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Inverse heat transfer problems deal with 

the estimation of unknown quantities 

appearing in the mathematical formulation 

of physical processes in thermal sciences, 

by using measurements of temperature, 

heat flux, radiation intensities, etc. 
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The term Bayesian is commonly used to refer to techniques 

for the solution of inverse problems that fall within the 

framework of statistics developed by the Presbyterian 

minister Rev. Thomas Bayes ( 1702 -  1761) [1].  
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• It is attributed to Laplace the mathematical formulation that is 

known today as Bayes' theorem [3].  

• The term Bayesian was first used by R. A. Fisher, but in a pejorative 

context. Although born more than 120 years after the death of Bayes, 

Fisher was Bayes biggest intellectual rival [3]. The major issue by 

Fisher against Bayes and Laplace was that they used the concept of a 

prior probability, which represents the information about an 

unknown quantity before the measured data is available [3].  

• Fisher's theory relies solely on the measured data and on modelling 

of their associated uncertainty, aiming at unbiased inference and/or 

decision; therefore, it is usually referred to as the frequentist 

framework for statistics [1,3,4].  

• On the other hand, within the Bayesian framework, credit is also 

given to previous beliefs, in addition to that given to the measured 

data. Such previous information can even be qualitative, but need to 

be represented in terms of a probability distribution function, and 

regretfully induce bias in the results [1,3,4]. 
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• Although not always considered in such a way, the solution of 

inverse problems can be formulated in terms of statistical inference 

[5]. Statistical inference refers to the process of drawing conclusions 

or making predictions based on limited information, beyond the 

immediate data that is available [4].  

• This is exactly what is aimed with the solution of inverse problems. 

•  There are many techniques for the solution of inverse problems, but 

the most general ones are usually related to the minimization of an 

objective function that involves the difference between measured 

and estimated responses of the physical problem [5-27].  

• If the objective function is derived based on statistical hypotheses 

for the measurement errors and unknown parameters/functions, the 

minimization procedure can be related to statistical inference, thus 

resulting in point estimates for the unknowns that allow for 

estimations of their associated uncertainties [5,8].  

• Unfortunately, such is generally not the case, in special when the 

objective function is penalized with regularization terms. 
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• The major source for the solution of inverse problems 

within the Bayesian framework is the book by Kaipio 

and Somersalo [5].  

• The reader is referred to the book by Gamerman and 

Lopes [28] for deeper details about Markov Chain Monte 

Carlo methods and to the books by Lee [1] and Winkler 

[4] for fundamental material on Bayesian statistics. 
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GENERAL CONSIDERATIONS 

Consider the mathematical formulation of a heat transfer problem, which, for 

instance, can be linear or non-linear, one or multi-dimensional, involve one single 

or coupled heat transfer modes, etc.   

 

We denote the vector of parameters appearing in such formulation as: 

PT = [P1,P2,...,PN] 

where N is the number of parameters 

• These parameters can possibly be thermal conductivity components, heat 

transfer coefficients, heat sources, boundary heat fluxes, etc.  

• They can represent constant values of such quantities, or the parameters of 

the representation of a function in terms of known basis functions. 
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The unknown function gp(t) is approximated as: 

where:  Cj(t) are known LI basis functions 

  N is the number of basis functions used in  

   the  approximation  

   (known for the analysis) 

  Pj are the unknown parameters 

GENERAL CONSIDERATIONS 
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Consider also that transient measurements are available within the medium, or 

at its surface, where the heat transfer processes are being mathematically 

formulated.  

 

The vector containing the measurements is written as:  

 1 2, , ... ,T
IY Y YY

 1 2, , ... ,i i i iMY Y Y Y

M = # of sensors 

I = # of transient measurements per sensor 
D =MI = # of  measurements  

• The measured data are not limited to temperatures, but could also include heat 

fluxes, radiation intensities, etc. 

GENERAL CONSIDERATIONS 



Hypotheses: 

• The experimental errors are additive, with zero mean and 

normally distributed. 

 

• The statistical parameters (covariance matrix W) describing 

the errors are known. 

• There are no errors in the independent variables. 

• The measurement errors are independent of the  parameters P 

Likelihood Function 

where T(P) is the solution of the direct (forward) problem. 
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Likelihood Function 

• The likelihood function gives the relative probability density of different 

measurement outcomes Y with a fixed P.  

• A very common approach for the solution of inverse problems, dealing 

with the estimation of the parameters P with the measurements Y, is to 

maximize the likelihood probability density.  

Maximum Likelihood Objective Function 

   1( ) ( ) ( )T

MLS   P Y T P W Y T P
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Maximum Likelihood Objective Function 
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Remark: If the inverse heat transfer problem involves the estimation of 

 only few unknown parameters from many measurements, the 

 minimization of the maximum likelihood objective function can be 

 stable.  However, if the inverse problem involves the estimation of 

 a large number of parameters, such as the recovery of the unknown 

 transient strength of the heat source term  gp(ti) at times ti, i=1,…,I, 

 excursion and oscillation of the solution may occur. In this case, 

 regularization (or stabilization) techniques are required. 
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First-order regularization Tikhonov’s Regularization 
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where: 

 (> 0) is the first-order regularization parameter  

To select :  

• Discrepancy Principle:  
iii TY 

• L curve 

16 • Generalized Cross Validation 
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BAYESIAN FRAMEWORK 

• Classical regularization methods are not based on the 

modeling of prior information and related uncertainty about 

the unknown parameters or functions. 

• Although very popular and useful in many situations, the 

minimization of the maximum likelihood objective 

function is a non-Bayesian estimator. A Bayesian estimator 

is basically concerned with the analysis of the posterior 

probability density, which is the conditional probability of 

the parameters P given the measurements Y.  

17 



For the solution of inverse problems within the Bayesian framework, all 

variables included in the mathematical formulation of the physical problem 

are modelled as random variables. Techniques for the solution of inverse 

problems within the Bayesian framework can be summarized in the following 

steps [5]: 

1. Based on all information available for the parameters P before the measured 

data Y is taken, select a probability distribution function,  (P), that 

appropriately represents the prior information. 

