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• Introduction to Process Control

• Measurements, Uncertainties and Estimations tools

• Particle Filter as an observer for a PID control loop

• MPC using Particle Filters

• References

Outline
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Introduction to Process Control:

Definitions, Design and Strategies



Da Silva & Dutra (2017)                                        Mini-Course 07: Particle Filters – Part B 4

petroleum, chemicals, food, steel, 
pulp and paper, power generation, ....

Industrial processes

heat exchangers, tanks, reactors, 
distillation columns, mills, pumps, ...

Equipment

temperature, level, flow, pressure, 
humidity, viscosity, pH, stiffness, ...

Variables

Dynamic systems, such as industrial processes, are very diversified 

and integrate different equipment that demand accurate control of 

variables to meet performance criteria.

Operation of dynamic systems
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time

Actual value(dynamic)

Steady-state (average)

In practice, there’s no steady-state:

• Feed changes

• Startup operation

• Desired changes  

• Failures

External phenomena (disturbances) that 

cause the system to bounce around the desired 

equilibrium point, since they affect internal 

variables.

Operation of dynamic systems

In addition, we can include: nonlinear dynamic 

behavior, uncertain and time varying parameters.
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Countermeasures

Process design

• Design system insensitive to disturbances, such way that all 

undesired input signal are dampened.

• Detect and remove source of disturbances using, for example, 

statistical tools.

Process control

• Specify electronic devices (sensors, transmitters, valves…)

• Design control structure to act dynamically on the system (usually 

manipulate valves) to counteract the effect of disturbances.
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Classification of variables

for Process Control
Process

u
input (MV)

y
output (CV)

d

Independent variables (“the cause”):

• Manipulated inputs (MV, u): Variables we can adjust (DOF)

• Disturbances (DV, d): Variables outside our control (it’s the nature)

Dependent variables (“the effect or result”):

• Primary outputs (CV, y1): Variables we want to keep at a given 

setpoint

• Secondary outputs (y2): Extra measurements that we may use to 

improve control
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General view of control

System

Outputs, y Inputs, d

K

Measured

outputs

Control

signals, u

Use inputs (u) to counteract the effect of the disturbances (d)

such that the outputs (y) are kept close to their setpoints (ys).

SKOGESTAD, S., POSTLETHWAITE, L., 2005, “Multivariable Feedback Control”,

New York, John Wiley and Sons.
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Control is needed to reduce the effect of disturbances and 

to regulate the system around a desired point (setpoint).

The following objectives are also included: 

• Ensure safety (low risk of accidents)

• Ensure stability of the process

• Optimization of performance

− Increase productivity

− Reduce variability of product quality

− Minimize production cost

Why control?
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Control hierarchy

Most of engineering systems are controlled using hierarchies of

quite simple controllers:

on-off + PID-control + nonlinear fixes + some feedforward

Stabilization: regulatory layer

− It doesn’t use up any degrees of freedom.

− Reference value (setpoint) available for layer above.

Productivity: supervisory layer

− To meet economics (control of production rate and product quality)

Optimization: local, site-wide or scheduling optimization

− Reference values are determined for the lower layers in order to 

take into account global control objectives and market information.
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Control hierarchy

Manager

Process engineer

Operator, RTO

Operator, “Advanced control” / MPC

PID-control

SKOGESTAD, S., 2004, “Control 

structure design for complete chemical 

plants”. Computers and Chemical 

Engineering, v. 28, pp. 219-234
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Control structure design

Most (if not all) available control theories 

assume that a control structure is given at 

the outset.

Translate the operation into simple control 

objectives:

CV1 = c ? (economics)

CV2 = ? (stabilization)

What should we control?
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Control structure design

Which variables should be controlled,

which inputs should be manipulated,

which variables should be measured, 

and which links should be made between them?

Process oriented 
approach

Mathematically 
oriented approach

Hybrid 
approach

Basic questions (Foss, 1973; Morari, 1982; Skogestad, 2004)

Literature proposals
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Control structure design

Skogestad (2004): “self-optimizing control” procedure.

