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Historical Classical Diffusion

Robert Brown (1828)

Thomas Graham (1827)

}
Experimental observation of diffusion

Adolf Fick (1855): Macro derivation of the heat equation

J = −K∇u, ut = divJ, ⇒ ut −Kdiv∇u = 0

Einstein (1905): Gave accepted notion of diffusion ­ particles pushed

around by the thermal motion of atoms.



Brownian Random Walk and Classical Diffusion
In one space dimension this can be modeled by the master equation

pj(t+∆t) = 1
2pj−1(t) +

1
2pj+1(t),

the index j denotes the position on the underlying 1­dim lattice.

It defines the probability density function (PDF) p(t) to be at position j at time

t+∆t and to depend on p at the two adjacent sites j ± 1 at time t .
1
2 ⇒ directional isotropy; jumps to the left and right are equally likely.

∆t is a fixed time step. ∆x is a fixed jump distance.
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1
2pj+1(t),

the index j denotes the position on the underlying 1­dim lattice.

It defines the probability density function (PDF) p(t) to be at position j at time

t+∆t and to depend on p at the two adjacent sites j ± 1 at time t .
1
2 ⇒ directional isotropy; jumps to the left and right are equally likely.

∆t is a fixed time step. ∆x is a fixed jump distance.

Rearranging :
pj(t+∆t)− pj(t)

∆t
=

(∆x)2

2∆t

pj−1(t)− 2pj(t) + pj+1(t)

(∆x)2

leads to the diffusion equation
∂

∂t
u(x, t) = K

∂2

∂x2
u(x, t),

The continuum limit is taken such that K = lim
∆x→0,∆t→0

(∆x)2

2∆t
is a positive

constant – the diffusion coefficient – it couples the spatial and time scales.



Suppose now the jump length ∆x has a PDF given by λ(x) so that

P (a<∆x<b) =
∫ b

a
λ(x) dx.

If λ(x) decays sufficiently fast as x→ ±∞ , the Fourier transform gives

λ̃(ξ) =

∫
∞

−∞

e
−iξx

λ(x)dx =

∫
∞

−∞

(
1− iξx− 1

2
ξ
2
x
2 + . . .

)
λ(x)dx

= 1− iξµ1 − 1
2
ξ
2
µ2 + . . . ,

where µj is the j th moment µj =
∫∞
−∞ xjλ(x)dx – provided these exist
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Assume λ(x) is normalized and even: µ1 = 0 , µ2 = 1 and µ3 = 0 . Then

f̃(ξ) = 1− 1
2
ξ
2 +O(ξ4).

Theorem. If X and Y are independent random variables with a PDF given

by f and g , respectively, then the sum Z = X + Y has the PDF f ∗ g .

Assume the steps ∆X1 , ∆X2 , . . . are independent. Then

Xn = ∆X1 + . . .+∆Xn gives the position of the walker after n steps.



This is also a random variable, and has a Fourier transform pn(ξ) = (λ̃(ξ))n ,

and the normalized sum Xn/
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)n
.

The limit n → ∞ gives p̃(ξ) = e−
ξ2

2 and inverting the Fourier transform

gives a Gaussian distribution p(x) = 1√
4π
e−

x2

4 .

This is a statement of the central limit theorem that the long term averaged

behavior of i.i.d. variables is a Gaussian density.

One requirement for the whole procedure to work
is that the second moment µ2 of λ(x) be finite.
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By the scaling rule for the Fourier transform, the Fourier transform p̃n(ξ) is
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Taking the limit of a large number of steps n → ∞ , we arrive at the Fourier

transform p̃(ξ) = e−ξ2Kt .

Inverting this gives the PDF of being at a certain position x at time t , is
governed by the diffusion equation and has the Gaussian PDF

p(x, t) =
1√

4πKt
e
−x2/4Kt

.

This is the fundamental solution of the heat/diffusion equation

For fixed time t > 0 , p(x, t) is a Gaussian distribution in x with mean zero
and variance 2Kt . It scales linearly with the time t . 〈x2〉 ∝ t .

The linear scaling with t is one characteristic feature of classical diffusion.

This is the essential content of Einstein’s 1905 paper.



