Fractional Diffusion Equations

IMPA November 1 2017

William Rundell

Texas A&M University

Historical Classical Diffusion

Robert Brown (1828)
Thomas Graham (1827)

Experimental observation of diffusion

Adolf Fick (1855): Macro derivation of the heat equation

$$J = -K\nabla u, \quad u_t = \operatorname{div} J, \quad \Rightarrow \quad u_t - K\operatorname{div} \nabla u = 0$$

Einstein (1905): Gave accepted notion of diffusion - particles pushed around by the thermal motion of atoms.

In one space dimension this can be modeled by the master equation

$$p_j(t + \Delta t) = \frac{1}{2}p_{j-1}(t) + \frac{1}{2}p_{j+1}(t),$$

the index j denotes the position on the underlying 1-dim lattice.

It defines the probability density function (PDF) p(t) to be at position j at time $t+\Delta t$ and to depend on p at the two adjacent sites $j\pm 1$ at time t.

 $\frac{1}{2}$ \Rightarrow directional isotropy; jumps to the left and right are equally likely.

 Δt is a fixed time step. Δx is a fixed jump distance.

In one space dimension this can be modeled by the master equation

$$p_j(t + \Delta t) = \frac{1}{2}p_{j-1}(t) + \frac{1}{2}p_{j+1}(t),$$

the index j denotes the position on the underlying 1-dim lattice.

It defines the probability density function (PDF) p(t) to be at position j at time $t+\Delta t$ and to depend on p at the two adjacent sites $j\pm 1$ at time t.

 $\frac{1}{2}$ \Rightarrow directional isotropy; jumps to the left and right are equally likely.

 Δt is a fixed time step. Δx is a fixed jump distance.

Rearranging:
$$\frac{p_j(t+\Delta t)-p_j(t)}{\Delta t}=\frac{(\Delta x)^2}{2\Delta t}\,\frac{p_{j-1}(t)-2p_j(t)+p_{j+1}(t)}{(\Delta x)^2}$$

In one space dimension this can be modeled by the master equation

$$p_j(t + \Delta t) = \frac{1}{2}p_{j-1}(t) + \frac{1}{2}p_{j+1}(t),$$

the index j denotes the position on the underlying 1-dim lattice.

It defines the probability density function (PDF) p(t) to be at position j at time $t+\Delta t$ and to depend on p at the two adjacent sites $j\pm 1$ at time t.

 $\frac{1}{2}$ \Rightarrow directional isotropy; jumps to the left and right are equally likely.

 Δt is a fixed time step. Δx is a fixed jump distance.

Rearranging:
$$\frac{p_j(t+\Delta t)-p_j(t)}{\Delta t}=\frac{(\Delta x)^2}{2\Delta t}\,\frac{p_{j-1}(t)-2p_j(t)+p_{j+1}(t)}{(\Delta x)^2}$$

leads to the diffusion equation $\frac{\partial}{\partial t}u(x,t)=K\frac{\partial^2}{\partial x^2}u(x,t),$

In one space dimension this can be modeled by the master equation

$$p_j(t + \Delta t) = \frac{1}{2}p_{j-1}(t) + \frac{1}{2}p_{j+1}(t),$$

the index j denotes the position on the underlying 1-dim lattice.

It defines the probability density function (PDF) p(t) to be at position j at time $t+\Delta t$ and to depend on p at the two adjacent sites $j\pm 1$ at time t.

 $\frac{1}{2}$ \Rightarrow directional isotropy; jumps to the left and right are equally likely.

 Δt is a fixed time step. Δx is a fixed jump distance.

Rearranging:
$$\frac{p_j(t+\Delta t)-p_j(t)}{\Delta t}=\frac{(\Delta x)^2}{2\Delta t}\,\frac{p_{j-1}(t)-2p_j(t)+p_{j+1}(t)}{(\Delta x)^2}$$

leads to the diffusion equation $\frac{\partial}{\partial t}u(x,t)=K\frac{\partial^2}{\partial x^2}u(x,t),$

The continuum limit is taken such that $K = \lim_{\Delta x \to 0, \Delta t \to 0} \frac{(\Delta x)^2}{2\Delta t}$ is a positive constant – the diffusion coefficient – it couples the spatial and time scales.

$$P(a < \Delta x < b) = \int_a^b \lambda(x) \, dx.$$

If $\lambda(x)$ decays sufficiently fast as $x \to \pm \infty$, the Fourier transform gives

$$\widetilde{\lambda}(\xi) = \int_{-\infty}^{\infty} e^{-i\xi x} \lambda(x) dx = \int_{-\infty}^{\infty} (1 - i\xi x - \frac{1}{2}\xi^2 x^2 + \dots) \lambda(x) dx$$
$$= 1 - i\xi \mu_1 - \frac{1}{2}\xi^2 \mu_2 + \dots,$$

where μ_j is the jth moment $\mu_j = \int_{-\infty}^{\infty} x^j \lambda(x) dx$ - provided these exist

$$P(a < \Delta x < b) = \int_a^b \lambda(x) \, dx.$$

If $\lambda(x)$ decays sufficiently fast as $x \to \pm \infty$, the Fourier transform gives

$$\widetilde{\lambda}(\xi) = \int_{-\infty}^{\infty} e^{-i\xi x} \lambda(x) dx = \int_{-\infty}^{\infty} (1 - i\xi x - \frac{1}{2}\xi^2 x^2 + \dots) \lambda(x) dx$$
$$= 1 - i\xi \mu_1 - \frac{1}{2}\xi^2 \mu_2 + \dots,$$