2. Select the likelihood function,  (Y|P), that appropriately models the 

measurement errors and involves a relation between the observations and the 

mathematical model of the physical problem under picture (see, for example, 

equation 6.b).  

3. Develop methods to explore the posterior density function, which is the 

conditional probability distribution of the unknown parameters given the 

measurements,  (P|Y). 
18 
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The formal mechanism to combine the new information (measurements) with the previously 

available information (prior) is known as the Bayes’ theorem [5,8,20,22,25-28]. Let P and Y 

be continuous random variables. Then, we can write [4]: 
 

( , )
( )

( )







P Y
P Y

Y
    (11.a) 

 

that is, the conditional density of the random variable P given a value of the random variable 

Y is the joint density of P and Y divided by the marginal density of Y, where 
 

( ) ( , )
NR

d  Y P Y P     (11.b) 

 

The joint density ( , ) P Y  is not generally known, but it can be written in terms of the 

likelihood and the prior as [4]  
 

( , ) ( ) ( )  P Y Y P P     (12) 

 
By substituting (12) into (11.a) we then obtain Bayes' theorem, which is given by 



( ) ( )
( ) ( )

( )

prior

posterior

 
 


 

P Y P
P P Y

Y

BAYES’ FORMULA 

Where:  posterior(P) = posterior probability density (conditional probability of  

 the parameters P given the measurements Y) 

  prior(P) = prior density (information about the parameters prior to 

 the measurements) 

   (Y|P)  = likelihood function (expresses the likelihood of different  

 measurement outcomes Y with P given) 

   (Y)  = probability density of the measurements (normalizing constant) 

xposterior prior likelihood
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Hypotheses: 

• The errors are additive, with zero mean and  

 normally distributed. 

• The statistical parameters describing the errors are  

 known. 

• There are no errors in the independent variables. 

• P is independent of  Y. 

• P is Gaussian with known mean m and  

 known covariance matrix V.  

1/ 2/ 2 11
( ) (2 ) exp ( ) ( )
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Gaussian Prior 
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MAXIMUM A POSTERIORI 
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Posterior Density 

Maximum a Posteriori Objective Function 
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Likelihood Function 
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Linear Problems:  J does not depend on P PJPT )(

Nonlinear Problems: 

1 12 [ ( )] 2 [ ] 0T      J W Y T P V Pm

1 1 1 1 1[ ] [ ]T T      P J W J V J W Y V m

)(PJJ  )()()(
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1 1 1 1 1 1[ ] { [ ( )] ( )}k k T T k k          P P J W J V J W Y T P V Pm

MAXIMUM A POSTERIORI 

1 1 1cov( ) ( )T    P J W J V



Example: Thermal Tomography (Gaussian and smooth priors - MAP) 

Kolehmainen, V., Kaipio, J.P., Orlande, H.R.B., Reconstruction of thermal conductivity and heat capacity 

using a tomographic approach, International Journal of Heat and Mass Transfer, vol. 50, pp.5150–5160, 2007 

Thermal Conductivity Volumetric Heat Capacity 
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Moreover, whereas the computation of the MAP estimate is an optimization problem, that is,  
 

arg max ( | )
NMAP

R





P

P P Y      (19) 

 
other point and confidence estimates from the posterior distribution typically require 
numerical integration. For example, one common point estimate is the conditional mean 
defined as [5]: 
 

( ) ( | )
N

CM

R

E d  P P P P Y P     (20) 

 

where E(.) denotes the expected value. In general, the dimension N of the parameter space 

is large enough to make the numerical integration in equation (20) impractical. Besides that, 

the computation of the normalizing constant in the denominator of ( | ) P Y  (see equations 

11-13) already constitutes a challenging problem by itself.  
 
For those cases that the posterior is not analytical and/or numerical integrations required for 
estimates are not practical, Markov Chain Monte Carlo (MCMC) methods can provide a 
solution of the inverse problem, so that inference on the posterior probability becomes 
inference on its samples [1,4,5,20,22,25-28]. For example, the Monte Carlo integration of 
equation (20) can be approximated by [5]: 
 

( )

1

1
( ) ( | )

N

n
t

CM

tR

E d
n




   P P P P Y P P    (21) 

 

where 
( )t

P  , for t = 1,…, n, are samples from ( | ) P Y . Markov Chain Monte Carlo 

methods are used to obtain such samples. 
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( )

1

1
( ) ( | )

N

n
t

CM

tR

E d
n




   P P P P Y P P    (21) 

 

where 
( )t

P  , for t = 1,…, n, are samples from ( | ) P Y . Markov Chain Monte Carlo 

methods are used to obtain such samples. 



• Draw samples of all possible P’s, each sample with  probability (P|Y). 

• Get a set Q = {P1, P2, …, Pn} of samples distributed like the posterior 

 distribution. 

• Inference on (P|Y) becomes inference on Q = {P1, P2, …, Pn} , for 

 example the mean of the samples in Q give us an estimation of the 

 average values of (P|Y). 

• Metropolis-Hastings Algorithm and Gibbs Sampler 

• Very time consuming. 

27 
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Markov Chain Monte Carlo (MCMC) methods 

 
The stochastic process is a Markov chain if it satisfies the Markov condition [1,4,5,20,22,25-
28]: 
 

1 1 1 0 0 1( | , , , ) ( | )t t t t t tq q         P y P x P x P x P y P x  for all 1 0, , , ,t S y x x x  (22) 

 

where q is a transition probability. Some concepts regarding Markov chains are now 

presented. The reader shall consult references [1,4,5,20,22,25-28] for further details.  
 

If the transition probability does not depend on t, that is, if  

 
1 1( | ) ( | )t m t m t tq q       P y P x P y P x   for all m T    (23) 

 
 
the Markov chain is said to be homogenous [22]. 

Markov Chains 

A Markov chain is a stochastic process that, given the present state, past and 

future states are independent. 
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Markov Chain Monte Carlo (MCMC) methods 

A distribution p
*
 is said to be a stationary distribution of a chain if, once the chain is in p

*
, it 

stays in this distribution. Suppose now that ( ) *tp p  as t    for any (0)p , where ( )tp  is 

the distribution at state t of the chain. Then, p
*
 is the equilibrium distribution of the Markov 

chain and the chain is said to be ergodic.  