A (slightly) more general case
A walker moves along the x ­axis, starting at a position x0 at time t0 = 0 .

At time t1 , the walker jumps to x1 , then at time t2 jumps to x2 , . . . .

Assume that the temporal and spatial increments

∆tn = tn − tn−1 and ∆xn = xn − xn−1

are iid random variables, with PDFs ψ(t) and λ(x) , – the waiting time and

jump length distribution, respectively..
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At time t1 , the walker jumps to x1 , then at time t2 jumps to x2 , . . . .

Assume that the temporal and spatial increments

∆tn = tn − tn−1 and ∆xn = xn − xn−1

are iid random variables, with PDFs ψ(t) and λ(x) , – the waiting time and

jump length distribution, respectively..

The probability of ∆tn lying in any interval [a, b] ⊂ (0,∞) is

P (a < ∆tn < b) =
∫ b

a
ψ(t) dt

and the probability of ∆xn lying in any interval [a, b] ⊂ R is

P (a < ∆xn < b) =
∫ b

a
λ(x) dx.

Goal: determine P ( the walker lies in a given spatial interval at time t) .
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Different CTRW processes can be categorized by the characteristic waiting time

T and the jump length variance Σ2 being finite or diverging.

T =: E[∆tn] =
∫∞
0
tψ(t)dt Σ2 =: E[(∆xn)

2] =
∫∞
−∞ x2λ(x)dx.

If both T and Σ are finite, the long­time limit corresponds to Brownian motion,

and thus the CTRW does not lead to anything new.
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Fractional Calculus
History of generalizing from the integers N → R, C

Bernoulli, Euler, (1730s): n! → Γ(z + 1)

Attempts to do the same for differentiation formulae; (1740 ­ today)

To compute the fractional derivative of order α
use the nth formulae and replace n→ α .

EXAMPLES:

D
(n)
x
m =

m!

(m−n)!x
m−n → D

α
x
m =

m!

Γ(m−α+1)!
x
m−α

D
(n)
e
λx = λ

n
e
λx → D

α
e
λx = λ

α
e
λx

D
(n) sin(x) = sin(x+ n

π

2
) → D

α sin(x) = sin(x+ α
π

2
)



The Abel integral operator

The integral operator Aα
f =

1

Γ(α)

∫ t

a

f(τ) dτ

(t− τ)1−α
α > 0 arose in Abel’s

1823 solution of the more general tautochrone and brachistochrone problems
which were originally posed and solved in a simpler form by Huygens in 1659

and Bernoulli in 1695 respectively.
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The important point here is that in his solution of the integral equation Abel had
shown the way to rigorously define a fractional integral and, by his inversion of

this, how to define a fractional derivative.
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As was shown by Abel, for general α , 0 < α < 1 this becomes

f(x) =
sin(π(1−α))

π

d
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∫ x

a

f(s) ds

(x−s)α .

In this sense Abel is the true mathematical founder of the concept although

later work by Liouville and by Riemann have dominated the nomenclature.



Definition. The Riemann-Liouville fractional derivative RDα
xu(x) is defined

for a ∈ R by R
aD

α
xu(x) =

1

Γ(n−α)
dn

dxn

∫ x
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(x−s)n−1−αu(s) ds.

This is clearly based on Abel’s integral and suggests that the fractional derivative

of f is the nth integer derivative of the fractional integral

Iαx f(x) =
1

Γ(n−α)

∫ x

0
(x− s)−αf(s) ds of f where n−1 < α ≤ n .
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0
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There is another version that reverses the above order; the Djrbashyan­Caputo

derivative:­ C
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xu(x) =

1
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∫ x

a

(x−s)n−1−α
u
(n)(s) ds

This version was studied extensively by the Armenian mathematician M . M. Djr­

bashyan, in his 1966 book. However, there was a considerable amount of earlier

work on this version of the integral, but only available in the Russian literature.