where μ_j is the jth moment $\mu_j=\int_{-\infty}^{\infty}x^j\lambda(x)dx$ – provided these exist Assume $\lambda(x)$ is normalized and even: $\mu_1=0$, $\mu_2=1$ and $\mu_3=0$. Then

$$\widetilde{f}(\xi) = 1 - \frac{1}{2}\xi^2 + O(\xi^4).$$

$$P(a < \Delta x < b) = \int_a^b \lambda(x) \, dx.$$

If $\lambda(x)$ decays sufficiently fast as $x \to \pm \infty$, the Fourier transform gives

$$\widetilde{\lambda}(\xi) = \int_{-\infty}^{\infty} e^{-i\xi x} \lambda(x) dx = \int_{-\infty}^{\infty} (1 - i\xi x - \frac{1}{2}\xi^2 x^2 + \dots) \lambda(x) dx$$
$$= 1 - i\xi \mu_1 - \frac{1}{2}\xi^2 \mu_2 + \dots,$$

where μ_j is the jth moment $\mu_j=\int_{-\infty}^{\infty}x^j\lambda(x)dx$ – provided these exist Assume $\lambda(x)$ is normalized and even: $\mu_1=0$, $\mu_2=1$ and $\mu_3=0$. Then $\widetilde{f}(\xi)=1-\frac{1}{2}\xi^2+O(\xi^4)$.

Theorem. If X and Y are independent random variables with a PDF given by f and g, respectively, then the sum Z=X+Y has the PDF $f\ast g$.

$$P(a < \Delta x < b) = \int_a^b \lambda(x) \, dx.$$

If $\lambda(x)$ decays sufficiently fast as $x \to \pm \infty$, the Fourier transform gives

$$\widetilde{\lambda}(\xi) = \int_{-\infty}^{\infty} e^{-i\xi x} \lambda(x) dx = \int_{-\infty}^{\infty} (1 - i\xi x - \frac{1}{2}\xi^2 x^2 + \dots) \lambda(x) dx$$
$$= 1 - i\xi \mu_1 - \frac{1}{2}\xi^2 \mu_2 + \dots,$$

where μ_j is the jth moment $\mu_j=\int_{-\infty}^{\infty}x^j\lambda(x)dx$ – provided these exist Assume $\lambda(x)$ is normalized and even: $\mu_1=0$, $\mu_2=1$ and $\mu_3=0$. Then $\widetilde{f}(\xi)=1-\frac{1}{2}\xi^2+O(\xi^4)$.

Theorem. If X and Y are independent random variables with a PDF given by f and g, respectively, then the sum Z = X + Y has the PDF $f \ast g$.

Assume the steps ΔX_1 , ΔX_2 , ... are independent. Then $X_n = \Delta X_1 + \ldots + \Delta X_n$ gives the position of the walker after n steps.

This is also a random variable, and has a Fourier transform $p_n(\xi)=(\widetilde{\lambda}(\xi))^n$, and the normalized sum X_n/\sqrt{n} has the Fourier transform

$$(\widetilde{p}_n(\xi/\sqrt{n}))^n = (1 - \frac{1}{2n}\xi^2 + O(n^{-2}))^n.$$

The limit $n\to\infty$ gives $\widetilde{p}(\xi)=e^{-\frac{\xi^2}{2}}$ and inverting the Fourier transform gives a Gaussian distribution $p(x)=\frac{1}{\sqrt{4\pi}}e^{-\frac{x^2}{4}}$.

This is also a random variable, and has a Fourier transform $p_n(\xi)=(\widetilde{\lambda}(\xi))^n$, and the normalized sum X_n/\sqrt{n} has the Fourier transform

$$(\widetilde{p}_n(\xi/\sqrt{n}))^n = (1 - \frac{1}{2n}\xi^2 + O(n^{-2}))^n.$$

The limit $n\to\infty$ gives $\widetilde{p}(\xi)=e^{-\frac{\xi^2}{2}}$ and inverting the Fourier transform gives a Gaussian distribution $p(x)=\frac{1}{\sqrt{4\pi}}e^{-\frac{x^2}{4}}$.

This is a statement of the central limit theorem that the long term averaged behavior of i.i.d. variables is a Gaussian density.

This is also a random variable, and has a Fourier transform $p_n(\xi)=(\widetilde{\lambda}(\xi))^n$, and the normalized sum X_n/\sqrt{n} has the Fourier transform

$$(\widetilde{p}_n(\xi/\sqrt{n}))^n = (1 - \frac{1}{2n}\xi^2 + O(n^{-2}))^n.$$

The limit $n\to\infty$ gives $\widetilde{p}(\xi)=e^{-\frac{\xi^2}{2}}$ and inverting the Fourier transform gives a Gaussian distribution $p(x)=\frac{1}{\sqrt{4\pi}}e^{-\frac{x^2}{4}}$.

This is a statement of the central limit theorem that the long term averaged behavior of i.i.d. variables is a Gaussian density.

One requirement for the whole procedure to work is that the second moment μ_2 of $\lambda(x)$ be finite.

By the scaling rule for the Fourier transform, the Fourier transform $\widetilde{p}_n(\xi)$ is

$$p_n(\xi) = (1 - n^{-1}Kt\xi^2 + O(n^{-2}))^n$$

Taking the limit of a large number of steps $n\to\infty$, we arrive at the Fourier transform $\widetilde{p}(\xi)=e^{-\xi^2Kt}$.