 

Consider the sequence of states 
1 2 t   x k k k y  so that the transition 

probabilities 
1 2 1( | ) 0, ( | ) 0, , ( | ) 0tq q q  k x k k y k . Then, there is a sequence of 

states from x to y with a nonzero probability of occurring in the Markov chain. It is said that x 

and y communicate. If y and x also communicate through nonzero transition probabilities, it 

is said that these two states intercommunicate. If all states in S intercommunicate, then the 

state space is said to be irreducible under q. A Markov chain is reversible if 

( ) ( | ) ( ) ( | )p q p qx y x y x y .  

 

 The period of a state x, denoted by dx, is the largest common divisor of the set 
( ){ 1: ( ) 0}mm p x,x . A state x is aperiodic if dx = 1. A chain is aperiodic if all of its 

states are aperiodic.  

The period of a state x, denoted by dx, is the largest common divisor of the set 
( ){ 1: ( ) 0}mm p x,x . A state x is aperiodic if dx = 1. A chain is aperiodic if all of its states 

are aperiodic. 

Markov Chains 
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Markov Chain Monte Carlo (MCMC) methods 

Markov Chains 

Let p be a given probability distribution. The Markov chain 

simulated by the Metropolis-Hastings algorithm is reversible 

with respect to p. If it is also irreducible and aperiodic, then 

it defines an ergodic Markov chain with unique equilibrium 

distribution p. 
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Markov Chain Monte Carlo (MCMC) methods 

• Parameters with linearly-dependent sensitivity coefficients generally 

result on periodic and correlated chains and an equilibrium 

distribution is not reached.  

• Similarly to classical methods of parameter estimation, where the 

sensitivity coefficients directly influence the topology of the objective 

function based on the likelihood and a global minimum might not exist, 

such coefficients directly influence the posterior distribution, which is now 

sought via the implementation of a Markov chain.  

• The sensitivity coefficients need also to be carefully examined if the 

solution of the inverse parameter estimation problem is to be obtained 

within the Bayesian framework.  
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Markov Chain Monte Carlo (MCMC) methods 

• In classical methods, parameters with small and linearly dependent 

sensitivity coefficients are usually deterministically fixed, based on values 

known from previous experience and/or literature. In approaches within 

the Bayesian framework, uncertainties on such kind of parameters can 

be appropriately taken into account through their prior distribution 

functions.  

• On the other hand, the analysis of the sensitivity coefficients reveals that 

parameters with small and/or linearly dependent sensitivity coefficients 

require informative prior distributions for the success of the estimation 

procedure. 
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Markov Chain Monte Carlo (MCMC) methods 

The Metropolis-Hastings algorithm draws samples from a candidate density, such as in 
acceptance-rejection sampling [1]. The acceptance-rejection method is used to generate 

samples from a density ( ) ( ) /p p KP P , where the normalizing constant K might be 

unknown, such as in the posterior distribution given by equations (13.a,b). Instead of 

sampling from ( )p P , assume that there exists a candidate density ( )h P  that is easy to 

simulate samples from, where ( ) ( )p c hP P  and c is a constant. The following steps are 

then used to obtain a random variable P̂  from density ( )p P  with the acceptance-rejection 

method [1]: 

1. Generate a random variable 
*

P  from the density ( )h P ; 

2. Generate a random value ~ U(0,1)U , which is uniformly distributed in (0,1); 

3. If ( ) / ( )U p c h P P , let 
*ˆ P P . Otherwise, return to step 1. 

  
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Markov Chain Monte Carlo (MCMC) methods 

The implementation of the Metropolis-Hastings algorithm starts with the selection of a 

candidate or proposal distribution 
* ( )( | )tq P P , which is used to draw a new candidate state 

*
P , given the current state 

( )t
P of the Markov chain. Remember that, for the solution of the 

inverse problem within the Bayesian framework, one aims at simulating the posterior 

distribution ( ) ( ) ( )posterior  P Y P P  (see equation 13.b). Hence, the balance (reversibility) 

condition of the Markov chain of interest is given by: 
   

 
( ) * ( ) * ( ) *( ) ( | ) ( ) ( | )t t t

posterior posteriorq q P P P P P P    (24) 
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Markov Chain Monte Carlo (MCMC) methods 

In order to avoid eventual cases that 
( ) * ( ) * ( ) *( ) ( | ) ( ) ( | )t t t

posterior posteriorq q P P P P P P , that 

is, the process moves from 
( )t

P  to 
*

P more often than the reverse, a probability 
* ( )( | )t P P  

is introduced in equation (24), so that [1]: 
 

( ) * ( ) * ( ) * ( ) *( ) ( | ) ( | ) ( ) ( | )t t t t

posterior posteriorq q  P P P P P P P P    (25) 

 
Therefore, 
 

* ( ) *

* ( )

( ) * ( )

( ) ( | )
( | ) min 1,

( ) ( | )

t

posteriort

t t

posterior

q

q






 
  

  

P P P
P P

P P P
   (26) 

 

 where 
* ( )( | ) 1t P P  when the balance condition is satisfied. Equation (26) is 

also called the Metropolis-Hastings ratio. Notice that, for the computation of 
equation (26), there is no need to know the normalizing constant that appears in the 
definition of the posterior distribution (see equations 13.a,b).  
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1. Sample a Candidate Point P* from a proposal distribution q(P*|P(t -1)). 