I  Top-Down analysis (structural questions)

Step S1: Define operational objective (cost) and constraints

Step S2: Identify degrees of freedom and optimize operation for disturbances

Step S3: Implementation of optimal operation

➢ What to control ? (primary CV’s in the sense of self-optimizing control)

Step S4: Where set the production rate? (Inventory control)

Implementation of the controlled variable
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Control structure design

Skogestad (2004): “self-optimizing control” procedure.

II Bottom-Up analysis (control questions)

Step S5: Regulatory control (for stabilization and local disturbance rejection)

➢ What more to control? (secondary CV’s)

Step S6: Supervisory control (to keep outputs at optimal setpoints)

Step S7: Real-time optimization (if any DOF unused)

Operational 
optimization

Supervisory Control
(Feedforward, Inferential, MPC)

Regulatory control 
(flow, pressure, level control 

loops) Control

layers
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Instá

vel

Estáv

el

Dynamical responses.

Control strategies

Regulatory control should be of ‘‘low complexity’’.

− It consists of single-input/single-output (SISO): PID control loops.

− Manipulated variables that may saturate must be avoided, because

otherwise control is lost and reconfiguration of loops is required.

− For stabilization: unstable modes should be detected ‘‘quickly’’ by the

measurement.

− For local disturbance rejection: the variable is located ‘‘close’’

downstream of an important disturbance.

The challenge of regulatory control is 

to master the dynamics, even in the 

face of disturbances and operational 

changes.
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Control strategies

PID control loops

1. The most widely used algorithm in industrial control systems

• Robust performance over a wide range of operating conditions.

• Functional simplicity, allowing straightforward use.

• Three parameters must tuned.

2. Some schemes are possible

• P, PI and PID controllers

• Cascade control

• Smith predictor

PID control loop

𝑦𝑘

𝑦𝑠𝑒𝑡𝑘
𝑢𝑘
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Control strategies

Supervisory control: two main approaches.

1. Decentralized single-loop control: usually for non-interacting process

and for constant active constraints applying PID controllers.

• Advantage: no or minimal model requirements.

• Disadvantage: need to determine pairing (RGA-analysis) and

logic required for reconfiguration when active constraints move.

2. Multivariable control: usually Model Predictive Control is applied.

• Advantage:

◦ coordinated control for interacting systems

◦ easy handling of feedforward control

◦ no logic required to handle changing constraints

• Disadvantage:

◦ requires multivariable dynamic model

◦ controller tuning may be difficult

◦ may have a reliability problem
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Control strategies

Model Predictive Control - MPC

It is the advanced control alternative the most present in the industry:

• Multivariable control problems are naturally handled while taking into 

account the actuator limitations and outputs constraints; 

• An optimization routine is provided for system operation;

• Control update rates are relatively low in the chemical process industry 

applications and hence there is plenty of online computation time available; 

• Unlike the most popular PID controllers, it takes into account simultaneously 

the effects of all manipulated variables to all controlled variables. 

It reflects human behavior whereby we select control actions

which we think will lead to the best predicted outcome (or

output) over some limited time horizon.

Rossiter (2004)
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Control strategies

Model Predictive Control - MPC

The control move selection is based on an internal model of the system,

regarding that the decisions is updated as new observations are available.

• The control law depends on predicted behavior;

• The current MV is determined by optimizing a performance index.

• The receding horizon control (RHC): the input is updated every sampling instant.

Rawlings (2000), 

Maciejowski (2002),

Qin & Badgwell (2003), 

Rawlings & Mayne (2009).

𝑦k

ො𝑦k+1:k+P
𝑢k:k+P

𝑢k

(P)
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Control strategies

PID control

Field instrumentation

PID tuning

Model Predictive Control

About 90% of industrial cases still apply only PID control

and rely on manual control in difficult situations.

(Rewagad & Kiss, 2012).

SQUEZZE

SHIFT
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Measurements, Uncertainties and

Estimations tools
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Control limitations

PID loops and MPC: system uncertainties.

Uncertainties come from measurement errors due to the finite accuracy of

measuring devices, systematic bias or gross errors, as well as from limited

knowledge about the physical system and varying parameters.

In a real systems, online measuring devices are not always available.

Common procedure : to resort to offline analysis. But, this takes time and 

can impair control actions, leading efficiency loss.