By the scaling rule for the Fourier transform, the Fourier transform $\widetilde{p}_n(\xi)$ is

$$p_n(\xi) = (1 - n^{-1}Kt\xi^2 + O(n^{-2}))^n$$

Taking the limit of a large number of steps $n\to\infty$, we arrive at the Fourier transform $\widetilde{p}(\xi)=e^{-\xi^2Kt}$.

Inverting this gives the PDF of being at a certain position x at time t, is governed by the diffusion equation and has the Gaussian PDF

$$p(x,t) = \frac{1}{\sqrt{4\pi Kt}} e^{-x^2/4Kt}.$$

This is the fundamental solution of the heat/diffusion equation

By the scaling rule for the Fourier transform, the Fourier transform $\widetilde{p}_n(\xi)$ is

$$p_n(\xi) = (1 - n^{-1}Kt\xi^2 + O(n^{-2}))^n$$

Taking the limit of a large number of steps $n\to\infty$, we arrive at the Fourier transform $\widetilde{p}(\xi)=e^{-\xi^2Kt}$.

Inverting this gives the PDF of being at a certain position x at time t, is governed by the diffusion equation and has the Gaussian PDF

$$p(x,t) = \frac{1}{\sqrt{4\pi Kt}} e^{-x^2/4Kt}.$$

This is the fundamental solution of the heat/diffusion equation

For fixed time t>0, p(x,t) is a Gaussian distribution in x with mean zero and variance 2Kt. It scales linearly with the time t. $\langle x^2\rangle \propto t$.

By the scaling rule for the Fourier transform, the Fourier transform $\widetilde{p}_n(\xi)$ is

$$p_n(\xi) = (1 - n^{-1}Kt\xi^2 + O(n^{-2}))^n$$

Taking the limit of a large number of steps $n\to\infty$, we arrive at the Fourier transform $\widetilde{p}(\xi)=e^{-\xi^2Kt}$.

Inverting this gives the PDF of being at a certain position x at time t, is governed by the diffusion equation and has the Gaussian PDF

$$p(x,t) = \frac{1}{\sqrt{4\pi Kt}} e^{-x^2/4Kt}.$$

This is the fundamental solution of the heat/diffusion equation

For fixed time t>0, p(x,t) is a Gaussian distribution in x with mean zero and variance 2Kt. It scales linearly with the time t. $\langle x^2 \rangle \propto t$.

The linear scaling with t is one characteristic feature of classical diffusion.

This is the essential content of Einstein's 1905 paper.

A (slightly) more general case

A walker moves along the x-axis, starting at a position x_0 at time $t_0=0$.

At time t_1 , the walker jumps to x_1 , then at time t_2 jumps to x_2 ,

Assume that the temporal and spatial increments

$$\Delta t_n = t_n - t_{n-1}$$
 and $\Delta x_n = x_n - x_{n-1}$

are iid random variables, with PDFs $\psi(t)$ and $\lambda(x)$, – the waiting time and jump length distribution, respectively.

A (slightly) more general case

A walker moves along the x-axis, starting at a position x_0 at time $t_0=0$.

At time t_1 , the walker jumps to x_1 , then at time t_2 jumps to x_2 ,

Assume that the temporal and spatial increments

$$\Delta t_n = t_n - t_{n-1}$$
 and $\Delta x_n = x_n - x_{n-1}$

are iid random variables, with PDFs $\psi(t)$ and $\lambda(x)$, – the waiting time and jump length distribution, respectively.

The probability of Δt_n lying in any interval $[a,b]\subset (0,\infty)$ is

$$P(a < \Delta t_n < b) = \int_a^b \psi(t) dt$$

and the probability of Δx_n lying in any interval $[a,b]\subset\mathbb{R}$ is

$$P(a < \Delta x_n < b) = \int_a^b \lambda(x) dx.$$

Goal: determine P(the walker lies in a given spatial interval at time <math>t).

Random walk with exponentially decaying $\psi(t)$ and Gaussian $\lambda(x)$.

Random walk with exponentially decaying $\psi(t)$ and Gaussian $\lambda(x)$.

Different CTRW processes can be categorized by the characteristic waiting time T and the jump length variance Σ^2 being finite or diverging.

$$T =: E[\Delta t_n] = \int_0^\infty t \psi(t) dt \quad \Sigma^2 =: E[(\Delta x_n)^2] = \int_{-\infty}^\infty x^2 \lambda(x) dx.$$

Random walk with exponentially decaying $\psi(t)$ and Gaussian $\lambda(x)$.

Different CTRW processes can be categorized by the characteristic waiting time T and the jump length variance Σ^2 being finite or diverging.

$$T =: E[\Delta t_n] = \int_0^\infty t \psi(t) dt \quad \Sigma^2 =: E[(\Delta x_n)^2] = \int_{-\infty}^\infty x^2 \lambda(x) dx.$$

If both T and Σ are finite, the long-time limit corresponds to Brownian motion, and thus the CTRW does not lead to anything new.

Fractional Calculus

Fractional Calculus

History of generalizing from the integers $\mathbb{N} \to \mathbb{R}, \ \mathbb{C}$

Bernoulli, Euler, (1730s): $n! \rightarrow \Gamma(z+1)$

Fractional Calculus

History of generalizing from the integers $\mathbb{N} \to \mathbb{R}, \ \mathbb{C}$

Bernoulli, Euler, (1730s): $n! \rightarrow \Gamma(z+1)$

Attempts to do the same for differentiation formulae; (1740 - today)

To compute the fractional derivative of order α use the n^{th} formulae and replace $n \to \alpha$.

