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History of Particle Filters
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History of Particle Filters

• Sequential Monte Carlo methods for on-line learning within a 

Bayesian framework.

• Known as

– Particle filters

– Sequential Sampling-Importance Resampling (SIR)

– Bootstrap filters

– Condensation trackers

– Interacting particle approximations

– Survival of the fittest
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• FIRST ATTEMPTS – SIMULATIONS OF GROWING POLYMERS

– M. N. Rosenbluth and A.W. Rosenbluth, “Monte Carlo calculation of the 

average extension of molecular chains,” Journal of Chemical Physics, vol. 

23, no. 2, pp. 356–359, 1955.

• FIRST APPLICATION IN SIGNAL PROCESSING - 1993

– N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to

nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings-F, vol.

140, no. 2, pp. 107–113, 1993.

History of Particle Filters
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• BOOKS

– A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo 

Methods in Practice, Springer, 2001.

– B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle 

Filters for Tracking Applications, Artech House Publishers, 2004.

• TUTORIALS

– M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on

particle filters for online nonlinear/non-gaussian Bayesian tracking,” IEEE

Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.

History of Particle Filters
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History of Particle Filters
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Why Particle Filters are important?
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Why Particle Filters are important? 

The elegance of the Kalman Filter provided some solace, but at

the cost of pretending to live in a linear Gaussian world. Once into

the nonlinear, non-Gaussian domain, we were without a universally

effective approach and driven into a series of ingenious

approximations, some based on flexible mixtures of tractable

distributions to approximate and propagate uncertainty, or on local

linearisations of nonlinear systems. (Doucet et al, 2001) .
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1. Need to estimate an unknown variables or unobservable 

variables from a set of experimental data.

2. Commonly,  these data or observations are generated in 

real-time and the estimation must be done in real time.

3. Tool for tracking the state of a dynamic system modeled by 

a Bayesian network.

Why Particle Filters are important? 
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4. Applications similar to those of the Kalman Filters, but 

computationally tractable for large/high dimensional problems.

5. These methods are very flexible, easy to implement and to 

be applied in different areas, for nonlinear non-Gaussian  

problems.

6. Key idea: Find an approximate posterior distribution. 

Why Particle Filters are important? 
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Bayesian Framework 
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The formal mechanism to combine the new information

(measurements) with the previously available information (prior) is

known as the Bayes’ theorem:

( ) ( )
( ) ( )

( )
posterior

 
 


 

x z x
x x z

z

where posterior(x) is the posterior probability density, (x) is the

prior density, (z|x) is the likelihood function and (z) is the

marginal probability density of the measurements, which plays the

role of a normalizing constant.

Bayesian Framework 
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The solution of the inverse problem within the Bayesian framework

is recast in the form of statistical inference from the posterior

probability density.

Prior is the model for the unknowns that reflects all the

uncertainty of the parameters without the information conveyed by

the measurements

Likelihood is the measurement model incorporating the related

uncertainties, that is “the conditional probability of the

measurements given the unknown parameters”.

Posterior probability density is the model for the conditional

probability distribution of the unknown parameters given the

measurements.

Bayesian Framework 
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State Estimation Problem 
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State Estimation Problem 

State Evolution Model:

Observation Model: ( , )k k k kz h x n

xn
Rx

Subscript k = 1, 2, …, denotes an instant tk in a 

dynamic problem

= state variables to be estimated

vn
Rv

znRz

nn
Rn

= state noise

= measurements

= measurement noise

xk = fk (xk-1, uk-1, vk-1)

u  R np =  input variable
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Definition: The state estimation problem aims at

obtaining information about the xk based on the state

evolution model and on the measurements given by

the observation model.