The geophysicist Michele Caputo rediscovered this version in 1967 as a tool for

understanding seismological phenomenon, and later with Francesco Mainardi in

viscoelasticity where the memory effect of the fractional derivative were crucial.
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THE POWER FUNCTION: Differentiating the fractional integral and using
Γ(z + 1) = zΓ(z) gives

R
0 D

α
x (x− a)γ =

Γ(γ + 1)

Γ(γ + 1− α)
(x− a)γ−α

x > a, γ > −1

This implies R
0 D

α
x 1 = 1

Γ(1−α) (x− a)−α . This is particularly inconvenient

for practical applications involving initial/boundary conditions

We compute R
0 D

α
x e

λx by fractionally differentiating the series term­by­term:

R
0 D

α
x e

λx = R
0 D

α
x

∞∑

k=0

(λx)k

Γ(k+1)
=

∞∑

k=0

λ
k

R
0 D

α
xx

k

Γ(k+1)
=

∞∑

k=0

λkxk−α

Γ(k+1−α)

= x
−α

∞∑

k=0

(λx)k

Γ(k + 1− α)
= x

−α
E1,1−α(λx).

where Eα,β(z) will be defined shortly.



These examples show:

The product rule R
0 D

α
x (fg) 6= (R0 D

α
xf)g + f R

0 D
α
xg, fails!

Thus in addition, no integration by parts, . . . Green’s Theorem . . . ]

– major PDE tool gone!.



Djrbashian­Caputo fractional derivative

For f ∈ L1(D) , the left­sided Djrbashian­Caputo fractional derivative of order
α , denoted by C

0 D
α
xf , is defined by

C
0 D

α
x f(x) := (aI

n−α
x f (n))(x) =

1

Γ(n−α)

∫ x

a

(x−s)n−α−1f (n)(s)ds,

if the integral on the right hand side exists

The Djrbashian­Caputo derivative is more restrictive than the Riemann­Liouville

since it requires the n th order classical derivative to be absolutely integrable.

Note that in general
(R0 D

α
xf)(x) 6= (C0 D

α
xf)(x),

even when both derivatives are defined.

[But they do agree if f (k)(0) = 0 for k = ⌊α⌋ ].

C
0 D

α
x f(x) =

R
0 D

α
x

(
f(x)−

n−1∑

k=0

(x−a)k
k!

f
(k)(a+)

)
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0 D
α
xf , is defined by

C
0 D

α
x f(x) := (aI

n−α
x f (n))(x) =

1

Γ(n−α)

∫ x

a

(x−s)n−α−1f (n)(s)ds,

if the integral on the right hand side exists

The Djrbashian­Caputo derivative is more restrictive than the Riemann­Liouville

since it requires the n th order classical derivative to be absolutely integrable.

Just as in the Riemann­Liouville case, neither the composition rule nor the

product rule hold for the Djrbashian­Caputo fractional derivative.



Djrbashian­Caputo fractional derivative

For f ∈ L1(D) , the left­sided Djrbashian­Caputo fractional derivative of order
α , denoted by C

0 D
α
xf , is defined by

C
0 D

α
x f(x) := (aI

n−α
x f (n))(x) =

1

Γ(n−α)

∫ x

a

(x−s)n−α−1f (n)(s)ds,

if the integral on the right hand side exists

The Djrbashian­Caputo derivative is more restrictive than the Riemann­Liouville

since it requires the n th order classical derivative to be absolutely integrable.

Laplace transforms:

L[R0 Dα
x f ](z) = z

αL[f ](z)−
n−1∑

k=0

z
n−k−1(R

0 D
α+k−n
x f)(0+).

L[C0 Dα
x f ](z) = z

αL[f ](z)−
n−1∑

k=0

z
α−k−1L[f ](k)(0).



More members of the fractional derivative zoo

A combination of left and right Riemann­Liouville derivatives

Dβ
x = (θ)Ra+Dα

x + (1− θ)Rb−D
α
x

is called the Riesz fractional derivative.

The case β = 1
2 is the symmetric Riesz derivative.

The case a = −∞ , b = ∞ is the symmetric Weyl derivative.

The fractional power of (−△) can be defined as the pseudodifferential operator

with symbol ξ2α .

These are most commonly used for space fractional derivatives.



Important message

• There are many different definitions of “fractional derivative”; we have looked

at only two, but will briefly mention one or two others.

One must specify which derivative is being used!!