Measuring 
device

System 
model

Parametric 
disturbance
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As performance relies on online system observation, it is necessary to

enhance the study on SYSTEM MODELING and on SOFT SENSORS

(or virtual sensors) from observed data to infer variables and parameters.

In the last two decades, the use of such estimation tools has received

much attention, since it is possible to complement or replace physical

sensors minimizing the effects of uncertainties and lack of instruments.

Prata et al. (2009),

Khatibisepehr et al. (2013),

Shenoy et al. (2013).
Soft sensors
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Producing sequential estimates for hidden variables of dynamic systems is

an INVERSE PROBLEM, which has many practical applications.

Soft sensors Solving an inverse problem is to determine 

unknown causes from desired or observed effects

(Engl et al., 1996).

Optimization

Approach

• Data reconciliation/retification

• Moving horizon estimation (MHE)

• Artificial neural network (ANN)

Bayesian

Approach

• Kalman filters family (KF, EKF, UKF, …)

• Particle filters (SIS, SIR, ASIR, …)

• Monte Carlo Markov Chain
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The Bayesian approach

The available data must be combined with prior knowledge about the 

physical phenomena and measurement devices in order to statistically 

minimize the residue (Arulampalam, 2002).

State Evolution Model:

Observation Model: ( , )k k k kz h x n

xk = fk (xk-1, uk-1, vk-1)Dynamical

System

=
𝑷𝒓𝒊𝒐𝒓 × 𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝑴𝒂𝒓𝒈𝒊𝒏𝒂𝒍

( ) ( )
( ) ( )

( )

k k k

posterior k k k

k

 
 


 

x z x
x x z

z
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The Bayesian approach

SIR filter is a Sequential Monte Carlo technique for solution of the 
estimation problem, regarding nonlinear and non-Gaussian systems.

The main ideas are:

• to represent the required posterior density function by a set of random 
samples called particles with associated weights;

• to resample particles based on importance weights to avoid degeneracy;

• to compute the estimates based on these samples and weight.

Doucet (2001), 

Arulampalam (2002), 

Ristic (2004), Kaipio & 

Somersalo (2004).

 
1...

( ) i i

posterior k k k
i N




 x x w

Particle Filter: Sample Importance Resampling (SIR)

  1/2/2 11
(2 ) exp [ ( )] [ ( )]
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Estimation and Control

Only control

𝒛k

System

Inputs, dk

Particle

Filter

Measured outputs
Control signals, uk

Control
ෞ𝒙𝒌

ෝ𝒙
𝒂𝒖𝒈

=
ෝ𝒙𝑘
𝜽𝑘
𝒅𝑘

ሻ𝜋(ෝ𝒙𝑘|𝐳𝑘

Model

Setpoints

us, xs

nk

vk
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SIR filter as a state observer

for a PID control loop

CARVALHO et al., 2016, “Filtro de partículas como observador online

em um esquema de controle cascata para um reator contínuo”. XIX

ENMC – João Pessoa/PB, Brazil.

DIAS et al., 2016, “Online state estimation through particle filter for

feedback temperature control”. XXI COBEQ – Fortaleza/CE, Brazil.

DIAS et al., 2017, “Propylene Polymerization Reactor Control and

Estimation Particle Filter and Neural Network”. Macromolecular Reaction

Engineering DOI: 10.1002/mren.201700010.
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SIR + control loop

Carvalho et al. (2016) Dias et al. (2017)

2. Propylene polymerization

(PP) reactor control 

1. Non-isothermal continuous

stirred reactor tank (CSTR)
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SIR + control loop

To study and perform the implementation of particle filter as an observer for

a control loop, one needs:

1. Set the control objectives (regulation, supervision, optimization, …)

2. Design the control structure (CV, MV, PV, control configuration, …)

3. Specify dynamic model for the system and numerical/analytic approach

4. Set SIR filter structure

• Variables (state and parameters) to estimate

• Model for inverse problem

• Measurements from the system

• Number of particles

• Uncertainties of the model, measuring device and variables
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SIR + control loop

Cascade control 

Nested loops for:

Fast dynamics: regulatory control (primary or slave controller)

Slow dynamics: supervision (secondary or master controller)

OBS: inner loop is at least three or four times faster than outer loop.
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SIR + control loop

Cascade control

It is an advanced application of PID, in which a slave controller

compensate for disturbances before they can affect the primary system

variable.