State Estimation Problem 
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The evolution-observation model is  based on the following assumptions : 

(i) The sequence   kx for k = 1, 2, …, is a Markovian process, that is, 

0 1 1 1( , , , ) ( )k k k k  x x x x x x      

(ii) The sequence   kz for k = 1, 2, …, is a Markovian process with respect to 

the history of   kx , that is, 

0 1( , , , ) ( )k k k k z x x x z x      

(iii) The sequence   kx  depends on the past observations only through its own 

history, that is, 

1 1: 1 1( , ) ( )k k k k k   x x z x x       

State Evolution Model:

Observation Model: ( , )k k k kz h x n

xk = fk (xk-1, uk-1, vk-1)

State Estimation Problem 
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State Evolution Model:

Observation Model: ( , )k k k kz h x n

xk = fk (xk-1, uk-1, vk-1)

1. The prediction problem, concerned with the determination of 1: 1( )k k x z ; 

2. The filtering problem, concerned with the determination of 1:( )k k x z ; 

3. The fixed-lag smoothing problem, concerned the determination of 1:( )k k p x z , 

where 1p   is the fixed lag; 

4. The whole-domain smoothing problem, concerned with the determination of 

1:( )k K x z , where 1: { , 1, , }K i i K z z  is the complete sequence of 

measurements. 

Different problems can be considered:

State Estimation Problem 
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Filtering Problem 
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Filtering Problem 

By assuming that the probability density of the initial state

is available , the Markov transition kernels

and the likelihood functions

the state is estimated with Bayesian filters in two steps:

prediction and update

0 0 0( ) ( ) x y x

1( )k k x x ( ) , 1,2,...k k k y x
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0( ) x

evolution model
1 0( ) x x

1( ) x

likelihood 1 1( ) y x

1 1( ) x y

evolution model2 1( ) x x

2 1( ) x y

likelihood 2 2( ) y x

k = 1

k = 2

prediction

update

prediction
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Problem Statement

• Goal: Tracking the state of a system as it evolves in time

• Information : Sequential (noisy or ambiguous) observations

• We want to know: Best possible estimate of the state 

variables
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Particle Filtering Methods
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Particle Filtering Methods

• Introduced in the 50’s, but no much used until 2000’s because

of limited computational resources.

• Monte-Carlo techniques are the most general and robust for

nonlinear and/or non-Gaussian distributions.

• The algorithms are based on Sequential Importance Sampling

(SIS) .

•The sequential importance sampling (SIS) algorithm is a Monte

Carlo (MC) method that forms the basis for most filters

developed over the past decades.
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Sequential Importance Sampling (SIS) Algorithm

 
 

k ki

k

k k

w
q




x z

x z

   
 

1

1

1,

i i

k k k ki i

k k i

k k k

w w
q

  






z x x x

x x z

The key idea is to represent the required

posterior density function by a set of random

samples (particles) with associated weights,

and to compute the estimates based on these

samples and weights.

 1

i i i

k k k kw w  z x

(xk|zk)    (zk|xk)  (xk)Bayes’ Theorem 

   
1...

,i i

k k k k i N
w


x z x

Importance Density
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ARULAMPALAM, M. S., MASKELL, S., GORDON, N. AND CLAPP, T. “A tutorial on

particle filters for online nonlinear/non Gaussian Bayesian tracking,” IEEE Trans. Signal

Processing, vol. 50, no. 2, pp. 174–188, Feb. 2002.

 1

i i i

k k k kw w z x

Sequential Importance Sampling (SIS) Algorithm
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Posteriori distribuition

Priori parameter 

or states 

distribuition

Sampling Dynamic Simulation

Measurements 

Estimated parameter 

or state

1( )k x
   11,...,

|i i

k k ki N
 

x x x 1,...,
ˆ ( )i i

k k k i Nh z x

 kz

Weights calculation

 1
ˆ|i i i

k k k kW W z z

Time Evolution

(k = k+1)

k posteriorix
 

1...

i i

posteriori k k i N



 x W

Sequential Importance Sampling (SIS) Algorithm
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Problems the SIS Filter

Degeneracy Problem:

✓ A common problem with the SIS particle filter is the

degeneracy phenomenon, where after a few iterations,

few particles will have negligible weight.

✓ This degeneracy implies that a large

computational effort is devoted for updating particles

whose contribution to the approximation to is

almost zero.

 k k x z
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Sampling Importance Resampling (SIR) Algorithm
(Ristic, B., Arulampalam, S., Gordon, N., 2004, Beyond the Kalman Filter, Artech House, Boston)
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Although the resampling step reduces the effects of degeneracy, it 

introduces other practical problems:

• Particles that have high weights are statistically selected

many times: Loss of diversity, known as sample

impoverishment, specially if the evolution model errors are

small.