2. Calculate the acceptance factor: 

 

     

 

3. Generate a random value U that is uniformly distributed on (0,1). 

4. If U < , set P(t) = P*. Otherwise, set P(t) = P(t-1). 

5. Return to step 1. 

* ( 1) *

( 1) * ( 1)

( | ) ( | )
min 1,

( | ) ( | )

t

t t

q

q








 

 
  

 

P Y P P

P Y P P

Markov Chain Monte Carlo (MCMC) methods 
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(i) Random Walk:  In this case 
* ( )t P P Ψ , where Ψ  is a vector of random variables with 

distribution 
1( )q ψ . Therefore, 

* ( )

1( | ) ( )tq qP P Ψ . If the proposal distribution is symmetric, 

that is, 
1 1( ) ( )q q ψ ψ  or 

* ( ) ( ) *( | ) ( | )t tq qP P P P , equation (26) reduces to 

  
*

* ( )

( )

( )
( | ) min 1,

( )

posteriort

t

posterior






 
  

  

P
P P

P
   (27) 

 
Thus, for this choice of the proposal density, equation (27) shows that in step 5 of the 

Metropolis-Hastings algorithm, the candidate point 
*

P  is always accepted if the move leads 
to a region of higher posterior probability. Furthermore, the candidate point can also be 

accepted if 
* ( )( ) ( )t

posterior posterior P P  with probability 
* ( )( | )t P P , thus allowing that the 

state space be highly explored.  

  

Proposal Distribution 

Practical Issues for MCMC Methods 
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Uniform and Gaussian distributions are commonly used for 
1( )q ψ . Consider one single 

component jP  of the vector P . For the uniform random walk proposal one can write: 

 
* ( ) (2 1)t

j j jP P w r       (28.a) 

 

where r  is a random number with uniform distribution in (0,1), that is, ~ U(0,1)r , while jw  is 

the maximum variation for the parameter jP .  

 
For the Gaussian random walk proposal we have 
 

* ( )t

j j jP P w       (28.b) 

 

where now jw  is a Gaussian random number with zero mean and standard deviation js .  

Proposal Distribution 

Practical Issues for MCMC Methods 
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Proposal Distribution 

(ii) Independent Move:  This choice for the proposal density is of the kind  
* ( ) *

2( | ) ( )tq qP P P , that is, it does not depend on the current state 
( )t

P . In this case, the 

proposal density * ( )( | )tq P P can be conveniently selected as the prior density *( ) P . Then, 

by also utilizing equation (13.b), equation (26) is rewritten as      
 

* * ( )
* ( )

( ) ( ) *

( | ) ( ) ( )
( | ) min 1,

( | ) ( ) ( )

t
t

t t

  


  

 
  

 

Y P P P
P P

Y P P P
  (29.a) 

 
Hence, the Metropolis-Hastings ratio is given by the ratio of the likelihoods, that is, 
 

 

*
* ( )

( )

( | )
( | ) min 1,

( | )

t

t






 
  

 

Y P
P P

Y P
    (29.b) 

Practical Issues for MCMC Methods 
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Practical Issues for MCMC Methods 

Likelihood 

• The likelihood function involves the solution of the 

mathematical formulation of the physical problem under 

analysis, that is, the solution of the direct or forward model, as 

well as the measurements and their related uncertainties.  

• Measurement errors are modelled after the calibration of 

sensors and instruments used to collect the experimental data.  

• Gaussian distributions are in general appropriate for 

temperature measurements taken with thermocouples and 

infrared cameras.  

• Be careful! Measurements are not always Gaussian! 
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Likelihood 

 
(a) 

 
(b) 

Figure 2. (a) Thermal image with an infrared camera of an isothermal plate;  

(b) Histogram of the temperature measurements [33]. 
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Priors 

A Gaussian prior was also considered in section 4, given by equation (14) for a multivariate 

case, with mean m and covariance matrix V, denoted as ~ ( )NP μ,V . For one single 

parameter jP , a Gaussian prior with mean jm and variance 
2

j , 
2~ ( , )j j jP N m  , is given by     

 

 

2

22

( )1 1
( ) exp

22

j j

j

jj

P
P

m




 
  

  

 in  jP      (30) 

 

Random variables modelled by the Gaussian prior have support in R; hence, may assume 

negative values, although this might happen with small probabilities depending on the values 

of jm  and 
2

j . On the other hand, several physical parameters only allow positive values, 

such as, for example, thermal conductivity, specific heat and thermal diffusivity.  
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A very simple prior that allows lower and upper bounds for the parameter values is the 

Uniform distribution ~ ( , )jP U a b   given by 

 

1
,

( )( )

0 ,

j

j

a P b
b aP

elsewhere




 

 



    (31) 

 

Mean and variance for the uniform distribution are given by 
1

( )
2

a b  and 
21

( )
12

b a , 

respectively. In the uniform distribution, any value in ja P b   is equally probable. If in this 

interval values around a known mean are more likely to occur than elsewhere, like in a 

Gaussian distribution, but the probability density is zero in jP a  and jP b , one possible 

prior can be obtained by combining equations (30) in (31), which is called truncated 
Gaussian distribution, that is,   
 

2

22

( )1 1
exp ,

2( ) 2

0 ,

j j

j

jj j

P
a P b

P

elsewhere

m

 

  
    

    



    (32) 

 where ja bm  . 
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Priors 

Other distributions that satisfy positive constraints are available. For example, the Rayleigh 

distribution 0~ ( )jP R   is given by  

 
2

2

0 0

1
( ) exp

2

j j

j

P P
P

 

  
        

 for  0jP    (33) 

 

 and depends only on the scale parameter (centerpoint) 0 . The mean and the 

variance of Rayleigh's distribution are given by 0
2


  and 

2

0

4

2





, respectively. 
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The Gamma distribution with parameters   and  , denoted as ~ ( , )jP G   , has the 

following density 
 

11
( ) exp

( )

j

j j

P
P P




  


 

     

 for  0jP    (34) 

 

with mean  and variance
2 , where ( )  is the gamma function. For 1   , the so-

called one-parameter gamma distribution is obtained. The density that results by making 

1   is called exponential distribution. 

 

The Beta distribution ~ ( , )jP Be    has support in 0 1jP  . The density of this distribution 

is given by 
 

1 1( )
( ) (1 )

( ) ( )
j j jP P P  


 

  
 

 
 in 0 1jP    (35) 

 

 with mean 


 
and variance

2( ) ( 1)



     
.  
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Priors 



EXAMPLE 

T = T0, t=0 

T = 0 

T0 = 50 oC 

Concrete:  = 4.9 x 10-7 m2/s 0( , )
4

x
T x t T erf

t

 
  

 

Markov Chain Monte Carlo (MCMC) methods 



EXAMPLE 

• Simultaneous estimation of T0 and . 

