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• Introduction

• State estimation problems, also designated as nonstationary inverse

problems;

• Available measured data is used together with prior knowledge about the

physical phenomena and the measuring devices, in order to sequentially

produce estimates of the desired dynamic variables;

• This is accomplished in such a manner that the error is minimized statistically.

State Estimation Problem 



• Position of an aircraft
• Time integration of velocity 

components since departure
• Models aren´t perfect

• Measured with an GPS and 
altimeter
• Measurement devices aren´t 

perfect

State Estimation Problem



Measurement 
error

Model error

State Estimation Problem



State Estimation Problem 
• Consider the model for the evolution of the vector x

1 1( , )k k k k x f x w

k=1,2,... denotes time instant

• Measurements available and are related to xk as 

( , )k k k ky h x v

• Where:

xn
Rx = state variables to be estimated

wn
Rw

yn
Ry

vn
Rv= state noise vector 

= measurements

= measurement noise



State Estimation Problem

• The state estimation problem aims at obtaining information about xk based

on the state evolution model and on the measurements given by the

observation model.



Bayesian Framework

• The solution of the inverse problem within the Bayesian
framework is recast in the form of statistical inference from the
posterior probability density, which is the model for the
conditional probability distribution of the unknown
parameters given the measurements.
• The measurement model incorporating the related uncertainties is

called the likelihood, that is, the conditional probability of the
measurements given the unknown parameters.

• The model for the unknowns that reflects all the uncertainty of the
parameters without the information conveyed by the measurements,
is called the prior model.



The formal mechanism to combine the new information (measurements) •

with the previously available information (prior) is known as the Bayes’ 

theorem:

Bayesian Framework

( ) ( )
( ) ( )

( )
posterior

 
 


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x y x
x x y

y

where posterior(x) is the posterior probability density, (x) is the prior density, 

(y|x) is the likelihood function and (y) is the marginal probability density of 

the measurements, which plays the role of a normalizing constant.



• State Evolution Model:

State Estimation Problem

• Observation Model:

xk = fk (xk-1, wk-1)

( , )k k k ky h x v

• The evolution-observation model is based on the following assumptions:
• The sequence xk for k=1,2…., is a Markovian process, that is,

π(xk|x0,x1,x2,…xk-1)= π(xk|xk-1)

• The sequence yk for k=1,2,…, is a Markovian process with respect to the history of xk, 
that is,

π(yk|x0,x1,x2,…xk)= π(yk|xk)

• The sequence xk depends on the past observations only through its own history, that is,  

π(xk|xk-1,y1:k-1)= π(xk|xk-1)



State Estimation Problem
State Evolution Model:

Observation Model: ( , )k k k ky h x v

xk = fk (xk-1,wk-1)

• time domain: used to classify the method of solution in the domain y1:kf={yk, 

k=1,…,kf}

• The prediction problem, concerned with the determination of π(xk|y1:k-1);

• The filtering problem, concerned with the determination of π(xk|y1:k);

• The fixed-lag smoothing problem, concerned with the determination of π(xk|y1:k+p), 

where p≥1 is the fixed lag;

• The whole-domain smoothing problem, concerned with the determination of π(xk|y1:kf)



State Estimation Problem

• Filtering Problem
• By assuming that                            is 

available, the posterior probability 
density                  is then obtained with 
Bayesian filters in two steps: prediction 
and update

0 0 0( ) ( ) x y x

1:( )k k x y
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The Kalman Filter
• Evolution and observation models are linear. 
• Noises in such models are additive and Gaussian, with known means 

and covariances. 

k k k k y H x v

State Evolution Model:

Observation Model: 

The above set o equations leads to the optimum solution of the state •
variables;

• F and H are known matrices for the linear evolutions of the state x and of 
the observation y, respectively.
Vector • s is assumed to be a known input .

• Noises w and v have zero means and covariance matrices Q and R, 
respectively – p(w)~N(0,Q) and p(v)~N(0,R)

1 1 1k k k k k    x F x s w



The Kalman Filter 

• Derivation of the equations
• The inverse problem solution can be obtained by

• Where the posterior pdf can be obtained by the following proportionality 
relation:

• Reminding the evolution observation models:



•Derivation of the equations

•Determine the expectation and the covariance

matrix for these distributions in order for the 

posterior distribution to be fully characterized.