Sampling Importance Resampling (SIR) Algorithm
(Ristic, B., Arulampalam, S., Gordon, N., 2004, Beyond the Kalman Filter, Artech House, Boston)
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Step 1 

For 1, ,i N  draw new particles x
i

k
 from the prior 

density  1x x
i

k k  and then use the likelihood density 

to calculate the correspondent weights  z x
i i

k k kw  . 

Step 2 

Calculate the total weight 
1

N
i

w k

i

T w


  and then normalize 

the particle weights, that is, for 1, ,i N  let 1i i

k w kw T w  

Step 3 

Resample the particles as follows : 

 

Construct the cumulative sum of weights (CSW) by 

computing 
1

i

i i kc c w   for 1, ,i N , with 0 0c  . 

Let 1i  and draw a starting point 1u  from the uniform 

distribution 10,U N     

For 1, ,j N  

       Move along the CSW by making  1

1 1ju u N j  
 

       While j iu c  make 1i i  . 

        Assign sample j i

k kx x  

        Assign sample 1j

kw N   

 

• Weights are easily evaluated and 

importance density easily 

sampled. 

• Importance of sampling density 

is independent of the 

measurements at current time. 

The filter can be sensitive to 

outliers.

• Resampling is applied in every 

iteration, which can result in fast 

loss of diversity of the particles.

Sampling Importance Resampling (SIR) Algorithm
(Ristic, B., Arulampalam, S., Gordon, N., 2004, Beyond the Kalman Filter, Artech House, Boston)
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Priori parameter 

or states 

distribuition

Sampling Dynamic Simulation

Measuresments

Estimated parameter 

or state

1( )k x
   11,...,

|i i

k k ki N
 

x x x 1,...,
ˆ ( )i i

k k k i Nh z x

 kz

( )posteriori k x

Weights calculation

 ˆ|i i

k k kW  z z

Time Evolution

(k = k+1)

Resampling

 
^

1ˆ, ,
i

i i i
k k k kw N W 

  
 

x x

Posteriori 

distribuition

 ( )k posteriori kmean x x

^

1..

i

kposteriori

ì N




 
  
 

x

Sampling Importance Resampling (SIR) Algorithm
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Improvements to SIR

• Variety of resampling schemes with different performance in terms of the 

variance of the particles                    :

– The cumulative sum of weights (CSW) ( Arulampalan et al, 2002)

– Residual sampling (Liu & Chen, 1998).

– Systematic sampling (Carpenter et al., 1999).

– Mixture of SIS and SIR, only resample when necessary (Liu & Chen, 1995; 

Doucet et al., 1999).

• Degeneracy and Impoverishment may still be a problem:

– During resampling a sample with high importance weight may be duplicated 

many times.

– Samples may eventually collapse to a single point.

)var( iN
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• Local Monte Carlo methods for  alleviating sample impoverishment:

– Local linearization - using an EKF (Doucet, 1999; Pitt & Shephard, 1999) 

or UKF (Doucet et al, 2000) to estimate the importance distribution.

– Rejection methods (Müller, 1991; Doucet, 1999; Pitt & Shephard, 1999).

– Auxiliary particle filters (Pitt & Shephard, 1999)

– Kernel smoothing (Gordon, 1994; Hürzeler & Künsch, 1998; Liu & West, 

2000; Musso et al., 2000).

– MCMC methods (Müller, 1992; Gordon & Whitby, 1995; Berzuini et al., 

1997; Gilks & Berzuini, 1998; Andrieu et al., 1999).