EXAMPLES:

$$D^{(n)}x^m = \frac{m!}{(m-n)!}x^{m-n} \to D^{\alpha}x^m = \frac{m!}{\Gamma(m-\alpha+1)!}x^{m-\alpha}$$

$$D^{(n)}e^{\lambda x} = \lambda^n e^{\lambda x} \to D^{\alpha}e^{\lambda x} = \lambda^{\alpha}e^{\lambda x}$$

$$D^{(n)}\sin(x) = \sin(x + n\frac{\pi}{2}) \to D^{\alpha}\sin(x) = \sin(x + \alpha\frac{\pi}{2})$$

The integral operator $A^{\alpha}f=\frac{1}{\Gamma(\alpha)}\int_a^t \frac{f(\tau)\,d\tau}{(t-\tau)^{1-\alpha}}\quad \alpha>0$ arose in Abel's

1823 solution of the more general tautochrone and brachistochrone problems which were originally posed and solved in a simpler form by Huygens in 1659 and Bernoulli in 1695 respectively.

The integral operator $A^{\alpha}f=\frac{1}{\Gamma(\alpha)}\int_a^{\tau}\frac{f(\tau)\,d\tau}{(t-\tau)^{1-\alpha}}\quad \alpha>0$ arose in Abel's

1823 solution of the more general tautochrone and brachistochrone problems which were originally posed and solved in a simpler form by Huygens in 1659 and Bernoulli in 1695 respectively.

In these particular applications $\alpha=1/2$ and the solution to $A^{1/2}y=f$ is given by the well-known formula

$$f(x) = \frac{1}{\pi} \frac{d}{dx} \int_{a}^{x} \frac{f(s) ds}{(x-s)^{1/2}}.$$

As was shown by Abel, for general α , $0 < \alpha < 1$ this becomes

$$f(x) = \frac{\sin(\pi(1-\alpha))}{\pi} \frac{d}{dx} \int_{a}^{x} \frac{f(s) ds}{(x-s)^{\alpha}}.$$

The integral operator $A^{\alpha}f=\frac{1}{\Gamma(\alpha)}\int_{a}^{\tau}\frac{f(\tau)\,d\tau}{(t-\tau)^{1-\alpha}}$ $\alpha>0$ arose in Abel's

1823 solution of the more general tautochrone and brachistochrone problems which were originally posed and solved in a simpler form by Huygens in 1659 and Bernoulli in 1695 respectively.

In these particular applications $\alpha=1/2$ and the solution to $A^{1/2}y=f$ is given by the well-known formula

$$f(x) = \frac{1}{\pi} \frac{d}{dx} \int_{a}^{x} \frac{f(s) ds}{(x-s)^{1/2}}.$$

As was shown by Abel, for general α , $0 < \alpha < 1$ this becomes

$$f(x) = \frac{\sin(\pi(1-\alpha))}{\pi} \frac{d}{dx} \int_{a}^{x} \frac{f(s) ds}{(x-s)^{\alpha}}.$$

The important point here is that in his solution of the integral equation Abel had shown the way to rigorously define a fractional integral and, by his inversion of this, how to define a fractional derivative.

The integral operator $A^{\alpha}f=\frac{1}{\Gamma(\alpha)}\int_{a}^{\tau}\frac{f(\tau)\,d\tau}{(t-\tau)^{1-\alpha}}$ $\alpha>0$ arose in Abel's

1823 solution of the more general tautochrone and brachistochrone problems which were originally posed and solved in a simpler form by Huygens in 1659 and Bernoulli in 1695 respectively.

In these particular applications $\alpha=1/2$ and the solution to $A^{1/2}y=f$ is given by the well-known formula

$$f(x) = \frac{1}{\pi} \frac{d}{dx} \int_{a}^{x} \frac{f(s) ds}{(x-s)^{1/2}}.$$

As was shown by Abel, for general α , $0 < \alpha < 1$ this becomes

$$f(x) = \frac{\sin(\pi(1-\alpha))}{\pi} \frac{d}{dx} \int_{a}^{x} \frac{f(s) ds}{(x-s)^{\alpha}}.$$

In this sense Abel is the true mathematical founder of the concept although later work by Liouville and by Riemann have dominated the nomenclature.

Definition. The Riemann-Liouville fractional derivative $^RD_x^{\alpha}u(x)$ is defined

$$\text{ for } a \in \mathbb{R} \text{ by } \quad _a^R D_x^\alpha u(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_a^x (x-s)^{n-1-\alpha} u(s) \, ds.$$

This is clearly based on Abel's integral and suggests that the fractional derivative of f is the n^{th} integer derivative of the fractional integral

$$I_x^{\alpha}f(x)=\frac{1}{\Gamma(n-\alpha)}\int_0^x (x-s)^{-\alpha}f(s)\,ds$$
 of f where $n-1<\alpha\leq n$.