The Kalman Filter 



• For the likelihood the expectation is obtained by

• The covariance matrix is obtained by:

The Kalman Filter 

Non-biased
using



The Kalman Filter 

• Derivation of the equations
• Thus the pdf of the likelihood can be written as



The Kalman Filter 
• Derivation of the equations

• For the prior pdf π(xn|y0:n-1), the expectation is obtained by:

• And the covariance matrix is obtained by:

Both using

Equivalent

Equivalent

 Tcov[ ] Ex xx



The Kalman Filter 

• Derivation of the equations
• Thus the pdf of the priori can be written as



The Kalman Filter 
• Derivation of the equations

• The pdf of the posterior distribution is obtained combining both prior and 
likelihood pdf´s:

• The logarithm of the posterior pdf is taken and the derivative is calculated as



The Kalman Filter 
Derivation of the equations•

Taking • xn as x̂n
MAP one obtains:

By using the following lemma for the first term in the right hand side (• I), 

Where•

One obtains, •

I II III
IV I III



• Derivation of the equations
• A further simplification is obtained with the following lemma:

• Where

• Then

The Kalman Filter 

IV I III



Derivation of the equations•
Reminding: Derivative of • ln((x|y)) with respect to x

With the information of the previous lemmas:•

Results in•

Where•

The Kalman Filter 

 MAP

| 1 | 1
ˆ ˆ ˆ

n n n n n n n n   x x K y H x



The Kalman Filter 
• Derivation of the equations

• Covariance matrix derivation

• By using

• One obtain

 n n n nK H x x

 Tcov[ ] Ex xx



The Kalman Filter

Measurement Innovation

Prediction: 
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Example I: Lumped System

T∞

h

H
ea

t
fl

u
x
 q

L

( )
( )

d mq t
m t

dt h


 

(0) o 

where

( )T t T  

o oT T  

h
m

cL


For t > 0

For t = 0

z

y
x



Example I: Lumped System

• Two illustrative cases are examined:
• Heat flux q(t)=qo constant and deterministically known;
• Heat flux q(t)=qof(t) with unknown time variation;

• Plate is made of aluminum ( = 2707 kgm-3, c = 896 Jkg-1K-1), with 
thickness L = 0.03 m, q0 = 8000 W/m2, T∞=20 oC, h = 50 Wm-2K-1 and T0 = 
50 oC.

• Measurement of the transient temperature of the slab are assumed
available. These measurements contain additive, uncorrelated, Gaussian 
error, with zero mean and a constant standard deviation σz

• The errors in the state evolution model are also supposed to be additive, 
uncorrelated, Gaussian, with zero mean and a constant standard deviation 
σθ



• (i) Heat Flux q(t)=qo constant and deterministically known
• The analytical solution for this problem is given by:

• The only state variable in this case is the temperature θ(tk)= θk since the 
applied heat flux qo is constant and deterministically known, as the other 
parameter appearing in the formulation. By using a forward finite differences 
approximation for the time derivative in equation: 

Example I: Lumped System
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• Therefore, the state and observation models given by:

Example I: Lumped System

 k kx

 1k m t    F

o
k

q
m t

h

 
  
 

s

 1k H

2

k    Q

2

k z   R

k k k k z H x n

are obtained with

1 1 1k k k k k    x F x s w



• (ii) Heat Flux q(t)=q0 f(t) with unknown time variation,
• The analytical solution for this problem is given by:

• In this case, the state variables are given by the temperatures θ(tk)= θk and the function that gives the 
time variation of the applied heat flux, that is f(tk)=fk . As in the case examined previously, the applied 
heat flux qo is constant and deterministically known, as the other parameters appearing in the 
formulation. By using a forward finite-difference approximation for the time derivative we obtain the 
equation for the evolution of the state variable θ(tk)= θk :

• A random walk model is used for the state variable f(tk)=fk, , which is given in the form

• Where k-1 is Gaussian with zero mean and constant standard deviation σrw

Example I: Lumped System
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Example I: Lumped System

(ii) Heat Flux • q(t) = qo f(t) with unknown time variation
Therefore, the state and observation models given by: •

k k k k z H x n

are obtained with
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Example II: Experimental result

Estimation of position• -dependent transient heat source
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Example II: Experimental result