– Move-Reweighting (Marques et al., 2017)

Improvements to SIR
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Ingredients for SMC

• Importance sampling function

– Gordon et al 

– Optimal          

– UKF  pdf from UKF at 

• Redistribution scheme (Resampling)

– Gordon et al  SIR

– Liu & Chen  Residual

– Carpenter et al  Systematic

– Liu & Chen, Doucet et al  Resample when necessary

• Careful initialization procedure (for efficiency)

)|( 1
i
kk xxp 

),|( 1:0 k
i

kk Dxxp 

i
kx 1
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TOY EXAMPLE
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TOY EXAMPLE

ORLANDE, H. R. B. ; COLACO, M. J. ; DULIKRAVICH, G. S ; VIANNA, F. L. V. ; SILVA. W. B. ;

FONSECA, H. M. ; FUDYM, O. . Kalman and Particle filters. In: METTI V - Thermal Measurements and

Inverse Techniques, 2011, Roscoff. METTI V - Thermal Measurements and Inverse Techniques, 2011.

 

( ) ( )
( )

d t mq t
m t

dt h


    for t > 0       

0                  for t = 0       

 

where  

 

( ) ( )t T t T             

0 0T T               

h
m

c L
   

Consider a slab of thickness L, initially at the uniform temperature T0, which is subjected to a uniform

heat flux q(t) over one of its surfaces, while the other exchanges heat by convection and linearized

radiation with a medium at a temperature.
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ORLANDE, H. R. B. ; COLACO, M. J. ; DULIKRAVICH, G. S ; VIANNA, F. L. V. ; SILVA. W. B. ;

FONSECA, H. M. ; FUDYM, O. . Kalman and Particle filters. In: METTI V - Thermal Measurements and

Inverse Techniques, 2011, Roscoff. METTI V - Thermal Measurements and Inverse Techniques, 2011.

 

( ) ( )
( )

d t mq t
m t

dt h


    for t > 0       

0                  for t = 0       

 

where  

 

( ) ( )t T t T             

0 0T T               

h
m

c L
   

Two illustrative cases are now examined, namely: (i) Heat Flux q(t) = q0 constant and deterministically known;

and (ii) Heat Flux q(t) = q0 f(t) with unknown time variation. Results are obtained for these two cases, by

assuming that the plate is made of aluminum (r = 2707 kgm-3, c = 896 Jkg-1K-1), with thickness L = 0.03 m,

q0 = 8000 Wm-2,                                                                       .T =20 oC, h = 50 Wm-2K-1 and T0 = 50 oC

TOY EXAMPLE
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TOY EXAMPLE

ORLANDE, H. R. B. ; COLACO, M. J. ; DULIKRAVICH, G. S ; VIANNA, F. L. V. ; SILVA. W. B. ;

FONSECA, H. M. ; FUDYM, O. . Kalman and Particle filters. In: METTI V - Thermal Measurements and

Inverse Techniques, 2011, Roscoff. METTI V - Thermal Measurements and Inverse Techniques, 2011.

Heat Flux q(t) = q0 constant and deterministically known

The analytical solution for this problem is given by:

The only state variable in this case is the temperature              

since the applied heat flux q0 is constant and deterministically 

known, as the other parameters appearing in the formulation. By 

using a forward finite-differences approximation for the time 

derivative in equation , we obtain:

0
0( ) (1 )mt mtq

t e e
h

     

( )k kt 

0
1(1 )k k

mq
m t t

h
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TOY EXAMPLE

ORLANDE, H. R. B. ; COLACO, M. J. ; DULIKRAVICH, G. S ; VIANNA, F. L. V. ; SILVA. W. B. ;

FONSECA, H. M. ; FUDYM, O. . Kalman and Particle filters. In: METTI V - Thermal Measurements and

Inverse Techniques, 2011, Roscoff. METTI V - Thermal Measurements and Inverse Techniques, 2011.

Heat Flux q(t) = q0 f(t) with unknown time variation

The analytical solution for this problem is given by:

In this case, the state variables are given by the temperature         

and the function that gives the time variation of the applied heat 

flux, that is,                .As in the case examined above, the applied 

heat flux q0 is constant and deterministically known, as the other 

parameters appearing in the formulation.