Definition. The Riemann-Liouville fractional derivative ${}^RD_x^{\alpha}u(x)$ is defined

$$\text{ for } a \in \mathbb{R} \text{ by } \quad {}^R_a D^\alpha_x u(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_a^x (x-s)^{n-1-\alpha} u(s) \, ds.$$

This is clearly based on Abel's integral and suggests that the fractional derivative of f is the n^{th} integer derivative of the fractional integral

$$I_x^\alpha f(x) = \tfrac{1}{\Gamma(n-\alpha)} \int_0^x (x-s)^{-\alpha} f(s) \, ds \quad \text{of} \ f \ \text{where} \ n-1 < \alpha \le n \, .$$

There is another version that reverses the above order; the Djrbashyan-Caputo

derivative:-
$${}^C_a D^{\alpha}_x u(x) = \frac{1}{\Gamma(n-\alpha)} \int_a^x (x-s)^{n-1-\alpha} u^{(n)}(s) ds$$

Definition. The Riemann-Liouville fractional derivative ${}^RD_x^{\alpha}u(x)$ is defined

$$\text{ for } a \in \mathbb{R} \text{ by } \quad _a^R D_x^\alpha u(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_a^x (x-s)^{n-1-\alpha} u(s) \, ds.$$

This is clearly based on Abel's integral and suggests that the fractional derivative of f is the n^{th} integer derivative of the fractional integral

$$I_x^\alpha f(x) = \tfrac{1}{\Gamma(n-\alpha)} \int_0^x (x-s)^{-\alpha} f(s) \, ds \quad \text{of} \ f \ \text{where} \ n-1 < \alpha \leq n \, .$$

There is another version that reverses the above order; the Djrbashyan-Caputo

derivative:-
$${}^C_a D^{\alpha}_x u(x) = \frac{1}{\Gamma(n-\alpha)} \int_a^x (x-s)^{n-1-\alpha} u^{(n)}(s) ds$$

This version was studied extensively by the Armenian mathematician M. M. Djr-bashyan, in his 1966 book. However, there was a considerable amount of earlier work on this version of the integral, but only available in the Russian literature.

Definition. The Riemann-Liouville fractional derivative ${}^RD_x^{\alpha}u(x)$ is defined

$$\text{ for } a \in \mathbb{R} \text{ by } \quad {}^R_a D^\alpha_x u(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_a^x (x-s)^{n-1-\alpha} u(s) \, ds.$$

This is clearly based on Abel's integral and suggests that the fractional derivative of f is the n^{th} integer derivative of the fractional integral

$$I_x^\alpha f(x) = \tfrac{1}{\Gamma(n-\alpha)} \int_0^x (x-s)^{-\alpha} f(s) \, ds \quad \text{of} \ f \ \text{where} \ n-1 < \alpha \leq n \, .$$

There is another version that reverses the above order; the Djrbashyan-Caputo

derivative:-
$${}^C_a D^{\alpha}_x u(x) = \frac{1}{\Gamma(n-\alpha)} \int_a^x (x-s)^{n-1-\alpha} u^{(n)}(s) ds$$

This version was studied extensively by the Armenian mathematician M. M. Djr-bashyan, in his 1966 book. However, there was a considerable amount of earlier work on this version of the integral, but only available in the Russian literature.

The geophysicist Michele Caputo rediscovered this version in 1967 as a tool for understanding seismological phenomenon, and later with Francesco Mainardi in viscoelasticity where the memory effect of the fractional derivative were crucial.

The power function: Differentiating the fractional integral and using $\Gamma(z+1)=z\Gamma(z)$ gives

$${}_{0}^{R}D_{x}^{\alpha}(x-a)^{\gamma} = \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)}(x-a)^{\gamma-\alpha} \quad x > a, \quad \gamma > -1$$

The power function: Differentiating the fractional integral and using $\Gamma(z+1)=z\Gamma(z)$ gives

$${}_{0}^{R}D_{x}^{\alpha}(x-a)^{\gamma} = \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)}(x-a)^{\gamma-\alpha} \quad x > a, \quad \gamma > -1$$

This implies ${}^R_0D^\alpha_x 1=\frac{1}{\Gamma(1-\alpha)}(x-a)^{-\alpha}$. This is particularly inconvenient for practical applications involving initial/boundary conditions

The power function: Differentiating the fractional integral and using $\Gamma(z+1)=z\Gamma(z)$ gives

$${}_{0}^{R}D_{x}^{\alpha}(x-a)^{\gamma} = \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)}(x-a)^{\gamma-\alpha} \quad x > a, \quad \gamma > -1$$

This implies ${}^R_0D^\alpha_x 1=\frac{1}{\Gamma(1-\alpha)}(x-a)^{-\alpha}$. This is particularly inconvenient for practical applications involving initial/boundary conditions

We compute ${}_0^R D_x^{\alpha} e^{\lambda x}$ by fractionally differentiating the series term-by-term:

$${}_{0}^{R}D_{x}^{\alpha}e^{\lambda x} = {}_{0}^{R}D_{x}^{\alpha}\sum_{k=0}^{\infty}\frac{(\lambda x)^{k}}{\Gamma(k+1)} = \sum_{k=0}^{\infty}\lambda^{k}\frac{{}_{0}^{R}D_{x}^{\alpha}x^{k}}{\Gamma(k+1)} = \sum_{k=0}^{\infty}\frac{\lambda^{k}x^{k-\alpha}}{\Gamma(k+1-\alpha)}$$
$$= x^{-\alpha}\sum_{k=0}^{\infty}\frac{(\lambda x)^{k}}{\Gamma(k+1-\alpha)} = x^{-\alpha}E_{1,1-\alpha}(\lambda x).$$

where $E_{\alpha,\beta}(z)$ will be defined shortly.

These examples show:

The product rule ${}^R_0D^\alpha_x(fg) \neq ({}^R_0D^\alpha_xf)g + f{}^R_0D^\alpha_xg$, fails!