• Prior for T0 : Uniform distribution (40, 65) oC 

• Prior for : Uniform distribution (10-7,10-5) m2/s 

• Start the chain in the middle of the intervals 

Markov Chain Monte Carlo (MCMC) methods 

0

( , )

4

T x t x
erf

T t

  
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  

2

0

3/2

exp
4( , )

2 ( )

x
x t T

tT x t

t



  

 
 
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



EXAMPLE 

Markov Chain Monte Carlo (MCMC) methods 
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A collection 
1 2{ , , , }NP P P  is a Markov Random Field if the full conditional distribution of jP  

depends only on its set of neighbors [28]. 

A common use of a Markov Random Field is for priors that resemble Tikhonov's 
regularization [5], written in the following general form 
 

21
( ) exp ( )

2
 

 
  

 
P D P - P     (36) 

 
where ||.|| denotes the L2 norm. The constant   is a parameter associated with uncertainties 

in the prior and P  is a reference value for P . The matrix D  is such that each line of 

( )D P - P  involves the parameter jP  corresponding to that line and its neighbors 

Priors – Markov Random Field 
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1 1

1 1

1 1

 
 


 
 
 

 

D  with size ( 1) xN N   (37.a) 

 
or  
 

 

1 2 1

1 2 1

1 2 1

 
 


 
 
 

 

D  with size ( 2) xN N   (37.b) 

Priors – Markov Random Field 
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Equation (36) can be rewritten as 
 

1
( ) exp ( ) ( )

2

T 
 

  
 

P P - P Z P - P    (38.a) 

 
where 
 

TZ D D     (38.b) 
 
Equation (38.a) is in a form similar to that of a Gaussian distribution. For this reason, it is also 
called a Gaussian Markov Random Field [28] or a Gaussian Smoothness Prior [5]. By 
comparing equation (38.a) with the canonical Gaussian multivariate distribution, one can 

notice that the mean and the covariance matrix of this prior are given by P  and 1 1  
Z , 

respectively. Therefore, we can write the Gaussian Smoothness Prior as 
 

1/2
/2 /2 1 1

( ) (2 ) exp ( ) ( )
2

N N T   


   
  

 
P Z P - P Z P - P   (39) 

 

An important remark about this prior is that, with D  given by equations (37.a,b), its variance 

is unbounded, since the matrix Z  is singular and 
1

Z  does not exist. Densities with 
unbounded variances are denoted as improper [5,28]. 
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We now discuss another Markov Random Field prior, which gives high probabilities for 
piecewise regular solutions with sparse gradients. The Total Variation (TV) prior satisfies 

these characteristics, being quite appropriate for spatially varying functions that contain large 
variations at few boundaries within the domain and with small variations within the regions 
limited by such boundaries [5]. The TV prior is given by [5]: 
     

 ( ) exp ( )TV  P P     (40) 

where  

1

( ) ( )
N

j

j

TV V


 P P  
1

( )
2

j

j ij i j

i N

V l P P


 P   (41.a,b) 

being jN  the set of neighbors to jP  and ijl  the length of the edge between neighbors. 

Priors – Markov Random Field 
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The TV prior is improper, such as the Gaussian smoothness prior. The representation of 
equation (40) in terms of a canonical probability density would require the derivation of an 

expression for the normalizing constant ( )
NR

d P P , or, at least, practical means for its 

computation. Although improper priors need to be used with caution, they do not pose 
difficulties for the application of the Metropolis-Hastings algorithm, since the normalizing 

constants of such densities are cancelled when 
* ( )( | )t P P  is computed with equation (26). 

On the other hand, both the Gaussian smoothness prior and the TV prior involve an 
additional parameter   that needs to be specified for the application of MCMC methods. The 

specification of a value for such parameter can be made by numerical experiments, by using 
simulated experimental data that serve as a reference for the inverse problem under 
analysis. On the other hand, within the Bayesian framework, if a parameter is not known it 
shall be regarded as part of the inference problem, leading to the use of hierarchical 
(hyperprior) models, as described below.    

 

Priors – Markov Random Field 



65 

Practical Issues for MCMC Methods 

Hierarchical Models 

The parameter   appearing in the Gaussian smoothness prior given by equation (39) can be 

treated as a hyperparameter, that is, be estimated as part of the inference problem [5]. 

Consider, for example, the hyperprior density for   in the form of a Rayleigh distribution (see 

equation 33), where the scale parameter 
0  can be chosen as sufficiently large in order to 

avoid any restriction on possible values for  . Therefore, the posterior distribution, with the 

Gaussian likelihood given by equation (6.b), can be written as: 
 

2

( 2)/2 1

0

1 1 1
( , ) exp [ ( )] [ ( )] ( ) ( )

2 2 2

N T T 
   



 
   

     
   

P Y Y - T P W Y - T P P - P Z P - P
   

(42)

 

 
 
On the other hand, the parameter   appearing in the TV prior given by equation (40) cannot 

be treated as a hyperparameter. Such is the case because the normalizing constant of such 
prior is of difficult calculation and also depends on  .  
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Output Analysis 

We basically follow references [22,28] for the material presented in this section and consider 

the analysis on a single component jP of the vector of parameters P . Let 
(1) (2) ( ){ , , , }
j j j

nP P P  

be a homogeneous and reversible Markov chain for jP . A function 
( )( )
j

nf P  from the sample 

(1) (2) ( ){ , , , }
j j j

nP P P  is called a statistic if it does not depend on any other unknown 

parameters. Some useful statistics are: 
 

Minimum Value:  
( ) ( ) (1) (2) ( )

,min( ) min{ , , , }
j j j j

n n n

jf P P P P P     (43.a) 

Maximum Value:  
( ) ( ) (1) (2) ( )

,max( ) max{ , , , }
j j j j

n n n

jf P P P P P     (43.b) 

Median:   
( ) ( ) (1) (2) ( )( ) med{ , , , }
j j j j j

n n nf P P P P P     (43.c) 

Mean:   
( ) ( ) ( )

