäläinen, Kallonen, Kolehmainen, Niemi & S,
SIAM Journal on Imaging Sciences 2016]



How to prove the main theorem?

The proof is an analysis of Γ-
convergence of functionals Sj to S∞.
However, the choice of topologies
is very delicate. For details, see
http://arxiv.org/abs/0902.2313v1.

Note: related Γ-convergence re-
sults of TV functionals are given in
[Chambolle, Giacomini and Lussardi
2009], but they do not consider mea-
surement operators.

This approximation lemma serves as
the foundation of the proof:

Lemma. For all u ∈ BV (D) and
ε > 0 there exists j > 0 and a func-
tion u′, piecewise constant in the
dyadic 2j×2j grid, such that

‖u−u′‖L1(D) + |V (u)−V (u′)| < ε.

Recall that

V (u) =

∫
D

( ∣∣∣∣∂u(x)

∂x1

∣∣∣∣+∣∣∣∣∂u(x)

∂x2

∣∣∣∣ )dx .



We need to move from triangulation-based
to pixel-based approximation
[Bĕlík and Luskin 2003]: the desired
inequality holds with PW constant
functions in a fine triangularization.

However, we need to work with
dyadic 2j×2j pixel grids.



We surround any triangle vertex (blue dot) with
a “pixel cluster” neighborhood (gray box)





Refine the grid outside clusters so that pixel-wise
polygonal chains (on pink) connect the clusters



Using the anisotropic BV norm reduces the
approximation to estimating small intervals

v1 = a

v1 = b

v2 = a

v2 = b

The difference between the BV
norms of the piecewise constant
functions v1 and v2 comes entirely
from jumps over the two red vertical
intervals below.



What can we say about the proposed method?

Benefits of our multiresolution TV parameter choice method:
I simple definition,
I easy implementation, and
I no need of a priori information about the noise amplitude.

Also, it seems to perform well for real tomographic data.

Downside: several reconstructions need to be computed. Also, it is
still unclear why the method works so nicely: if there is convergence
for any α in theory, what is the instability we are observing?

The method can be tried out with 3D tomography (it works!) and
with other inverse problems and regularizers.
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We study a tomographic imaging modality
based on multiple source-detector pairs

Place several X-ray sources and de-
tectors in fixed positions in 3D. The
detectors should have a high frame-
rate relative to the movement of the
object under imaging.

Reconstructing the 3D structure at
all frames leads to 4D tomography.

Applications include
cardiac imaging,
angiography,
biotechnology research,
veterinary medicine,
nondestructive testing.



Dynamic Spatial Reconstructor

[Robb, Hoffman, Sinak, Harris & Ritman 1983]



One potential benefit of this imaging modality is
three-dimensional angiography

This is regular two-dimensional angiography.
Video by Dr. Magda Bayoumi, downloaded from Dailymotion



Very brief overview of multi-source tomographic
studies, all based on FBP-type algorithms

1980 Berninger & Redington: Multiple purpose high speed
tomographic x-ray scanner (patent)

1983 Robb, Hoffman, Sinak, Harris & Ritman: High-speed
three-dimensional x-ray computed tomography: The dynamic spatial
reconstructor

1993 Stiel, Stiel, Klotz & Nienaber: Digital flashing tomosynthesis:
a promising technique for angiocardiographic screening

2001 Liu, Liu, Wang & Wang: Half-scan cone-beam CT fluoroscopy
with multiple x-ray sources

Static multi-source arrangements have received very little attention
in the literature. Filtered back-projection type methods are not
well-suited for the resulting sparse datasets.



Reconstruction methods for dynamic tomography

1997 Baroudi & Somersalo: Gas temperature mapping using
impedance tomography

2002 Lu & Mackie: Tomographic motion detection and correction
directly in sinogram space

2003 Bonnet et al.: Dynamic X-Ray Computed Tomography

2004 Roux et al.: Exact reconstruction in 2D dynamic CT:
compensation of time-dependent affine deformations

2006 Kindermann & Leitão: On regularization methods for inverse
problems of dynamic type

2010 Katsevich: An accurate approximate algorithm for motion
compensation in two-dimensional tomography

2014 Hahn: Reconstruction of dynamic objects with affine deformations
in computerized tomography

2015 Hahn: Dynamic linear inverse problems with moderate movements
of the object: Ill-posedness and regularization



X-ray sources and detectors are expensive,
and surrently we have only one of each.

How to use one X-ray source and one detector
to create a multi-source type dataset?