• All of these derivatives are nonlocal ­ they have a history mechanism. This

will cause considerable anxiety with the analysis (and outcomes).

• Different derivatives and different “fractional orders” α will lead to quite

different domains of definition and mapping properties.

• All these derivatives have a starting point. This must be included or one

gets different answers!



The Mittag-Leffler and Wright functions



The two­parameter Mittag­Leffler function Eα,β(z) is defined by

Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
z ∈ C,

for α > 0 , and β ∈ R . The function Eα,1(z) , is often denoted by Eα(z) .



The two­parameter Mittag­Leffler function Eα,β(z) is defined by

Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
z ∈ C,

for α > 0 , and β ∈ R . The function Eα,1(z) , is often denoted by Eα(z) .

E1,1(z) =

∞∑

k=0

zk

Γ(k + 1)
=

∞∑

k=0

zk

k!
= e

z
.

Theorem.

For α > 0 and β ∈ R , Eα,β(z) is an entire function of order 1
α type 1.

Eα,β(−x) is completely monotone on R
+ for α ∈ (0, 1) and β ≥ α .

Recursion, differentiation/integral representation formulae . . . and

LEα(−λtα) =
zα−1

λ+ zα



For our purposes, the most interesting and important properties of the function

Eα,β(z) are associated with its asymptotic behavior as z → ∞ in various

sectors of the complex plane C . This result is due to Djrbashian

Theorem. Let α ∈ (0, 2) , β ∈ R , and µ ∈ (απ/2,min(π, απ)) , and
N ∈ N . Then for |arg(z)| ≤ µ with |z| → ∞ ,

Eα,β(z) ∼
1

α
z

1−β
α e

z
1
α

and for µ ≤ |arg(z)| ≤ π with |z| → ∞

Eα,β(z) = −
N∑

k=1

1

Γ(β−αk)
1

zk
+O

(
1

zN+1

)
.

• On the positive real axis it grows exponentially, and the growth rate increases
with decreasing α .

• The important message is: Eα,β(z) , with α ∈ (0, 2) and β−α 6∈ −N

decays only linearly on the negative real axis.
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The initial value problem for the fractional ordinary differential equation

0D
α
t u(t) + λu(t) = 0 x > 0, u(0) = 1 0<α<1

has solution u(t) given by u(t) = Eα(−λtα) =
∞∑

k=0

(−λtα)k
Γ(kα+ 1)



The initial value problem for the fractional ordinary differential equation

0D
α
t u(t) + λu(t) = 0 x > 0, u(0) = 1 0<α<1

has solution u(t) given by u(t) = Eα(−λtα) =
∞∑

k=0

(−λtα)k
Γ(kα+ 1)

We want the fundamental solution for
C
0D

α
t p(x, t)− uxx on R×R

+

First take a Fourier transform in space,
C
0D

α
t p̃(ξ, t) + ξ

2
p̃(ξ, t) ⇒ p(ξ, t) = Eα(−ξ2tα)

[To invert we need the inverse Laplace transform of the Mittag Leffler function]



For µ, ρ ∈ R with ρ > −1 , the Wright function Wρ,µ(z) is defined by

Wρ,µ(z) =

∞∑

k=0

zk

k!Γ(ρk + µ)
z ∈ C.



For µ, ρ ∈ R with ρ > −1 , the Wright function Wρ,µ(z) is defined by

Wρ,µ(z) =

∞∑

k=0

zk

k!Γ(ρk + µ)
z ∈ C.

There is a particular version we need Mµ(z) =W−µ,1−µ(−z) .
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Wρ,µ(z) =

∞∑

k=0

zk

k!Γ(ρk + µ)
z ∈ C.

There is a particular version we need Mµ(z) =W−µ,1−µ(−z) .

The Laplace transform of a Wright function is a Mittag­Leffler function

L[Wρ,µ(x)](z) =
1

z
Eρ,µ(z

−1)



For µ, ρ ∈ R with ρ > −1 , the Wright function Wρ,µ(z) is defined by

Wρ,µ(z) =

∞∑

k=0

zk

k!Γ(ρk + µ)
z ∈ C.

There is a particular version we need Mµ(z) =W−µ,1−µ(−z) .