• Schematics of the experiment



Example II: Experimental result

Nodal approach •

System of 
measurements

Predictive 
model

+
-

input

 2( , ) ( , ) ( , , )
T

x y T H x y T T G x y t
t

 


    



1, , 1, , 1 , , 11

, , , , ,2 2

2 2
( )

( ) ( )

n n n n n n

i j i j i j i j i j i jn n

i j i j i j i j i j

T T T T T T
Y t t T T H tG

x y


   



    
          

( , , )meas x y tT

 ˆ ( , , ) measx y t T J T P

 
1

OLS T T ˆ


P J J J T



Example II: Experimental result

• Nodal approach for KF estimation
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Example II: Experimental result

Therefore, the state and observation models given by: •

k k k k z H x n

are obtained with
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Example II: Experimental result

Square pulse

Sinusoidal pulse



Example II: Experimental result - Sine



Example II: Experimental result - Square



Example II: Experimental result - Sine



Example II: Experimental result - Square



Example II: Experimental result

Square

Sin
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• Thank you!

The Kalman Filter



Fact: Kalman filter is restrict to linear and Gaussian problems.

One investigation:

System matrices are allowed to change with time.•

What if they don• ’t?

Second investigation:

What if the hypothesis above do not hold?•

Can we solve • nonlinear and/or non Gaussian problems?

The Kalman Filter – Extensions



• What if instead of

we had its time-invariant version:

with the noise given by

The Kalman Filter – Extensions
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In other words

As a practical result, K and P matrices behave asymptotically.

After a number of steps:

Can we use this to our advantage?

The Kalman Filter – Extensions
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Applying this result to Kalman filter equations yields:

These equations are referred to as the Steady-State Kalman Filter (SSKF).

Steady-State Kalman Filter
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What are the properties of this method?

Equations • 1 and 2: offline;

Equation • 3: online;

Thus:

• P and K are calculated offline;

• x and y appear in one equation;

No online matrix inversion;•

O(n• ²), instead of O(n³);

Steady-State Kalman Filter
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Heat Flux Identification problem:

• Heating of a flat square plate;

• 3D Nonlinear Heat Conduction;

• High magnitude heat flux;

• Measurements taken at opposite side;

• (a,b,c)=(120,120,30) mm

3D Nonlinear Transient Inverse Heat Conduction Problem:

How to estimate the heat flux at real time?

Example III – Introduction



Complete Mathematical Model:

• Governing  Equation (t > 0):

• Initial Condition (t = 0):

Example III – Mathematical Modeling
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Complete Mathematical Model:

• Boundary Conditions

Example III – Mathematical Modeling
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Complete Mathematical Model:

• Nonlinear: unable to apply Kalman filter for this case;

• 3D inverse problem might lead to high computational effort;

Proposal: Use a reduced model:

• Linearize it;

• Use mean temperature at the z-direction instead of actual temperature;

• Approximate temperature gradients across the thickness.

Example III – Mathematical Modeling
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Reduced Mathematical Model:

• Governing  Equation (t > 0):

• Initial Condition (t = 0):

Example III – Mathematical Modeling
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Reduced Mathematical Model:

• Boundary Conditions

Improved Lumped Method

• Temperature at z=0:

Example III – Mathematical Modeling
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State vector:

Mean temperature;•

Heat flux;•

Values throughout the mesh.•

Observation vector:

Temperature at z=• 0;

Values throughout the mesh.•

Noise Covariance Matrices:

Assumed uncorrelated.•

Example III – Inverse Problem Settings
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Synthetic Measurements:

• Solution of forward complete problem;

• Achieved grid/time-step independence;

• Exact (Reference) heat flux;

• Total time: 2.0 s (200 measurements);

Inverse Problem:

• Reduced model;

• 24 x 24 grid with 0.02 s time step;

• No inverse crime;

Example III – Inverse Problem Settings

 exatoN ,n ny y R

exato exato

n ny Hx

exato

n n   yy y ω

 OBS: N ,ω 0 I



Exact (Reference) Heat Flux:

Example III – Inverse Problem Settings

 

1,1 1,2

1 0

1,1 1,2

2,1 2,2

2 0

2,1 2,2

,
,

,

,
, ,

,

0, otherwise

x x x
q t t

y y y

x x x
q x y t q t t

y y y

 