Main drawbacks

- Cascade control systems require twice as much tuning (tune the slave

controller first, then the master controller).

- The extra sensor tends to increase the overall costs and uncertainty

sources. But, this can be softened by the use of particle filters.
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1 - Control of CSTR

Carvalho et al. (2016)

Kittisupakorn & Hussain (2000)

Control objective

Keep concentration at desired point.

System model

𝑑𝐶𝑎

𝑑𝑡
=

𝐹

𝑉𝑟
𝐶𝑎𝑜 − 𝐶𝑎 − 𝑘𝑜 𝐶𝑎 𝑒

−𝐸
𝑅𝑇𝑟

𝑑𝑇𝑟

𝑑𝑡
=

𝐹

𝑉𝑟
𝑇𝑓 − 𝑇𝑟 −

Δ𝐻

𝜌𝐶𝑝
𝑘𝑜 𝐶𝑎 𝑒

−𝐸
𝑅𝑇𝑟 −

𝑈𝐴

𝑉𝑟𝜌𝐶𝑝
(𝑇𝑟 − 𝑇𝑗ሻ
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1 - Control of CSTR

𝑢 𝑘 = 𝑢 𝑘 − 1 + 𝐾𝑃 𝑒 𝑘 − 𝑒 𝑘 − 1 +
𝑇𝑠

𝜏𝐼
𝑒(𝑘ሻ

PI velocity

algorithm

CV1: concentration (master loop) using MV= Tset

CV2: temperature (slave loop) using MV=Tj

𝐾𝑃 𝜏𝐼 𝑇𝑠
7,0            4,0          1 min

0,05          0,02        5 min

Controller tuning

Loop

master

slave

Tuning methods
Ziegler-Nichols

Direct synthesis

Internal model control

Frequency analysis

Integral criteria

Control structure 

and configuration
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1 - Control of CSTR

SIR filter structure

Objective: Estimate concentration from temperature

Noise: 1% and 5% of initial condition for measurement,

Npart: 10, 100 and 500

Performance: RMSE

𝑅𝑀𝑆𝐸 =
1

𝑁


𝑡=1

𝑁

𝑦𝑡 − ො𝑦𝑡
2

𝑦𝑚 = 𝑦𝑒𝑥𝑎𝑐𝑡 + 𝑛
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1 - Control of CSTR Numerical results

Noise effect
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CV1CV2

In the presence of noise, there are significant deviations between the desired value

and the actual value during the simulation. This effect is also noticed in the

manipulated variables, which oscillate during all simulation time
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1 - Control of CSTR Numerical results

Npart RMSE ACT (s)

10 0.7865 0.0247

100 0.7389 0.1785

500 0.7073 0.8708

• Increasing the number of particles improves filter estimation performance.

• ACT is the average computing time required for the estimation, such way

that the higher the number of particles, the higher is elapsed time.

• Anyway, it was much shorter the sampling time of the process, not being a

limiting factor for the use of the tool.

Npart selection
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1 - Control of CSTR Numerical results

-10% step-like servo test
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Dynamic behavior considering the control scheme with SIR filter.

CV1CV2
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2 – PP Reactor
Dias et al. (2017)

Dutra et al. (2014)

Control objective

Keep process stability

Meet product final quality:

MI and XS

System model (rigorous)

Mass and

energy balances

Constitutive

equations

17 ODE + 48 algebraic equations
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2 – PP Reactor

Control structure and configuration

CV

MV

Regulatory layer Supervisory layer

Volume

Temperature

Cooling fluid temperature

Production rate

Monomer feed flow

Melt index (MI)

Xylene xtractable fraction (XS)

Reactor slurry out flow

Cooled monomer flow

Cooling fluid flow

Catalyst feed flow

Fresh monomer feed flow

Hydrogen feed flow

Cocatalyst feed flow ratio
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2 – PP Reactor

SIR filter structure

Objective: filter observed data

Model: simplified direct model

Noise: 5% of exact value

Npart: 10, 50, 100 and 200

Performance: MWCI, Neff

Artificial neural network (ANN)

Objective: predict product quality

Proposed virtual sensor

Direct problem:

Rigorous model Inverse problem:

Simplified model
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2 – PP Reactor Numerical results

Model simplification

Comparison of the dynamic behavior for the rigorous and simplified model.