The Laplace transform of a Wright function is a Mittag­Leffler function

L[Wρ,µ(x)](z) =
1

z
Eρ,µ(z

−1)

Theorem. L[Mµ(x)](z) = Eµ(−z) , F [Mµ(|x|)](ξ) = 2E2µ(−ξ2)



For µ, ρ ∈ R with ρ > −1 , the Wright function Wρ,µ(z) is defined by

Wρ,µ(z) =

∞∑

k=0

zk

k!Γ(ρk + µ)
z ∈ C.

There is a particular version we need Mµ(z) =W−µ,1−µ(−z) .

The Laplace transform of a Wright function is a Mittag­Leffler function

L[Wρ,µ(x)](z) =
1

z
Eρ,µ(z

−1)

Theorem. L[Mµ(x)](z) = Eµ(−z) , F [Mµ(|x|)](ξ) = 2E2µ(−ξ2)

Combining all of this, the Fundamental Solution is

p(x, t) =
1√

4K tα
Mα

2
(

|x|√
Ktα

)



The Fundamental Solution of ∂αt − uxx = 0
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Random Walks leading to Anomolous Diffusion
Now we consider the situation where the characteristic waiting time T diverges,

but the jump length variance Σ2 is still kept finite.



Random Walks leading to Anomolous Diffusion
Now we consider the situation where the characteristic waiting time T diverges,

but the jump length variance Σ2 is still kept finite.

To model such phenomena, we employ a heavy­tailed waiting time PDF with

the asymptotic behaviour ψ(t) ∼ A

t1+α
as t→ ∞ , α ∈ (0, 1) , A > 0 .

The specific form of ψ(t) is irrelevant; large time decay matters.

The parameter α determines the asymptotic decay of the PDF; the closer is α
to zero, the slower the decay and the more likely a long waiting time.
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but the jump length variance Σ2 is still kept finite.

To model such phenomena, we employ a heavy­tailed waiting time PDF with

the asymptotic behaviour ψ(t) ∼ A

t1+α
as t→ ∞ , α ∈ (0, 1) , A > 0 .

The specific form of ψ(t) is irrelevant; large time decay matters.

The parameter α determines the asymptotic decay of the PDF; the closer is α
to zero, the slower the decay and the more likely a long waiting time.

For this power law decay the mean waiting time is divergent:
∫∞
0
tψ(t)dt =

+∞ and the preceding analysis breaks down. But, the assumption on λ(x)
remains unchanged, i.e.,

∫∞
−∞ xλ(x) dx = 0 and

∫∞
−∞ x2λ(x) dx = 1 .



Random Walks leading to Anomolous Diffusion
Now we consider the situation where the characteristic waiting time T diverges,

but the jump length variance Σ2 is still kept finite.

To model such phenomena, we employ a heavy­tailed waiting time PDF with

the asymptotic behaviour ψ(t) ∼ A

t1+α
as t→ ∞ , α ∈ (0, 1) , A > 0 .

The specific form of ψ(t) is irrelevant; large time decay matters.

The parameter α determines the asymptotic decay of the PDF; the closer is α
to zero, the slower the decay and the more likely a long waiting time.

For this power law decay the mean waiting time is divergent:
∫∞
0
tψ(t)dt =

+∞ and the preceding analysis breaks down. But, the assumption on λ(x)
remains unchanged, i.e.,

∫∞
−∞ xλ(x) dx = 0 and

∫∞
−∞ x2λ(x) dx = 1 .

Take the rescaled PDFs for the waiting time ∆tn and jump length ∆xn :

ψτ (t) =
1
τ ψ

(
t
τ

)
and λσ(x) =

1
σλ

(
x
σ

)
.



The Laplace­Fourier transform ̂̃p(ξ, z;σ, τ) is

̂̃p(ξ, z;σ, τ) = 1− ψ̂(τz)

z

1

1− ψ̂(τz)λ̃(σξ)
,



The Laplace­Fourier transform ̂̃p(ξ, z;σ, τ) is

̂̃p(ξ, z;σ, τ) = 1− ψ̂(τz)

z

1

1− ψ̂(τz)λ̃(σξ)
,

Several algebraic manipulations later . . . compute the Fourier­Laplace

transform ̂̃p(ξ, z) by sending σ→0
τ→0 , keeping σ2

2Bατα = Kα fixed

̂̃p(ξ, z) = lim ̂̃p(ξ, z;σ, τ) = zα−1

zα +Kαξ2
.