1

1
( )

j j j

n
n n t

t

f P P P
n 

        (43.d) 

Variance:   
2

( ) ( ) ( ) ( )

1

1
( ) var( )

1j j j j

n
n n t n

t

f P P P P
n 

  


    (43.e) 

 

Since 
(1) (2) ( ){ , , , }
j j j

nP P P  are realizations of a random variable, a statistic is itself a random  
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Output Analysis 

Since 
(1) (2) ( ){ , , , }
j j j

nP P P  are realizations of a random variable, a statistic is itself a random 

variable as well. A statistic of the sample will be a good representation of a statistic of the 
population if the sample is a good representation of the population. This certainly depends on 

the size n and on the independence of the individuals of the sample. Furthermore, since the 

sample 
(1) (2) ( ){ , , , }
j j j

nP P P  is obtained from a Markov chain, the chain should already have 

reached equilibrium before statistics can be computed for the solution of the inverse problem. 
For this reason, states of the Markov chain are discarded before the chain reaches 

equilibrium, which is called the burn-in period. If m states are needed for the chain to reach 

equilibrium, the sample used for the computation of the statistics is 
( 1) ( 2) ( ){ , , , }
j j j

m m nP P P 
. 

The index of this sample is changed from 1, ,t m n   to 1, ,r s  for simplicity in the 

notation, where s n m   is the number of samples used for the computation of the statistics. 
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Output Analysis 

The mean of the sequence  ( ) (1) (2) ( )( ) ( ), ( ), , ( )
j j j j

r sf P f P f P f P  is       

 

( ) ( )

1

1
( ) ( )

j j

s
r r

s

r

f P f P
s 

      (44) 

 

If the chain is ergodic, this mean based on the chain values 
( )( )
j

rf P  provides a strongly 

consistent estimate of the mean of the limiting distribution, that is, 
 

( )( ) ( ) as
j j

r

sf P E f P s   
 

   (45) 

 
This result is the equivalent of the law of large numbers for a Markov chain.  

  
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Output Analysis 

If  (1) (2) ( )( ), ( ), , ( )
j j j

sf P f P f P  are independent samples, then the variance of the mean 

( )( )
j

r

sf P  is  

( )

( )
var[ ( )]

var[ ( )]
j

r

jr

s

f P
f P

s
     (46.a) 

 

where 
( )var[ ( )]r

jf P  is the variance of  (1) (2) ( )( ), ( ), , ( )
j j j

sf P f P f P . On the other hand, 

since the samples are in general correlated, equation (46.a) is rewritten as 
 

( )

( )
var[ ( )]

var[ ( )]
j

r

jr

s

f P
f P

s


     (46.b) 

 
where  is the integrated autocorrelation time (IACT), which represents the number of 

correlated samples between independent samples in the chain  

 (1) (2) ( )( ), ( ), , ( )
j j j

sf P f P f P .  Therefore, the effective chain size, which gives the number of 

independent samples in the chain, is /effs s  . 
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Output Analysis 

The autocovariance function of lag k of the chain for  (1) (2) ( )( ), ( ), , ( )
j j j

sf P f P f P  is defined 

by: 
 

( ) ( )( ) cov[ ( ), ( )]r r k

ff j jC k f P f P      (47) 

 

Clearly, the variance of 
( )( )
j

rf P  is 
( )var[ ( )] (0)r

j fff P C . 

 

The normalized autocovariance function of lag k is given by 

 

( )
( )

(0)

ff

ff

ff

C k
k

C
        (48) 

 

so that (0) 1ff  , which means that 
( )( )
j

rf P  is perfectly correlated with itself. 
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Output Analysis 

The integrated autocorrelation time is related to the normalized autocovariance function by 
 

1

1 2 ( )ff

k

k 




        (49) 

For the calculation of  , the summation in equation (49) needs to be truncated at a finite 

number of terms 
*s s . In fact, ( )ff k  is expected to tend to zero as k  increases, but it will 

be dominated by noise for large k . Therefore, 
*s  can be selected by increasing k  until 

( )ff k  is first approximately zero, thus avoiding the terms that are dominated by noise in 

( )( )
j

rf P . 
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Output Analysis 

For s  sufficiently large and for an uniformly ergodic chain, the distribution of 

( )

( )

( ) ( )

var[ ( )]

j j

j

r

s

r

s

f P E f P

f P

 
 

, where 
( )var[ ( )]
j

r

sf P  is given by equation (46.b), tends to a standard 

Gaussian distribution, with zero mean and unitary standard deviation. One can write 
 

( )

( )

( ) ( )
(0,1) as

var[ ( )]

j j

j

r
ds

r

s

f P E f P
N s

f P

 
       (50) 

 

where 
d

  indicates that the distribution of the random variable on the left tends to the 

distribution on the right. Equation (50) is an statement of the central limit theorem of the 

distribution of 
( )( )
j

r

sf P . 
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Output Analysis 

A statistic of great interest is the mean of  (1) (2) ( ), , ,
j j j

sP P P . Therefore, by assuming that 

the appropriate assumptions are satisfied, equation (50) shows that  
 

( )

( )
(0,1) as

var[ ]

j j

j

r
d

r

P E P
N s

P

 
        (51) 

 
where 
 

( ) ( )

1

1
j j

s
r r

r

P P
s 

    ;  

( )

( )
var[ ]

var[ ]
j

r

jr
P

P
s


   ;   

2
( ) ( ) ( )

1

1
var[ ]

1j j j

s
r r r

r

P P P
s 

 


  (52.a,b,c) 

 

are the mean of  (1) (2) ( ), , ,
j j j

sP P P , the variance of this mean and the variance of 

 (1) (2) ( ), , ,
j j j

sP P P , respectively. 
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Practical Issues for MCMC Methods 

Output Analysis 

The main result of equation (51) is that it provides a reasonable manner of presenting the 

solution of the inverse problem of estimating the parameter 
j

P , from inference over the 

Markov chain  (1) (2) ( ), , ,
j j j

sP P P , as 
( ) ( )var[ ]

j j

r rP C P , where C  is a constant that defines 

the approximate confidence interval of 
( )

j

rP . For a 99% confidence interval, 2.576C  .  
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Practical Issues for MCMC Methods 

Output Analysis The convergence of the Markov chain to an equilibrium distribution can be verified by plotting 

the chains of each parameter 
(1) (2) ( ){ , , , }
j j j

nP P P , j = 1,…,N, and the posterior distribution 

( )( )t

posterior P , 1, ,t n . Geweke [34] proposed a method for convergence diagnosis based 

on means computed with different ranges of the Markov chain. Let 
 

( )

1

1 a

j j

s
a r

ra

P P
s 

     and  
( )

*

1
j j

s
b r

r sb

P P
s 

     (53.a,b) 

 
where   
 

* 1bs s s    ; 0.1as s  ; 0.5bs s  (54.a-c) 

 

Geweke [34] has demonstrated that   0
j j

a bP P   as the chain  (1) (2) ( ), , ,
j j j

sP P P  

approaches equilibrium. 
 