CV

MV
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2 – PP Reactor Numerical results

Model simplification

Comparison of the dynamic behavior for the rigorous and simplified model.

CV

MV
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2 – PP Reactor

Reactor temperature

Reactor holdup:
• Monomer

• Hydrogen

• Cocatalysts

• Polymer

6 input variables

operation

MI

XS

2 output variables

quality

Multilayer Perceptron

(6-10-2)

Hyperbolic function

(hidden layer)

Sigmoid function

(output layer)

Numerical results

Virtual sensor
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2 – PP Reactor Numerical results

Virtual sensor

Performance of the best tested networks 

SDRATIO is the ratio of the prediction error standard deviation and original data set standard deviation. 
SDRATIO values below 0.2 are considered to be good.
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Dynamic behavior considering uncertain measurements.

2 – PP Reactor Numerical results

Uncertainties effect

CV

MV
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2 – PP Reactor Numerical results

Histograms for effective sample size (Neff)

Particle filter performance

Maximum width of the credibility interval (MWCI)

N=10 N=50 N=100 N=200

F
re

q
u

en
cy



Da Silva & Dutra (2017)                                        Mini-Course 07: Particle Filters – Part B 49

2 – PP Reactor Numerical results

Monomer feed temperature

Regulator test: +10K in Tfeed
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2 – PP Reactor Numerical results

Servo test: +2 in MI and XS
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2 – PP Reactor Numerical results

Servo test: +2 in MI

Control actions were based on purely noisy measurements which 

did not have matched the actual values of the process.
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SIR + control loop Remarks

The lack of instruments and finite precision of the existing devices are
real problems faced in industry that may leave the process at risk of
failure, affect safety, …

Particle filters (PF) can be used as an observer to estimate latent
variables and to reduce uncertainties, in order to take control actions
with accurate information.

Advanced soft sensor schemes can be proposed with PF associated to
machine learning algorithms, as artificial neural network (ANN), to
address extremely nonlinear processes, which are very common in
chemical engineering.
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MPC using Particle Filters
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MPC basics

Optimal input

trajectory (time k)
Re-optimal input

trajectory (time k+1)
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MPC basics

1960 1970 1980 1990 2000

LQG

1st Generation:

DMC and IDCOM

2nd Generation:

Conoisseur and

QDMC

3rd Generation:

SMOC, SMCA, IDCOM-M 

HIECON, PFC, PCT and RMPC

4th Generation:

DMC+ and RMPCT
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Deterministic formulation

Discrete-time system model

𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘
ො𝑦𝑘 = 𝑔 𝑥𝑘

Objective function 𝐽 = 

𝑗=𝑘

𝑘+𝑁𝑃

ത𝑢𝑗 − ത𝑢𝑗−1 𝑄

2
+ 

𝑗=𝑘+1

𝑘+𝑁𝑃

𝑠𝑗 − ො𝑥𝑗 𝑅

2

Although having applications in many 

real systems, MPC is a mature 

technique only for linear systems.

Linear systems with quadratic objective 

function is a convex problem, whose 

solution is analytic and/or recursive.

𝑢min ≤ 𝑢k ≤ 𝑢max

𝛥𝑢min ≤ 𝛥𝑢𝑘 ≤ 𝛥𝑢max

𝑦min ≤ ො𝑦𝑘 ≤ 𝑦max
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MPC and NMPC approaches

It is necessary:

• at each time k, to estimate the initial conditions to integrate the state 

equations along the prediction horizon NP.

• to define an integration strategy of the state equations (which are 

function of variables ത𝑢 𝑘 that will only be known when solving the 

optimization problem) and an optimization strategy.

Classical MPC may fail due to the fact that it usually only works on 

linearized or approximated models.

Since nonlinearity are often significant in chemical and biological 

applications, non-linear MPC (NMPC) become essential for better 

performance and stable operation under dynamic conditions.
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MPC and NMPC approaches

Control vector parametrization: prediction and 

optimization are solved sequentially until convergence.