Consider a simple multi-source measurement:

t = 1

1

2

3



Consider a simple multi-source measurement:

t = 2

4

5

6



Consider a simple multi-source measurement:

t = 3

7

8

9



t = 1

1

We can collect the same dataset by rotating,
if the object stays stationary during rotation:



t = 1

2

We can collect the same dataset by rotating,
if the object stays stationary during rotation:



t = 1

3

We can collect the same dataset by rotating,
if the object stays stationary during rotation:



t = 2

4

We can collect the same dataset by rotating,
if the object stays stationary during rotation:



t = 2

5

We can collect the same dataset by rotating,
if the object stays stationary during rotation:



t = 2

6

We can collect the same dataset by rotating,
if the object stays stationary during rotation:



t = 3

7

We can collect the same dataset by rotating,
if the object stays stationary during rotation:



t = 3

8

We can collect the same dataset by rotating,
if the object stays stationary during rotation:



t = 3

9

We can collect the same dataset by rotating,
if the object stays stationary during rotation:
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This is a joint work with

Keijo Hämäläinen, University of Helsinki, Finland

Lauri Harhanen, KaVo Kerr Group

Aki Kallonen, University of Helsinki, Finland

Ville Kolehmainen, University of Eastern Finland

Matti Lassas, University of Helsinki, Finland

Esa Niemi, University of Helsinki, Finland



The level set method can be used to model mud



The level set method [Osher, Sethian]
parametrizes curves and surfaces in a flexible way



φ

H(φ)

g(φ)



A generalization of the classical level set method
was introduced in [Kolehmainen, Lassas & S 2008]

We model the X-ray attenuation
function as g(Φ(x , y)), where

g(τ) =

{
τ, if τ ≥ 0
0, if τ < 0.

The smooth level set function
Φ(x , y) := lim

s→∞
φ(x , y , s) is the

large-time limit of the solution of the
evolution equation{
φs = −A∗(A(g(φ))−m) + β∆φ,
(ν · ∇ − r)φ|∂Ω = 0,

with a suitable initial condition.
Here β > 0, r ≥ 0, A∗ denotes the
transpose of A, and ∆φ = φxx+φyy .



The generalized level set method works nicely
for stationary limited-angle 2D tomography

Ground truth

Full angle

Back-projection

Limited angle

Level set method

Limited angle

Images from [Kolehmainen, Lassas & S 2008]. However, see also
[Niemi, Lassas, Kallonen, Harhanen, Hämäläinen and S 2015]



We deal with the dynamic case by considering
the moving target in spacetime

Movie designed by Topias Rusanen



We write a higher-order level set method
in (2+1)D spacetime for the dynamic case

The 2D static case:

We model the X-ray attenuation as
g(φ(x , y)). The level set function φ
belongs to H1(Ω) and is defined as
the minimizer of

‖Ag(φ)−m‖2L2 + α‖∇φ‖2L2 ,

where ∇φ = [φx , φy ]T .

[Kolehmainen, Lassas & S 2008]

The (2+1)D dynamic case:

We model the X-ray attenuation as
g(Φ(x , y , t)). The level set function
φ belongs to H2(Ω × [0,T ]) and is
defined as the minimizer of

‖Ag(φ)−m‖2L2 + α‖∇φ‖2L2+

+α(‖∂2xφ‖2L2 +‖∂2yφ‖2L2 +‖∂2t φ‖2L2),

where ∇φ = [φx , φy , φt ]
T .

[Niemi, Lassas, Kallonen, Harhanen,
Hämäläinen and S 2015]



There exists at least one minimizer for our
generalized level set functional

Theorem: Let A be an operator modeling 2D Radon transforms
measured at several times. If α > 0 satisfies an upper bound
involving the signal-to-noise ratio, then the nonlinear functional

Fn(φ) :=
1
2
‖Ag(φ)−m‖22 +

α

2

∑
1≤|β|≤n

‖Dβφ‖22

has a global minimizer. The minimizer is unique for n = 1.

We model the X-ray attenu-
ation function as g(Φ(x , y)),
where

g(τ) =

{
τ, if τ ≥ 0
0, if τ < 0.

[Niemi, Lassas, Kallonen, Harhanen, Hämäläinen and S 2015]



Numerical minimization in the case n = 2

We smooth out the nondifferentia-
bility of the objective functional by
replacing g : R → R by the differ-
entiable approximation

gδ(τ) =

{√
τ2 + δ2 − δ, if τ > 0,

0, if τ ≤ 0,

where δ > 0 is small.

Now we can use a gradient-based
optimization method for computing
the minimizer of

‖Agδ(φ)−m‖2L2 + α‖∇φ‖2L2+

+α(‖∂2xφ‖2L2 +‖∂2yφ‖2L2 +‖∂2t φ‖2L2).