It is also a good practice to repeat such procedures for convergence analysis by generating 
Markov chains from different initial states. A method for inference from multiple chains was 
developed by Gelman and Rubin [35]. 
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Example: Non linear 3D heat conduction 

Estimation of q(x,y) with measurements of T(x,y,0,t) 
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( , , , )
( ) ( ) ( ) ( )c c c c

c c c c

T x y z t T T T
C T k T k T k T

t x x y y z z

          
       

           
    

in 0 < x < a , 0 < y < b , 0 < z  < c , for t > 0   (1.a) 

 

0cT

x





 at x = 0 and x = a , 0 < y < b , 0 < z  < c , for t > 0  (1.b,c) 

0cT

y





 at y = 0 and y =b , 0 < x < a , 0 < z  < c , for t > 0  (1.d,e) 

0cT

z





 at z = 0 , 0 < x < a , 0 < y < b ,  for t > 0        (1.f) 

( ) ( , )c
c

T
k T q x y

z





 at z = c , 0 < x < a , 0 < y < b , for t > 0   (1.g) 

0cT T    for t = 0 , in 0 < x < a , 0 < y < b , 0 < z  < c   (1.h) 

Complete model 
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Reduced models: Linear problem with properties at T* 

* * *( , , ) ( , )T x y t T T q x y
C k k

t x x y y c

       
     

       
     

in 0 < x < a , 0 < y < b , for t > 0   (3.a) 

 

0
T

x





  at x = 0 and x = a , 0 < y < b ,  for t > 0  (3.b,c) 

0
T

y





  at y = 0 and y =b , 0 < x < a , for t > 0  (3.d,e) 

0T T    for t = 0 , in 0 < x < a , 0 < y < b    (3.f) 

where 

0

1
( , , ) ( , , , )

c

z
T x y t T x y z t dz

c 
       (4) 
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Reduced models: Linear problem with properties at T* 

Classical Lumped Formulation: 

Temperature gradients across the thickness of the plate are fully neglected.  

( , ,0, ) ( , , , ) ( , , )T x y t T x y c t T x y t 

Helcio R. B. Orlande, George S. Dulikravich, Markus Neumayer, Daniel Watzenig, Marcelo J. Colaço, 
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In general, the direct problem solution with the complete model took around 7.2 s, 

while the solution with the reduced model took around 0.09 s of CPU time. 83 

Improved Lumped Formulation: 

Temperature gradients across the thickness of the plate are not neglected, but taken 

into account in an approximate form (Cotta, R.M., Mikhailov, M.D., Heat 

Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation, 

Wiley-Interscience, New York, USA, 1997.).  

*
( , ,0, ) ( , , ) ( , )

6

c
T x y t T x y t q x y

k
 

*
( , , , ) ( , , ) ( , )

3

c
T x y c t T x y t q x y

k
 

H1,1 formula (correct trapezoidal rule): 

H0,0 formula (trapezoidal rule): 

 
0

1
( , , ) ( , ,0, ) ( , , , )

2 12
z z c

c T T
T x y t T x y t T x y c t

z z
 

  
    

   

  

0
0

( , , , )
( , , , ) ( , ,0, )

2

c

z
z z c

T x y z t c T T
dz T x y c t T x y t

z z z
 

   
    

    
   
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Classical Lumped Model Improved Lumped Model 
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Error of the Direct Problem Solution at 

the final time: 

7 2

7 2

10 , for 8 10 and 8 10

( , ) 10 , for 18 20 and 18 20

0 , elsewhere

i j

Wm i j

q x y Wm i j





    


    



Orlande, H.R.B., Dulikravich, G., Inverse Heat Transfer Problems and their Solutions within the Bayesian 

Framework, ECCOMAS Special Interest Conference, Numerical Heat Transfer 2012, 4-6 September 2012, 

Gliwice-Wrocław, Poland 
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DELAYED ACCEPTANCE METROPOLIS-HASTINGS ALGORITHM 

(Christen, J. and Fox, C., Markov chain Monte Carlo Using an Approximation, 

Journal of Computational and Graphical Statistics, vol. 14, no. 4, pp. 795–810, 2005) 

The regular Metropolis-Hastings algorithm is applied with the surrogate model 

for the computation of the likelihood function. If a proposal state is accepted, then 

another test of Hastings is performed with the complete model, to finally decide if 

such proposal should be accepted or not.  

Helcio R. B. Orlande, George S. Dulikravich, Markus Neumayer, Daniel Watzenig, Marcelo J. Colaço, 
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DELAYED ACCEPTANCE METROPOLIS-HASTINGS ALGORITHM 

(Christen, J. and Fox, C., Markov chain Monte Carlo Using an Approximation, 

Journal of Computational and Graphical Statistics, vol. 14, no. 4, pp. 795–810, 2005) 

1. Sample a Candidate Point P
*
 from a proposal distribution p(P

*
,P

t 
). 

2. Calculate the acceptance factor with the surrogate model: 
* ( 1) *

( 1) * ( 1)

( | ) ( , )
min 1,

( | ) ( , )

t

t t

p

p








 

 
  

 

P Y P P

P Y P P
    (15.a) 

3. Generate a random value U that is uniformly distributed on (0,1). 

4. If U   , proceed to step 5. Otherwise, set P
t

 = P
t

 and return to step 1. 