State and control profile discretization: equations are  

incorporated as algebraic constraints to the optimization problem

Integration
strategy

Sequential
approach

Simultaneous
approach

Biegler (2007):
ത𝑢 𝑘 ,⋯ , ത𝑢 𝑘 + 𝑃 − 1

Alternatives for approximate solution

• Successive linearization

• Combined use of linear and non-linear models

• Adaptive linearization

• Feedback linearization

• Use of block oriented nonlinear model

• Use of multilinear models
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MPC and particle filters

PF was used to estimate current state as initial

condition on a classical MPC problem.
Andrieu et al. (2004)

Botchu e Ungarala (2007)

Approached the original stochastic problem as a

determinist using a large number of particles.
Blackmore (2006)

Sequential Monte Carlo (SMC) was used as non

convex optimizer for stochastic NMPC, but at

the expense of high computational cost.

Kantas, Maciejowski 

e Lecchini-Visintini 

(2009)

More basic implementation using a stochastic

approach to solve the optimization problem

using 2 particle filters, called PF-MPC.

Stahl e Hauth (2011)

Lopez (2014)
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PF-MPC

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑣𝑘−1ሻ
𝑦𝑘 = 𝑔(𝑥𝑘, 𝑛𝑘)

Stochastic general state space model

𝑥𝑘
𝑖
∼ 𝑎𝑘 𝑥𝑘 𝑥𝑘−1

𝑖
𝑖 = 1,… ,𝑁𝑝𝑎𝑟𝑡

𝑤𝑘
𝑖
∝ 𝑏𝑘 𝑦𝑘 𝑥𝑘

𝑖

Density distributions

State transition

Observation

corresponding conditional 

probability densities

𝑎𝑘(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘−1ሻ
𝑏𝑘(𝑦𝑘|𝑥𝑘)

Estimation

PF#1

Prediction

PF#2

ത𝑎𝑗( ҧ𝑥
𝑗
, ത𝑢𝑗| ҧ𝑥𝑗−1, ത𝑢𝑗−1)

ത𝑏𝑗(𝑠𝑗| ҧ𝑥𝑗 , ത𝑢𝑗)

ҧ𝑥𝑗 = 𝑓 ҧ𝑥𝑗−1, ത𝑢𝑗−1, ҧ𝑣𝑗−1

ത𝑢𝑗 = ҧ𝑓𝑢 ҧ𝑥𝑗−1, ത𝑢𝑗−1, v𝑗−1

𝑠𝑗 = ҧ𝑔 ҧ𝑥𝑗 , ത𝑢𝑗 , ො𝑣𝑗(𝑗 = 1,… , 𝑃 )
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PF-MPC

First particle filter: standard estimator

Estimation of the current values of hidden variables from observed data.

SIR filter: ෝ𝒙𝑘

Second particle filter: control predictor (over j=1,…, P) 

It works on different states ( ҧ𝑥𝑗, ത𝑢𝑗) and “observations” (𝑠𝑗).

ത𝑎𝑗 ҧ𝑥𝑗, ത𝑢𝑗 | ҧ𝑥𝑗−1, ത𝑢𝑗−1 =

ത𝑎𝑢,𝑗 ത𝑢𝑗 |ത𝑢𝑗−1 ത𝑎𝑗 ҧ𝑥𝑗 | ҧ𝑥𝑗−1

𝒖 𝑘
∗ഥ𝑈𝑘:𝑘+𝑃, ത𝑋𝑘:𝑘+𝑃

Joint Process Transition density Control input

𝜋𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝐱𝑘
𝑖 ⋅ 𝐰𝑘

𝑖
𝑖=1...𝑁
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PF-MPC

Input transition density ത𝑎𝑢,𝑗 ത𝑢𝑗 |ത𝑢𝑗−1 → ത𝑢𝑗 = ҧ𝑓𝑢 ҧ𝑥𝑗−1, ത𝑢𝑗−1, v𝑗−1

ത𝑢𝑗 = 𝑣𝑗−1

ത𝑢𝑗 = ത𝑢𝑗−1 + 𝑣𝑗−1
or

ത𝑢𝑗 = 𝑣𝑗−1 (free)

𝒗~𝑼 𝒖𝒎𝒊𝒏, 𝒖𝒎𝒂𝒙 : case it is necessary to meet 

hard constraints umin < തu𝑗 < 𝑢max.