Two simulated examples, based on only seven (7)
projection directions:

Imaging geometry:

Spacetime phantoms:



Original Level set
n = 1

Level set
n = 2

Tikhonov
2D, ≥ 0

TV
2D, ≥ 0



Level set reconstruction in spacetime

Original phantom



Original Level set
n = 1

Level set
n = 2

Tikhonov
2D, ≥ 0

TV
2D, ≥ 0

[Niemi, Lassas, Kallonen, Harhanen, Hämäläinen and S 2015]



Level set reconstruction in spacetime

Original phantom



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 1
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 2
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 3
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 4
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 5
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 6
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 7
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 8
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 9
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



Level set (n = 2) reconstruction from 10 projections

FBP reconstruction
from 120 projections

t = 10
Tomographic data:
Keijo Hämäläinen
Aki Kallonen
Reconstruction:
Esa Niemi



This is a movie showing the recovered level set
in (2+1) dimensional spacetime

Computation and visualization by Esa Niemi
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We consider (2+1)-dimensional spacetime and
use 3-D shearlets to represent functions

The reconstruction is based on promoting shearlet sparsity using an
ADMM optimization method.

[Bubba, März, Purisha, Lassas and S 2017]
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The optical flow constraint

Assuming a constant image intensity of f (x , t) along a trajectory
x(t) with a vector field dx

dt = v(x , t), we get by using the chain-rule

0 =
df

dt
=
∂f

∂t
+

2∑
i=1

∂f

∂xi

dxi
dt

= ∂t f +∇f · v .

In short, the optical flow constraint is given by

∂t f +∇f · v = 0.



Optical flow functional

We have one equation for the flow field v = (v1, v2)T and hence
the problem is underdetermined.

To obtain an approximation we are minimizing

Jflow(f , v) = ‖∂t f +∇f · v‖1 + β

2∑
i=1

‖v i‖TV .

The L1-norm is more robust with respect to outliers for this model.
[Zach, Pock, and Bischof, 2007]



An alternating algorithm for optical flow
regularization for dynamic tomography

The joint model can be transformed into an iterative two-step
method. Given vk we compute

f k+1 = argmin
f

∫ T

0

1
p
‖Af −m‖pp + α ‖f ‖TV + γ

∥∥∥∂t f +∇f · vk
∥∥∥
1
dt

vk+1 = argmin
v

∫ T

0

∥∥∥∂t f k+1 +∇f k+1 · v
∥∥∥
1

+
β

γ

2∑
j=1

‖vj‖TV dt.

These subproblems are linear and convex.

[Burger, Dirks, Frerking, Hauptmann, Helin & S, submitted]



We simulate a “pinball phantom”

Time step 1 Time step 10 Time step 20 Time step 30

[Burger, Dirks, Frerking, Hauptmann, Helin & S, submitted]



Reconstructions with L1 data fidelity



Reconstructions with L2 data fidelity
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This part of the talk is a joint work with

Janne Hakkarainen, University of Helsinki, Finland



The principle of Kalman filtering

Consider a pair of time-dependent state xk and observations yk :{
xk =Mk(xk−1) + ξk ,

yk = Hk(xk) + εk ,

whereM : Rn → Rn is the dynamical state space model and
H : Rn → Rp is the observation operator that maps from the state
space to the observation space. The terms ξk and εk model errors.
Probabilistic notation: {

xk ∼ p(xk |xk−1),

yk ∼ p(yk |xk).
(1)

In filtering, our aim is to find the posterior distribution p(xk |y1:k) of
the state, given all the previous and current observations y1:k using
Bayesian inference.



Kalman filtering in the Gaussian case

In linear Kalman filtering, the state estimate x est
k−1 of the previous

time-step and its error covariance matrix C est
k−1 are transported to

the next time-step’s prior xp
k using linear model Mk

x
p
k = Mkx

est
k−1,

C
p
k = MkC

est
k−1M

T
k + Qk ,

where Qk is the model error covariance matrix. The innovation
(prediction residual) and its error covariance matrix are

rk = yk − Hx
p
k ,

C r
k = HkC

p
kH

T
k + Rk ,

where Rk is the observation error covariance matrix. Update step:

x est
k = x

p
k + Gk rk ,

C est
k = (I − GkHk)C

p
k ,

with Kalman gain matrix Gk = C
p
kH

T
k (C r

k)−1.
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We construct a dynamic “emoji phantom” using
small stones and stop-motion animation

Measurement:
Zenith Purisha
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Demonstration of dynamic tomography methods

https://www.youtube.com/watch?v=JTdVAQTFKxI

https://www.youtube.com/watch?v=JTdVAQTFKxI


Demonstration of the Kalman filter approach

Show Kalman filter emoji movie by Janne Hakkarainen!



Thank you for your attention!
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