Thus in addition, no integration by parts, ... Green's Theorem ...]

– major PDE tool gone!.

Djrbashian-Caputo fractional derivative

For $f\in L^1(D)$, the left-sided Djrbashian-Caputo fractional derivative of order α , denoted by ${}^C_0D^\alpha_xf$, is defined by

$${}_{0}^{C}D_{x}^{\alpha}f(x) := ({}_{a}I_{x}^{n-\alpha}f^{(n)})(x) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} (x-s)^{n-\alpha-1}f^{(n)}(s)ds,$$

if the integral on the right hand side exists

The Djrbashian-Caputo derivative is more restrictive than the Riemann-Liouville since it requires the n th order classical derivative to be absolutely integrable.

Note that in general

$$\binom{R}{0}D_x^{\alpha}f(x) \neq \binom{C}{0}D_x^{\alpha}f(x),$$

even when both derivatives are defined.

[But they do agree if $f^{(k)}(0) = 0$ for $k = \lfloor \alpha \rfloor$].

$${}_{0}^{C}D_{x}^{\alpha}f(x) = {}_{0}^{R}D_{x}^{\alpha}\left(f(x) - \sum_{k=0}^{n-1} \frac{(x-a)^{k}}{k!}f^{(k)}(a^{+})\right)$$

Djrbashian-Caputo fractional derivative

For $f\in L^1(D)$, the left-sided Djrbashian-Caputo fractional derivative of order α , denoted by ${}^C_0D^\alpha_xf$, is defined by

$${}_0^C D_x^{\alpha} f(x) := ({}_a I_x^{n-\alpha} f^{(n)})(x) = \frac{1}{\Gamma(n-\alpha)} \int_a^x (x-s)^{n-\alpha-1} f^{(n)}(s) ds,$$

if the integral on the right hand side exists

The Djrbashian-Caputo derivative is more restrictive than the Riemann-Liouville since it requires the n th order classical derivative to be absolutely integrable.

Just as in the Riemann-Liouville case, neither the composition rule nor the product rule hold for the Djrbashian-Caputo fractional derivative.

Djrbashian-Caputo fractional derivative

For $f\in L^1(D)$, the left-sided Djrbashian-Caputo fractional derivative of order α , denoted by ${}^C_0D^\alpha_xf$, is defined by

$${}_{0}^{C}D_{x}^{\alpha}f(x) := ({}_{a}I_{x}^{n-\alpha}f^{(n)})(x) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} (x-s)^{n-\alpha-1}f^{(n)}(s)ds,$$

if the integral on the right hand side exists

The Djrbashian-Caputo derivative is more restrictive than the Riemann-Liouville since it requires the n th order classical derivative to be absolutely integrable.

Laplace transforms:

$$\mathcal{L}\begin{bmatrix} {}^{R}_{0}D_{x}^{\alpha}f \end{bmatrix}(z) = z^{\alpha}\mathcal{L}[f](z) - \sum_{k=0}^{n-1} z^{n-k-1} \left({}^{R}_{0}D_{x}^{\alpha+k-n}f \right) (0^{+}).$$

$$\mathcal{L}[{}_{0}^{C}D_{x}^{\alpha}f](z) = z^{\alpha}\mathcal{L}[f](z) - \sum_{k=0}^{n-1} z^{\alpha-k-1}\mathcal{L}[f]^{(k)}(0).$$

More members of the fractional derivative zoo

A combination of left and right Riemann-Liouville derivatives

$$D_x^{\beta} = (\theta)_{a^+}^R D_x^{\alpha} + (1 - \theta)_{b^-}^R D_x^{\alpha}$$

is called the *Riesz fractional derivative*.

The case $\beta = \frac{1}{2}$ is the *symmetric Riesz derivative*.

The case $a=-\infty$, $b=\infty$ is the symmetric Weyl derivative.

The fractional power of $(-\triangle)$ can be defined as the pseudodifferential operator with symbol $\xi^{2\alpha}$.

These are most commonly used for space fractional derivatives.

Important message

- There are many different definitions of "fractional derivative"; we have looked at only two, but will briefly mention one or two others.
 One must specify which derivative is being used!!
- All of these derivatives are nonlocal they have a history mechanism. This
 will cause considerable anxiety with the analysis (and outcomes).
- Different derivatives and different "fractional orders" α will lead to quite different domains of definition and mapping properties.
- All these derivatives have a starting point. This must be included or one gets different answers!

The Mittag-Leffler and Wright functions

The two-parameter Mittag-Leffler function $E_{\alpha,\beta}(z)$ is defined by

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)} \quad z \in \mathbb{C},$$

for $\alpha>0$, and $\beta\in\mathbb{R}$. The function $E_{\alpha,1}(z)$, is often denoted by $E_{\alpha}(z)$.

The two-parameter Mittag-Leffler function $E_{\alpha,\beta}(z)$ is defined by

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)} \quad z \in \mathbb{C},$$

for $\alpha>0$, and $\beta\in\mathbb{R}$. The function $E_{\alpha,1}(z)$, is often denoted by $E_{\alpha}(z)$.

$$E_{1,1}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(k+1)} = \sum_{k=0}^{\infty} \frac{z^k}{k!} = e^z.$$

Theorem.