𝒗~𝑵 𝟎, 𝜮 : The control input is constrained in 
a sense that the effort Δത𝑢𝑗 s kept small 

depending on Σ.

Quite similar to Δത𝑢 𝑄
2 of a usual MPC 

objective function.
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𝐽 = 

𝑗=𝑘

𝑘+𝑁𝑃

𝑠𝑗 − ҧ𝑥𝑗 𝑅

2

PF-MPC

Control performance density ത𝑏𝑗 𝑠𝑗 | ҧ𝑥𝑗 , ത𝑢𝑗 ത𝑏𝑗 𝑠𝑗 | ҧ𝑥𝑗or

ത𝑏𝑗 𝑠𝑗 | ҧ𝑥𝑗 =
1

(2𝜋ሻ𝑛/2|𝑅|−1/2
𝑒𝑥𝑝 − 𝑠𝑗 − ҧ𝑥𝑗 𝑅

2

𝑠𝑗 = ҧ𝑔 ҧ𝑥𝑗 , ത𝑢𝑗 , ො𝑣𝑗Setpoint equation

𝑠𝑗=𝑠𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + ො𝑣𝑗 ො𝑣𝑗~𝑁(0, 𝜎
2ሻ

If it is to keep at rest, 𝒔𝒅𝒆𝒔𝒊𝒓𝒆𝒅 = 0.
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PF-MPC

𝒙𝑘
(𝑖ሻ
, 𝒘𝑘

(𝑖ሻ

𝑖 = 1,… , 𝑁𝑃𝐴𝑅𝑇

𝒛k

System

Particle

Filter #1

Measured

outputs

Particle

Filter #2
setpoints

Point 

estimate

ഥ𝒖𝑘
(𝑖ሻ
, ഥ𝒘𝑘

(𝑖ሻ

𝑖 = 1, … , 𝑁𝑃𝐴𝑅𝑇

ෝ𝒙𝑘

𝒖𝑘
∗

Adapted from

Stahl e Hauth (2011)

Control Predictor State Estimator

Only control
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PF-MPC Algorithm
Particle Filter #2

1. Start

2. Iteration 3. Control action

ҧ𝑥𝑘
𝑖
= 𝑥𝑘

𝑖
, ഥ𝑤𝑘

𝑖
= 𝑤𝑘

𝑖

ത𝑢𝑘
𝑖
= ҧ𝑓𝑢 𝑢𝑘−1

∗ , 𝑣𝑘−1
𝑖

ҧ𝑥𝑗 = 𝑓 ҧ𝑥𝑗−1, ത𝑢𝑗−1, ҧ𝑣𝑗−1

ത𝑢𝑗 = ҧ𝑓𝑢 ҧ𝑥𝑗−1, ത𝑢𝑗−1, v𝑗−1

𝑠𝑗 = ҧ𝑔 ҧ𝑥𝑗 , ത𝑢𝑗 , ො𝑣𝑗

𝑗 = 𝑘 + 1,… , 𝑘 + 𝑃

𝑢𝑗 = u𝑗−1

𝑖 = 1,… ,𝑁𝑝𝑎𝑟𝑡

𝑢𝑘
∗ = 

𝑖=1

𝑁𝑝𝑎𝑟𝑡

𝑢𝑘+𝑃
𝑖

ഥ𝑤𝑘+𝑃
𝑖

ҧ𝑥𝑘+𝑃
𝑖
, ത𝑢𝑘+𝑃

𝑖
, 𝑢𝑘+𝑃

𝑖
, ഥ𝑤𝑘+𝑃

𝑖

𝑖=1

𝑁𝑝𝑎𝑟𝑡

ഥ𝑤𝑗 ∝ ഥ𝑤𝑗−1 ത𝑏𝑗(𝑠𝑗| ҧ𝑥𝑗 , ത𝑢𝑗ሻ
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PF-MPC Algorithm

Stahl e Hauth (2011)



Da Silva & Dutra (2017)                                        Mini-Course 07: Particle Filters – Part B 67

Improvements to PF-MPC

Constrained particle filter Zhao et al. (2012)