The Laplace­Fourier transform ̂̃p(ξ, z;σ, τ) is

̂̃p(ξ, z;σ, τ) = 1− ψ̂(τz)

z

1

1− ψ̂(τz)λ̃(σξ)
,

Several algebraic manipulations later . . . compute the Fourier­Laplace

transform ̂̃p(ξ, z) by sending σ→0
τ→0 , keeping σ2

2Bατα = Kα fixed

̂̃p(ξ, z) = lim ̂̃p(ξ, z;σ, τ) = zα−1

zα +Kαξ2
.

Invert the Fourier­Laplace transform ̂̃p(ξ, z) back into space­time using the

Laplace transform formula of the Mittag­Leffler function Eα(z) ,

p̃(ξ, t) = Eα(−Kαt
αξ2)

and next applying the Fourier transform of the M ­Wright function we get

p(x, t) in the physical domain

p(x, t) =
1

2
√
Kαtα

Mα/2

( |x|√
Kαtα

)
.



Thus the fractional time derivative of order α corresponds to a particular decay

choice of the time PDF ψ(t) .



Thus the fractional time derivative of order α corresponds to a particular decay

choice of the time PDF ψ(t) .

Now compute the mean square displacement µ2(t) =
∫∞
−∞ x2p(x, t) dx .

by taking the Laplace transform

µ̂2(z) =

∫
∞

−∞

x
2
p̂(x, z)dx = − d2

dξ2
̂̃p(ξ, z)|ξ=0

= − d2

dξ2
(z +Kαz

1−α
ξ
2)−1|ξ=0 = 2Kαz

−1−α
,

and taking the inverse Laplace transform yields

〈x2〉 := µ2(t) =
2Kα

Γ(1 + α)
t
α ∝ t

α



Thus the fractional time derivative of order α corresponds to a particular decay

choice of the time PDF ψ(t) .

Now compute the mean square displacement µ2(t) =
∫∞
−∞ x2p(x, t) dx .

by taking the Laplace transform

µ̂2(z) =

∫
∞

−∞

x
2
p̂(x, z)dx = − d2

dξ2
̂̃p(ξ, z)|ξ=0

= − d2

dξ2
(z +Kαz

1−α
ξ
2)−1|ξ=0 = 2Kαz

−1−α
,

and taking the inverse Laplace transform yields

〈x2〉 := µ2(t) =
2Kα

Γ(1 + α)
t
α ∝ t

α

Thus the mean square displacement grows only sublinearly with the time t .

Such a diffusion process is often called subdiffusive.



If we retain the finite mean assumption on ψ(t) but similarily relax the finite

variance condition on λ(x) ,

λ(x) ∼ B

x2+β
as x→ ∞

we obtain a space fractional derivative of order β .



If we retain the finite mean assumption on ψ(t) but similarily relax the finite

variance condition on λ(x) ,

λ(x) ∼ B

x2+β
as x→ ∞

we obtain a space fractional derivative of order β .

Naturally, we can do those in both space and time.
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Subdiffusion Model
A is a strongly elliptic partial differential operator in Ω .
∂αt u is the Djrbashian­Caputo derivative of u of order α∈(0, 1) .

∂
α
t u(x, t) = Au(x, t) + f(x, t) (x, t) ∈ Ω× (0, T ],

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x) x ∈ Ω

(∗∗)
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• The “multi­term model”: ∂αt =
∑m

j=1 qj∂
αj

t where αj ∈ (0, 1] .

This arises from assuming the relevant probability density function has

m terms of the form qj/t
1+αj , 1 ≤ j ≤ m .



Subdiffusion Model
A is a strongly elliptic partial differential operator in Ω .
∂αt u is the Djrbashian­Caputo derivative of u of order α∈(0, 1) .