For $\alpha > 0$ and $\beta \in \mathbb{R}$, $E_{\alpha,\beta}(z)$ is an entire function of order $\frac{1}{\alpha}$ type 1. $E_{\alpha,\beta}(-x)$ is completely monotone on \mathbb{R}^+ for $\alpha \in (0,1)$ and $\beta \geq \alpha$.

Recursion, differentiation/integral representation formulae ... and

$$\mathcal{L}E_{\alpha}(-\lambda t^{\alpha}) = \frac{z^{\alpha - 1}}{\lambda + z^{\alpha}}$$

For our purposes, the most interesting and important properties of the function $E_{\alpha,\beta}(z)$ are associated with its asymptotic behavior as $z\to\infty$ in various sectors of the complex plane $\mathbb C$. This result is due to Djrbashian

Theorem. Let $\alpha \in (0,2)$, $\beta \in \mathbb{R}$, and $\mu \in (\alpha\pi/2, min(\pi, \alpha\pi))$, and $N \in \mathbb{N}$. Then for $|\arg(z)| \leq \mu$ with $|z| \to \infty$,

$$E_{\alpha,\beta}(z) \sim \frac{1}{\alpha} z^{\frac{1-\beta}{\alpha}} e^{z^{\frac{1}{\alpha}}}$$

and for $\mu \leq |\arg(z)| \leq \pi$ with $|z| \to \infty$

$$E_{\alpha,\beta}(z) = -\sum_{k=1}^{N} \frac{1}{\Gamma(\beta - \alpha k)} \frac{1}{z^k} + O\left(\frac{1}{z^{N+1}}\right).$$

- On the positive real axis it grows exponentially, and the growth rate increases with decreasing α .
- The important message is: $E_{\alpha,\beta}(z)$, with $\alpha \in (0,2)$ and $\beta \alpha \notin -\mathbb{N}$ decays only linearly on the negative real axis.

The initial value problem for the fractional ordinary differential equation

$$_0D_t^\alpha u(t)+\lambda u(t)=0\quad x>0,\quad u(0)=1\qquad 0<\alpha<1$$
 has solution $u(t)$ given by
$$u(t)=E_\alpha(-\lambda t^\alpha)=\sum_{k=0}^\infty\frac{(-\lambda t^\alpha)^k}{\Gamma(k\alpha+1)}$$

The initial value problem for the fractional ordinary differential equation

$$_0D_t^\alpha u(t)+\lambda u(t)=0\quad x>0,\quad u(0)=1\qquad 0<\alpha<1$$
 has solution $u(t)$ given by
$$u(t)=E_\alpha(-\lambda t^\alpha)=\sum_{k=0}^\infty\frac{(-\lambda t^\alpha)^k}{\Gamma(k\alpha+1)}$$

We want the fundamental solution for

$${}_{0}^{C}D_{t}^{\alpha}p(x,t)-u_{xx}$$
 on $\mathbb{R}\times\mathbb{R}^{+}$

First take a Fourier transform in space,

$${}_{0}^{C}D_{t}^{\alpha}\tilde{p}(\xi,t) + \xi^{2}\tilde{p}(\xi,t) \quad \Rightarrow \quad p(\xi,t) = E_{\alpha}(-\xi^{2}t^{\alpha})$$

[To invert we need the inverse Laplace transform of the Mittag Leffler function]

For $\mu,\
ho\in\mathbb{R}$ with ho>-1 , the Wright function $W_{
ho,\mu}(z)$ is defined by

$$W_{\rho,\mu}(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!\Gamma(\rho k + \mu)} \quad z \in \mathbb{C}.$$

For $\mu,\
ho\in\mathbb{R}$ with ho>-1 , the Wright function $W_{
ho,\mu}(z)$ is defined by

$$W_{\rho,\mu}(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!\Gamma(\rho k + \mu)} \quad z \in \mathbb{C}.$$

There is a particular version we need $M_{\mu}(z)=W_{-\mu,1-\mu}(-z)$.

For $\mu,\
ho\in\mathbb{R}$ with ho>-1 , the Wright function $W_{
ho,\mu}(z)$ is defined by

$$W_{\rho,\mu}(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!\Gamma(\rho k + \mu)} \quad z \in \mathbb{C}.$$

There is a particular version we need $M_{\mu}(z) = W_{-\mu,1-\mu}(-z)$. The Laplace transform of a Wright function is a Mittag-Leffler function

$$\mathcal{L}[W_{\rho,\mu}(x)](z) = \frac{1}{z} E_{\rho,\mu}(z^{-1})$$

For $\mu,\ \rho\in\mathbb{R}$ with ho>-1 , the Wright function $W_{
ho,\mu}(z)$ is defined by

$$W_{\rho,\mu}(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!\Gamma(\rho k + \mu)} \quad z \in \mathbb{C}.$$

There is a particular version we need $\ M_{\mu}(z) = W_{-\mu,1-\mu}(-z)$.

The Laplace transform of a Wright function is a Mittag-Leffler function

$$\mathcal{L}[W_{\rho,\mu}(x)](z) = \frac{1}{z} E_{\rho,\mu}(z^{-1})$$

Theorem. $\mathcal{L}[M_{\mu}(x)](z) = E_{\mu}(-z)$, $\mathcal{F}[M_{\mu}(|x|)](\xi) = 2E_{2\mu}(-\xi^2)$

For $\mu,\ \rho\in\mathbb{R}$ with ho>-1 , the Wright function $W_{
ho,\mu}(z)$ is defined by

$$W_{\rho,\mu}(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!\Gamma(\rho k + \mu)} \quad z \in \mathbb{C}.$$

There is a particular version we need $M_{\mu}(z)=W_{-\mu,1-\mu}(-z)$.