1. Acceptance/rejection : constraints on the prior particles 𝑥𝑘
𝑖−

𝑤𝑘
𝑖 = ൝

0. 𝑖𝑓 (𝑥𝑘
𝑖− ∉ Ωሻ

∝ 𝑝 𝑦𝑘 𝑥𝑘
𝑖− 𝑖𝑓 (𝑥𝑘

𝑖− ∈ Ωሻ

Main advantage Disadvantages

It can guarantee no violation

of particles and need no extra

computation

Sample impoverishment

Inconsistency if no particle meets the constraints

It does not suffice for nonlinear constraint, 

equality, and inequality constraints
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Improvements to PF-MPC

Constrained particle filter Zhao et al. (2012)

2. Optimization approach: constraints on prior particles 𝑥𝑘
𝑖− ,

posterior particles 𝑥𝑘
𝑖 , and/or the estimated value ො𝑥𝑘.

min
𝑥𝑘
𝑖−
− log 𝑝𝑥𝑘

𝑒 𝑥𝑘
𝑖− − 𝑥𝑘

𝑖−

min
𝑥𝑘
𝑖−
− log 𝑝𝑥𝑘

𝑒 𝑥𝑘
𝑖− − 𝑥𝑘

𝑖− − log 𝑝𝑣𝑘 𝑦𝑘 − ℎ𝑘 𝑥𝑘
𝑖−

min
𝑥𝑘
𝑖−
− log 𝑝𝑥𝑘

𝑒 𝑥𝑘
𝑖 − 𝑥𝑘

𝑖 − log 𝑝𝑣𝑘 𝑦𝑘 − ℎ𝑘 𝑥𝑘
𝑖

min
𝑥𝑘
𝑖−
− log 𝑝𝑥𝑘

𝑒 𝑥𝑘 − ො𝑥𝑘 − log 𝑝𝑣𝑘 𝑦𝑘 − ℎ𝑘 𝑥𝑘

~ indicates projected particle or state estimation.
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Improvements to PF-MPC

Constrained particle filter Zhao et al. (2012)

2. Optimization approach: constraints on prior particles 𝑥𝑘
𝑖− ,

posterior particles 𝑥𝑘
𝑖 , and/or the estimated value ො𝑥𝑘.

Illustration of the estimation projection (○: valid particle, 

●: violated particle, △: estimation, ⋆: true state) 
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Improvements to PF-MPC

Constrained particle filter Zhao et al. (2012)

2. Optimization approach: procedure.
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Application Carvalho, R. F., 2017, Controle preditivo baseado em 

modelo com estimação de estado restrita para controle 

e monitoramento de processos não lineares. 

Dissertação de Mestrado (PPEQ/UFES).

CSTR

𝑑𝐶𝑎

𝑑𝑡
=

𝐹

𝑉𝑟
𝐶𝑎𝑜 − 𝐶𝑎 − 𝑘𝑜 𝐶𝑎 𝑒

−𝐸
𝑅𝑇𝑟

𝑑𝑇𝑟

𝑑𝑡
=

𝐹

𝑉𝑟
𝑇𝑓 − 𝑇𝑟 −

Δ𝐻

𝜌𝐶𝑝
𝑘𝑜 𝐶𝑎 𝑒

−𝐸
𝑅𝑇𝑟 −

𝑈𝐴

𝑉𝑟𝜌𝐶𝑝
(𝑇𝑟 − 𝑇𝑗ሻ

PF-MPC structure

Objective: filter observed data and control Ca

Rlikelihood: 0.1ºC, 0.5ºC and 5ºC

Npart: 10, 50 and 100

Performance: RMSE, AES 
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Application

Number of

particles

R RMSE AES Time (s)

10

0.1 0.0271 6.4795 0.2034

0.5 0.0271 10.0073 0.1672

5 0.0271 11.2071 0.1662

50

0.1 0.0220 6.1006 0.9453

0.5 0.0220 9.7913 0.7375

5 0.0220 10.8588 0.7186

100

0.1 0.0217 6.0001 1.6765

0.5 0.0217 9.4079 1.4797

5 0.0217 10.6891 1.4093
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Application

PF-MPC
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Application

CPF-MPC
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Application

CUKF-MPC
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