0
0

0

( ) ( )

t

mt mt

t

mq
t e e f t dt

h
 





  
   

  


( )k kt 

( )k kf t f
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ORLANDE, H. R. B. ; COLACO, M. J. ; DULIKRAVICH, G. S ; VIANNA, F. L. V. ; SILVA. W. B. ;

FONSECA, H. M. ; FUDYM, O. . Kalman and Particle filters. In: METTI V - Thermal Measurements and

Inverse Techniques, 2011, Roscoff. METTI V - Thermal Measurements and Inverse Techniques, 2011.

Heat Flux q(t) = q0 f(t) with unknown time variation

The analytical solution for this problem is given by:

By using a forward finite-differences approximation for the time

derivative in equation, we obtain the equation for the evolution of

the state variable :

A random walk model is used for the state variable ,

which is given in the form:

0
0

0

( ) ( )

t

mt mt

t

mq
t e e f t dt

h
 





  
   

  


( )k kt 

0
1 1(1 )k k k

mq
m t t f

h
   

 
     

 

( )k kf t f

1 1k k kf f   

TOY EXAMPLE
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ORLANDE, H. R. B. ; COLACO, M. J. ; DULIKRAVICH, G. S ; VIANNA, F. L. V. ; SILVA. W. B. ;

FONSECA, H. M. ; FUDYM, O. . Kalman and Particle filters. In: METTI V - Thermal Measurements and

Inverse Techniques, 2011, Roscoff. METTI V - Thermal Measurements and Inverse Techniques, 2011.

For the cases studied here, two different functions were examined 

for the time variation of the applied heat flux, specifically, a step 

function in the form:

and a ramp function in the form

TOY EXAMPLE

1, 0
2

( )

0,
2

final

final

final

t
t

f t
t

t t


 

 
  


( )
final

tf t
t
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APPLICATIONS
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Estimation of the location of the solidification front and the 

intensity of a line heat sink

45

Silva, W. B.  Orlande, H. R. B.; Colaço, M. J., Fudym, O., 2011, Application Of Bayesian Filters To A One-

Dimensional Solidification Problem, 21st Brazilian Congress of Mechanical Engineering, Natal, RN, Brazil

APPLICATIONS

Solid Liquid

S(t)

Interface

0

T

L
in

e
 H

e
a

t
S

in
k

T (r,t)
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46

The mathematical formulation for the solid phase is given as 

 

    , ,1 1
0 ( ) 0

s s

s

T r t T r t
r in r S t and t

r r r t

  
    

   

  (1.a) 

 

while the liquid phase is described as 

 

    , ,1 1
( ) 0

l l

l

T r t T r t
r in S t r and t

r r r t

  
     

   

 (1.b) 

  , 0l iT r t T in r and t       (1.c) 

  , 0 0l iT r t T in t and r    (1.d) 

 

At the interface between liquid and solid phases, the following conditions must be satisfied 

 

    , , ( ) 0s l mT r t T r t T in r S t and t      (1.e) 

    , , ( )
( ) 0

s l

s l

T r t T r t S t
k k L in r S t and t

r r t


  
   

  
 (1.f) 

APPLICATIONS
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47

An analytical solution of this problem can be obtained for this physical problem and it is given by [8]:  

 

    
2

2, 0 ( )
4 4

s
s m i i

s s

Q r
T r t T E E r S t

k t


 

  
       

  

  (2.a) 

 
 

  2

2
, ( )

4

i m

l i i

ss
i

l

T T r
T r t T E S t r

t
E

 



   
      

    
 
 

  (2.b) 

 

where the eigenvalues λ and the solidification front S (t) are given by 

 

  
2

2 2

24

s

ll i m

s

s s
i

l

k T TQ
e e L

k
E

 

   
  








  
 
 
 

  (3.a) 

 

 ( ) 2 sS t t   (3.b) 

 

In the above equations  iT  is the uniform initial temperature, mT  is the melting temperature of the material, L is the 

latent heat of solidification of the material,   is the density,  sk  and lk are the thermal conductivities of the solid and 

liquid phases, respectively, s  and  l  are the thermal diffusivities of the solid and liquid phases, respectively, and  

sT  and lT  are temperatures of the solid and liquid phases, respectively. 