∂
α
t u(x, t) = Au(x, t) + f(x, t) (x, t) ∈ Ω× (0, T ],

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x) x ∈ Ω

(∗∗)

Is the single fractional exponent the only possibility?

• The “multi­term model”: ∂αt =
∑m

j=1 qj∂
αj

t where αj ∈ (0, 1] .

This arises from assuming the relevant probability density function has

m terms of the form qj/t
1+αj , 1 ≤ j ≤ m .

• The fully distributed model: ∂i(µ)u(t) =
∫ 1

0
µ(α)∂αt dα



Everything is dominated by the weakly singular non­local operator.

• “Local arguments” don’t work (think strong Maximum Principle, pointwise

estimates).

• The fractional pde has limited smoothing properties; lack of regularity affects

typical “pde results”.

• There is no sequel to Crank­Nicolson from the parabolic case and the

storage apart, the typical time­stepping methods are first order, or at best

1 + α order, accurate.

• The entire history of the spatial solution must be maintained at each time

step ­ this can be computationally significant in R
3 situations

Subdiffusion is no longer a Markov process.
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initial data u(x, 0) = sin(πx)
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e−π2t=E1,1(−π2t1)

Time evolution of ut − uxx = 0 at x = 1
2 , u(x, 0) = sin(πx)
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Time evolution of ∂αt − uxx = 0 , at x = 1
2 , u(x, 0) = sin(πx)



Inverse Problems
An unlimited number of questions; we will merely (and very briefly look at)



Inverse Problems
An unlimited number of questions; we will merely (and very briefly look at)

• How do we determine the fractional exponent?

• The backwards diffusion problem

• An unknown source of the form F = χ(D) and overposed flux data

As a teaser to many in the audience:

♦ Regularization methods based on fractional operators.



For the single exponent α it is usually straightforward to determine this ­ usually
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For the multi­α situation analyticity again plays the crucial role.

Taking the Laplace transform t → s , we obtain a rational function in s with

coefficients depending on qj and αj . These may be backed out in sequence

using analytic continuation in s . Extremely ill­posed. [Li, Yamamoto: 2014]

The distributed situation is more complex as the function µ(α) need not only

be continuous. A representation theorem involving µ(α) and kernel M is

obtained and showing that M can be expanded in powers of α and that these

are sufficiently dense so that the Müntz­Szász Theorem applies. [R, Zhang].
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Dα
t u = uxx

u(x, t) =
∑

cnEα,1(−λntα)φn(x)

u0(x) =
∑

dn[Eα,1(−λnTα)]−1φn(x)

Recover {cn} : cn = 1
Eα,1(−λnTα)

dn

How ill­posed?
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α .

The nth Fourier mode of u0 equals that of g multiplied by λn ≈ n2π2

– a two derivative loss in Fourier space

– control of u(:, T ) in Ḣ2(Ω) controls u0 in L2 .

Stability estimate c‖u(T )‖Ḣ2(Ω) ≤ ‖u(0)‖L2 ≤ C‖u(T )‖Ḣ2(Ω)

[Liu, Yamamoto: 2010]

The backwards fractional derivative problem is only mildly ill­conditioned

Fractional diffusion completely changes the paradigm here

But do we have the complete story?

Conjecture:

Reconstructing u0 from u(x, T ) is always easier in the fractional case

The answer is no, and the difference can be substantial.



A is a strongly elliptic pdo in Ω with eigenfunction/eigenvalues {φn(x), λn} .

∂
α
t u(x, t)−Au(x, t) = f(x) = χ(D) (x, t) ∈ Ω× (0, T ],

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x) = 0 x ∈ Ω

We wish to recover the (starlike) subdomain D ⊂ Ω from data

gi(t) :=
∂u

∂ν

∣∣∣
P
, P = {xi} ∈ ∂Ω

where P is a (small) number of discrete points on the boundary ∂Ω .

Let F = Fi = F (D) be the map from D to {gi} .
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Depends on the selected time points, {tk} , in measuring gi(tk) !



t=0 t=0.5 t=1 t=1.5 t=2
g=0

g=0.05

g=0.1

g=0.15

 = 1

 = 0.5

Profile of g(t) for α = 1
2 and α = 1 from a circle centre origin.
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