 

  

 
 





q1 1E7 W/m2

q2 5E6 W/m2

t1 0.4 s

t2 0.6 s

x1,1 30 mm x2,1 90 mm

x1,2 50 mm x2,2 100 mm

y1,1 30 mm y2,1 90 mm

y1,2 50 mm y2,2 100 mm



Exact (Reference) Heat Flux:

Example III – Inverse Problem Settings

 

1,1 1,2

1 0

1,1 1,2

2,1 2,2

2 0

2,1 2,2

,
,

,

,
, ,

,

0, caso contrário

x x x
q t t

y y y

x x x
q x y t q t t

y y y

 


 

  

 
 







Hot Spot #1: Temperature and heat flux estimates

Example III – Results



Hot Spot #1: Temperature estimates and residuals

Example III – Results



Hot Spot #2: Temperature and heat flux estimates

Example III – Results



Hot Spot #2: Temperature and heat flux estimates

Example III – Results



Computational time:

Physical time: • 2.0 s;

Kalman• filter: 300 s;

SSKF: • 0.9 s;

Only SSKF allows for real-time estimation;

Majority of computational effort done at pre• -processing;

Recursive estimation: • 2 matrix-vector multiplications.

Example III – Results



• What if instead of

we had a nonlinear non Gaussian model:

How does one perform sequential estimation with such models?

The Kalman Filter – Extensions

 1 1 1, ,k k k k k  x f x u w

1 1 1k k k k k    x F x u w

 ,k k ky h x n

k k k k y H x n



• Idea: Linearize the model and apply classical KF equations:

The Extended KF

   
1 1

1 1 1 1 1 1

ˆ ˆ

ˆ ˆ, ,

k k

k k
k k k k n k k k

 
 

 

     

 
   

 x x

f f
x f x u w x x w

x w

   
ˆ ˆ

ˆ ˆ,

k k

k k
k k kk n k k k

 

  
   

 x x

h h
y h x n x x n

x n



Extended KF (EKF): Linearization + Kalman Filter:

• Linearization of both evolution and observation models.

Prediction:

• Linearization:

• Prior Mean and Covariance

The Extended KF – Equations

 1 1 1 1 1 1 1 1
ˆ ˆ , ,    and    T T

n k k k n k k k k k k

   

         x f x u 0 P F P F L Q L

1 1

1 1

ˆ ˆ

 and   

k k

k k
k k

 
 

 

 
 
 x x

f f
F L

x w



Update:

Linearization•

Calculation of Intermediate Covariance Matrices•

The Extended KF – Equations

   ˆ ˆ ˆ ,     and    k k k k k k k k k k

         
 

x x K y h x 0 P I K H P

 
1

T T T

k k k k k k k k k


  K P H H P H M R M

ˆ ˆ

 and   

k k

k k
k k

 

 
 
 x x

h h
H M

x n



Free falling  of a particle:

State variables:

• Altitude (x1);

• Velocity (x2);

• Ballistic Coefficient (x3);

Observation variable:

• Observed distance:

Example IV

 
22

1M x t a   



Free falling of a particle:

Evolution-Observation Model

Example IV

   

1 2 1

21
2 0 2 3 2

3 3

22

1

1 exp
2

k k k

x x w

x
x x x g w

k

x w

y t M x t a v



 

    
  



     



Free falling of a particle:

Input data:

Example IV

2 4

0

2

4

5

5

2 lbs /ft ;

  32.2 ft/s ;

  2 10  ft;

10  ft;

a   = 10  ft.

g

k

M

 



 



 2

2 4 2

E 0,   1,2,3

E 10  ft

i

k

w t i

v

    

   

Noise model:

Initial State:

5

4

0 0

3

3 10

ˆ 2 10

10





 
 

    
 
 

x x

6

6

0

10

diag 4 10

10



 
 

  
 
 

P



Free falling of a particle:

Reference values:

Example IV

Estimation error:



EKF properties:

• Sequential nonlinear estimation algorithm of choice;

• Non-intrusive;

• Up for parallelization;

• Hard to accelerate theoretically (there is no “SSEKF”).

What if nonlinearities are not sufficiently captured?

• 1st order approximations might be insufficient;

• EKF might lead to unreliable estimates.