APPLICATIONS
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Estimation of the location of the solidification front and the 

intensity of a line heat sink

48

Silva, W. B.  Orlande, H. R. B.; Colaço, M. J., Fudym, O., 2011, Application Of Bayesian Filters To A One-

Dimensional Solidification Problem, 21st Brazilian Congress of Mechanical Engineering, Natal, RN, Brazil.

      The physical problem defined by Eqs. (1.a-f) was solved analytically, where we used the following data, 

corresponding to solidifying water: 25iT C  , 0mT C  , 
2

0.00118s

m

s
  , 

2

0.000146l

m

s
  , 2.22s

w
k

m c



, 

0.61l

w
k

m c



, 

3
997.1

kg

m
   , J

80 
kg

L  . The line heat sink was supposed to have a constant value equals to W
Q = 50

m
. 

In this work, the measurements (for the observation model) were obtained at r=0.01 m. The simulated noisy 

measurements were uncorrelated, additive, Gaussian, with zero mean and constant standard deviation equal to 5% of the 

maximum temperature. Figures 3.a,b show the transient measurements obtained after applying such constant line heat 
sink, with and without errors, respectively. 

APPLICATIONS
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Estimation of the location of the solidification front and the 

intensity of a line heat sink

Silva, W. B.  Orlande, H. R. B.; Colaço, M. J., Fudym, O., 2011, Application Of Bayesian Filters To A One-

Dimensional Solidification Problem, 21st Brazilian Congress of Mechanical Engineering, Natal, RN, Brazil.

APPLICATIONS
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Estimation of the location of the solidification front and the 

intensity of a line heat sink

Silva, W. B.  Orlande, H. R. B.; Colaço, M. J., Fudym, O., 2011, Application Of Bayesian Filters To A One-

Dimensional Solidification Problem, 21st Brazilian Congress of Mechanical Engineering, Natal, RN, Brazil.

Bayesian filter 
Number of Particles 

(NP) 
Time 

RMS error for the 

solidification front 

(m) 

RMS error for 

the line heat 

sink intensity 

(W/m) 

SIR 100 0.008 min. 9x10-3 1.55 

SIR 1000 0.997 min. 2x10-3 1.78 

SIR 5000 11.047 min. 1x10-4 0.34 

ASIR 100 0.161 min. 7.9x10-5 0.15 

 

APPLICATIONS
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Estimation of the location of the solidification front

Silva, W. B.  Orlande, H. R. B.; Colaço, M. J., Fudym, O., 2011, Application Of Bayesian Filters To A One-

Dimensional Solidification Problem, 21st Brazilian Congress of Mechanical Engineering, Natal, RN, Brazil.
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Estimation of of a line heat sink

Silva, W. B.  Orlande, H. R. B.; Colaço, M. J., Fudym, O., 2011, Application Of Bayesian Filters To A One-

Dimensional Solidification Problem, 21st Brazilian Congress of Mechanical Engineering, Natal, RN, Brazil.
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

SILVA. W. B.; ROCHOUX Mélanie ; ORLANDE, H. H. B. ; COLACO, M. J. ; FUDYM, O. ; EL HAFI,

Mouna. ; CUENOT Bénédicte ; RICCI, S. . APPLICATION OF PARTICLE FILTERS TO REGIONAL-

SCALE WILDFIRE SPREAD. High Temperatures-High Pressures, v. 43, p. 415-440, 2014.
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

SILVA. W. B.; ROCHOUX Mélanie ; ORLANDE, H. H. B. ; COLACO, M. J. ; FUDYM, O. ; EL HAFI,

Mouna. ; CUENOT Bénédicte ; RICCI, S. APPLICATION OF PARTICLE FILTERS TO REGIONAL-

SCALE WILDFIRE SPREAD. High Temperatures-High Pressures, v. 43, p. 415-440, 2014.

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

SILVA. W. B.; ROCHOUX Mélanie ; ORLANDE, H. H. B. ; COLACO, M. J. ; FUDYM, O. ; EL HAFI,

Mouna. ; CUENOT Bénédicte ; RICCI, S. . APPLICATION OF PARTICLE FILTERS TO REGIONAL-

SCALE WILDFIRE SPREAD. High Temperatures-High Pressures, v. 43, p. 415-440, 2014.