5. Calculate a new acceptance factor with the complete model: 
* ( 1) *

( 1) * ( 1)

( | ) ( , )
min 1,

( | ) ( , )

t

c
c t t

c

p

p








 

 
  

 

P Y P P

P Y P P    

 (15.b) 

6. Generate a new random value Uc which is uniformly distributed on (0,1). 

7. If Uc   c, set P
t

 = P
*
. Otherwise, set P

t
 = P

t
 

8. Return to step 1. 

 

where ( | ) P Y and ( | )c P Y  are the posterior distributions with the likelihoods computed 

with the surrogate model and with the complete model, respectively. 

Otherwise, return to step 1. 
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PRIOR DISTRIBUTIONS 

Total variation non-informative prior  

 ( ) exp ( )TV  P P

1 1

1 1

2 2

1 1

( ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

I J

i j i j i j i j

i j

i j i j i j i j

TV y q x y q x y q x y q x y

x q x y q x y q x y q x y

 

 

 

 

      
 

     
 

P
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APPROXIMATION ERROR MODEL  

• Kaipio, J. and Somersalo, E., Statistical and Computational Inverse Problems, 

Applied Mathematical Sciences 160, Springer-Verlag, 2004 

• Kaipio, J., and Somersalo, E., Statistical Inverse Problems: Discretization, Model 

Reduction and Inverse Crimes, Journal of Computational and Applied 

Mathematics, vol. 198, pp. 493–504, 2007. 

In the approximation error model (AEM) approach, the statistical model of the 

approximation error is constructed and then represented as additional noise in the 

measurement model [1,19-23]. With the hypotheses that the measurement errors are additive 

and independent of the parameters P, one can write 

 

( )c Y T P e       (16) 

 

where ( )cT P  is the sufficiently accurate solution of the complete model given by equations 

(1.a-h). The vector of measurement errors, e  are assumed here to be Gaussian, with zero 

mean and known covariance matrix W. 
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APPROXIMATION ERROR MODEL  

( ) [ ( ) ( )]c   Y T P T P T P e     (17) 

 

 By defining the error between the complete and the surrogate model solutions as 

 

[ ( ) ( )]c ε T P T P      (18) 

 

equation (17) can be written as 

 

( ) Y T P η       (19) 

 

where 

 

η ε +e       (20) 
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APPROXIMATION ERROR MODEL  

h is modeled as a Gaussian variable 

   
2

( 2)/2 1 1

0

1 1 1
( , ) exp [ ( ) ] [ ( ) ]

2 2 2

TIJ T 
   



  
   

           
   

P Y Y T P η W Y T P η P μ Γ P μ

Enhanced error model: 

η ε

 
ε

W W W
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Gaussian prior  

Energy Balance: 
*

( , )
( , )

i j

i j

d T x y
q x y C c

d t


In order to generate this physically motivated Gaussian prior, 

and at the same time not violate the Bayesian principle that the 

prior is the information for the unknowns (coded in the form 

of probability distribution functions) that is available before 

the measurements are taken, we assume here that another kind 

of measurements is also available. Such other kind of 

measurements is only used to generate the prior, and is 

considered independent of the temperature measurements used 

in the inverse analysis, that is, for the computation of the 

likelihood.  
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APPROXIMATION ERROR MODEL  

As for the prior, the local heat flux was calculated with the 

local temperature increase rate computed with the transient 

temperature measurements. From the means and variances 

of the local heat fluxes at each time step, 100 samples from 

a Gaussian distribution were generated for the spatially 

varying heat flux. The solutions of the complete and 

surrogate models were then computed, in order to calculate 

the modeling error , for each of these samples. Hence, the 

mean  and the covariance matrix  were computed, to be 

used in the enhanced error model. 
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Test case Flux Prior Approach 

1 A TV - 

2 B TV - 

3 C TV - 

4 A TV DAMH 

5 B TV DAMH 

6 C TV DAMH 

7 A Gaussian - 

8 B Gaussian - 

9 C Gaussian - 

10 A Gaussian AEM 

11 B Gaussian AEM 

12 C Gaussian AEM 

Test 

case 

CPU Time 

(h) 

Acceptance ratio (%) RMS Error (W/m2) 

1 2.6 9.1 1.1x106 

2 2.6 7.5 1.0x106 

3 2.6 9.1 1.8x106 

4 98.7 41.9 – 6.8 1.1x106 

5 93.5 44.6 – 5.7 6.9x105 

6 64.5 34.6 – 5.4 1.4x106 

7 2.7 9.1 1.1x106 

8 2.6 8.3 9.8x105 

9 2.6 9.4 1.3x106 

10 42.9 9.8 1.2x106 

11 43.3 11.9 1.2x106 

12 43.1 8.7 2.0x106 

Test 

case 

CPU Time 

(h) 

Acceptance ratio (%) RMS Error (W/m2) 

1 2.7 10.9 9.3x104 

2 2.8 9.0 6.6x104 

3 2.6 9.9 1.1x105 

4 114.2 46.7 – 5.3 9.8x104 

5 113.0 47.9 – 4.2 5.9x104 

6 98.3 40.8 – 5.9 1.4x105 

7 2.6 11.3 9.3x104 

8 2.8 9.3 6.6x104 

9 2.7 10.2 1.1x105 

10 44.5 12.8 4.1x104 

11 44.2 11.0 2.6x104 

12 42.5 11.2 8.5x104 

 = 1.25 K 

 = 0.02 K 
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CONVECTIVE EFFECTS IN LIQUIDS CHARACTERIZED BY THE LINE 

HEAT SOURCE PROBE – AEM MODEL  

Bernard Lamien, Helcio R. B. Orlande, Approximation Error Model To Account For Convective Effects In 

Liquids Characterized By The Line Heat Source Probe, 4th Inverse Problems, Design and Optimization 

Symposium (IPDO-2013), Albi, France, June 26-28, 2013 
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CONVECTIVE EFFECTS IN LIQUIDS CHARACTERIZED BY THE LINE 
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HEAT SOURCE PROBE – AEM MODEL  
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