Higher order methods



Example: Polar to Rectangular mapping:

Goal: Find y statistics, given

• Nonlinear mapping;

• x is uncorrelated;

• Symmetric pdfs.

Higher order methods

cos
  and  

sin

r r

r



 

   
    
   

x y

 
1

=    and   

2

r



  
   

    

x y h x



• 1st order expansion around mean of x:

Thus•

Higher order methods

     E E
 

        x

h
y h x h x x x

x

     
0

E         
1

 
     
  x

h
y h x x x y h x

x



1st component:

Higher order methods

Assuming:

r r r

  

   
    

   
x

1 1Thus: cos        0y r y  

 

   

  

1 E cos

   E cos

   E cos cos sin sin

   cos

   0

y r

r r

r r

r



 

   





   
 

   
 







2nd component:

Higher order methods

Assuming:

r r r

  

   
    

   
x

2 2Thus: E cos    but    1???y y   

 

   

  

2 E sin

   E sin

   E sin cos cos sin

   sin E cos

   E cos

y r

r r

r r

r



 

   

 





   
 

   
 

   

   



If we assume uniform distribution:

It follows that

The first order approximation
is incorrect!!

Higher order methods

 ,m mU  

sin
E cos 1m

m





    



How to improve this estimate?

In other words, we seek better ways to propagate

through a nonlinear mapping

in order to obtain

Higher order methods

 y h x

   E  and cov x x P x

   E  and covy y y P y



Solution: Unscented transform.

1st step (2n samples or sigma points):

• n is the size of x vector;

• i subscript: ith row of matrix.

2nd step (Mapping of samples):

Higher order methods

 ( ) ( ) ( ),with 
T

i i i

i
n   x x x x P

 ( ) ( )i iy h x



Solution: Unscented transform.

3rd step (Averaging of mappings):

Higher order methods

2 ( )

1

2

1

1   
2

             and

1
2

n i

i

n T

y i

n

n







  





y y

P y y

( ) ( )OBS: i i  y y y



Unscented transform:

• 3rd order accurate;

• Nonintrusive;

• No extra matrices required;

• Sq. root of P: Cholesky decomp.;

• Deterministic sampling (2n samples)

So, for heavily nonlinear problems:

UT-based Kalman filter

Higher order methods



Unscented KF (UKF): Unscented transform (UT) + Kalman Filter:

1 • UT at prediction stage + 1 UT at update stage.

Prediction:

Sampling of Sigma Points•

Prior Mean and Covariance•

The Unscented KF – Equations

   ( ) ( ) ( )

1 1 1 1
ˆ ˆ ˆ ˆ  and   ,

T
i i i

n n k n n n
i
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     x x P x f x u

2 2
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1

1 1

1 1
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2 2
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n n n n n n

i in n

 


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Update:

• Sampling of sigma points

• Calculation of Intermediate Covariance Matrices

The Unscented KF – Equations
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Update:

• Posterior Mean and Covariance:

The Unscented KF – Equations

 ˆ ˆ ˆ     and    T

n n n n n n n n y n
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Free falling of a particle – revisited:

Evolution-Observation Model

Example V

   
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Free falling of a particle:

Example V



Heat Flux Identification problem – revisited:

• Same model as example III;

• Estimation of heat flux at z=0;

• Temperature measurements at z=c;

• 3D, Nonlinear;

• Heat flux application from t=0;

• Use Complete Model for Inverse Problem solution;

Example VI – Introduction



Hot Spot #2: Temperature and heat flux estimates

Example VI – Results



Hot Spot #2: Temperature estimates and residuals

Example VI – Results



Computational time:

Physical time: • 2.0 s;

Kalman• filter: N/A;

UKF: • 115200 s (approx. 32 h);

UKF and use of the Complete Model:

Inverse Analysis is made possible;•

Computational time is excessively large.•

Example VI – Results



Kalman filtering techniques

• Wide range of applications for sequential estimation;

• Much more variations available;

Classical Kalman Filter:

• Analytical solution for linear and Gaussian problems;

• Stable, robust, easy to program;

Extended and Unscented Kalman Filter:

• Reliable algorithms for nonlinear and/or non Gaussian problems;

• Increasing degrees of accuracy and complexity.

Overall Conclusions



Overall Conclusions

SIMON D., Optimal State Estimation, John Wiley & Sons, 2006.