Arrival time of the fire front (in color), and observed fire fronts 

separated by 14 s (at t = 64 s, 78 s, 92 s, 106 s) in black solid lines. 

Wind (1 m/s, 307 °)

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

SILVA. W. B.; ROCHOUX Mélanie ; ORLANDE, H. H. B. ; COLACO, M. J. ; FUDYM, O. ; EL HAFI,

Mouna. ; CUENOT Bénédicte ; RICCI, S. . APPLICATION OF PARTICLE FILTERS TO REGIONAL-

SCALE WILDFIRE SPREAD. High Temperatures-High Pressures, v. 43, p. 415-440, 2014.

Extraction of the fire front location (right) from the thermal infrared image (left) 

at t = 106 s; the fire front is identified as the isocontour where the temperature 

reaches 600 K.

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

SILVA. W. B.; ROCHOUX Mélanie ; ORLANDE, H. H. B. ; COLACO, M. J. ; FUDYM, O. ; EL HAFI,

Mouna. ; CUENOT Bénédicte ; RICCI, S. . APPLICATION OF PARTICLE FILTERS TO REGIONAL-

SCALE WILDFIRE SPREAD. High Temperatures-High Pressures, v. 43, p. 415-440, 2014.

Comparison between the direct

simulation (free run) and the

measured fire front positions from

t = 64 s to t = 106 s. Observations

are represented in black solid lines,

simulated fire fronts associated

with the prior PDF of the control

vector at t = 50 s are represented in

green symbols.

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

SILVA. W. B.; ROCHOUX Mélanie ; ORLANDE, H. H. B. ; COLACO, M. J. ; FUDYM, O. ; EL HAFI,

Mouna. ; CUENOT Bénédicte ; RICCI, S. . APPLICATION OF PARTICLE FILTERS TO REGIONAL-

SCALE WILDFIRE SPREAD. High Temperatures-High Pressures, v. 43, p. 415-440, 2014.

Comparison between simulated and

measured fire front positions from

t = 64 s to t = 106 s using the SIR

filter 400 particles. Observations

are represented in black solid lines;

simulated fire fronts associated

with the posterior PDF of the

control vector are represented in

red symbols.

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

SILVA. W. B.; ROCHOUX Mélanie ; ORLANDE, H. H. B. ; COLACO, M. J. ; FUDYM, O. ; EL HAFI,

Mouna. ; CUENOT Bénédicte ; RICCI, S. . APPLICATION OF PARTICLE FILTERS TO REGIONAL-

SCALE WILDFIRE SPREAD. High Temperatures-High Pressures, v. 43, p. 415-440, 2014.

Comparison between simulated and

measured fire front positions from

t = 64 s to t = 106 s using the ASIR

filter 50 particles. Observations are

represented in black solid lines;

simulated fire fronts associated

with the posterior PDF of the

control vector are represented in

blue symbols.

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

SILVA. W. B.; ROCHOUX Mélanie ; ORLANDE, H. H. B. ; COLACO, M. J. ; FUDYM, O. ; EL HAFI,

Mouna. ; CUENOT Bénédicte ; RICCI, S. . APPLICATION OF PARTICLE FILTERS TO REGIONAL-

SCALE WILDFIRE SPREAD. High Temperatures-High Pressures, v. 43, p. 415-440, 2014.

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

SILVA. W. B.; ROCHOUX Mélanie ; ORLANDE, H. H. B. ; COLACO, M. J. ; FUDYM, O. ; EL HAFI,

Mouna. ; CUENOT Bénédicte ; RICCI, S. . APPLICATION OF PARTICLE FILTERS TO REGIONAL-

SCALE WILDFIRE SPREAD. High Temperatures-High Pressures, v. 43, p. 415-440, 2014.

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

ASIR filter 50 particles. SIR filter 200 particles. 

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

ASIR filter 50 particles. SIR filter 200 particles. 

APPLICATIONS
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PARTICLE FILTERS TO REGIONAL-SCALE WILDFIRE SPREAD

ASIR filter 50 particles. SIR filter 200 particles. 

APPLICATIONS
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