The Laplace transform of a Wright function is a Mittag-Leffler function

$$\mathcal{L}[W_{\rho,\mu}(x)](z) = \frac{1}{z} E_{\rho,\mu}(z^{-1})$$

Theorem.
$$\mathcal{L}[M_{\mu}(x)](z) = E_{\mu}(-z)$$
, $\mathcal{F}[M_{\mu}(|x|)](\xi) = 2E_{2\mu}(-\xi^2)$

Combining all of this, the Fundamental Solution is

$$p(x,t) = \frac{1}{\sqrt{4Kt^{\alpha}}} M_{\frac{\alpha}{2}}(\frac{|x|}{\sqrt{Kt^{\alpha}}})$$

The Fundamental Solution of $\partial_t^{\alpha} - u_{xx} = 0$

Now we consider the situation where the characteristic waiting time T diverges, but the jump length variance Σ^2 is still kept finite.

Now we consider the situation where the characteristic waiting time T diverges, but the jump length variance Σ^2 is still kept finite.

To model such phenomena, we employ a heavy-tailed waiting time PDF with the asymptotic behaviour $\psi(t) \sim \frac{A}{t^{1+\alpha}}$ as $t \to \infty$, $\alpha \in (0,1)$, A > 0.

The specific form of $\psi(t)$ is irrelevant; large time decay matters.

The parameter α determines the asymptotic decay of the PDF; the closer is α to zero, the slower the decay and the more likely a long waiting time.

Now we consider the situation where the characteristic waiting time T diverges, but the jump length variance Σ^2 is still kept finite.

To model such phenomena, we employ a heavy-tailed waiting time PDF with the asymptotic behaviour $\psi(t)\sim \frac{A}{t^{1+\alpha}}$ as $t\to\infty,\ \alpha\in(0,1),\ A>0$.

The specific form of $\psi(t)$ is irrelevant; large time decay matters.

The parameter α determines the asymptotic decay of the PDF; the closer is α to zero, the slower the decay and the more likely a long waiting time.

For this power law decay the mean waiting time is divergent: $\int_0^\infty t \psi(t) dt = +\infty$ and the preceding analysis breaks down. But, the assumption on $\lambda(x)$ remains unchanged, i.e., $\int_{-\infty}^\infty x \lambda(x) \, dx = 0$ and $\int_{-\infty}^\infty x^2 \lambda(x) \, dx = 1$.

Now we consider the situation where the characteristic waiting time T diverges, but the jump length variance Σ^2 is still kept finite.

To model such phenomena, we employ a heavy-tailed waiting time PDF with the asymptotic behaviour $\psi(t) \sim \frac{A}{t^{1+\alpha}}$ as $t \to \infty$, $\alpha \in (0,1)$, A > 0.

The specific form of $\psi(t)$ is irrelevant; large time decay matters.

The parameter α determines the asymptotic decay of the PDF; the closer is α to zero, the slower the decay and the more likely a long waiting time.

For this power law decay the mean waiting time is divergent: $\int_0^\infty t \psi(t) dt = +\infty$ and the preceding analysis breaks down. But, the assumption on $\lambda(x)$ remains unchanged, i.e., $\int_{-\infty}^\infty x \lambda(x) \, dx = 0$ and $\int_{-\infty}^\infty x^2 \lambda(x) \, dx = 1$.

Take the rescaled PDFs for the waiting time Δt_n and jump length Δx_n :

$$\psi_{\tau}(t) = \frac{1}{\tau} \psi\left(\frac{t}{\tau}\right)$$
 and $\lambda_{\sigma}(x) = \frac{1}{\sigma} \lambda\left(\frac{x}{\sigma}\right)$.

The Laplace-Fourier transform $\widehat{\widetilde{p}}(\xi,z;\sigma,\tau)$ is

$$\widehat{\widetilde{p}}(\xi, z; \sigma, \tau) = \frac{1 - \widehat{\psi}(\tau z)}{z} \frac{1}{1 - \widehat{\psi}(\tau z)\widetilde{\lambda}(\sigma \xi)},$$

The Laplace-Fourier transform $\widehat{\widetilde{p}}(\xi,z;\sigma,\tau)$ is

$$\widehat{\widetilde{p}}(\xi, z; \sigma, \tau) = \frac{1 - \widehat{\psi}(\tau z)}{z} \frac{1}{1 - \widehat{\psi}(\tau z)\widetilde{\lambda}(\sigma \xi)},$$

Several algebraic manipulations later \dots compute the Fourier-Laplace transform $\widehat{\widetilde{p}}(\xi,z)$ by sending $\frac{\sigma\to 0}{\tau\to 0}$, keeping $\frac{\sigma^2}{2B_\alpha\tau^\alpha}=K_\alpha$ fixed

$$\widehat{\widetilde{p}}(\xi, z) = \lim \widehat{\widetilde{p}}(\xi, z; \sigma, \tau) = \frac{z^{\alpha - 1}}{z^{\alpha} + K_{\alpha} \xi^{2}}.$$

The Laplace-Fourier transform $\widehat{\widetilde{p}}(\xi,z;\sigma,\tau)$ is

$$\widehat{\widetilde{p}}(\xi, z; \sigma, \tau) = \frac{1 - \widehat{\psi}(\tau z)}{z} \frac{1}{1 - \widehat{\psi}(\tau z)\widetilde{\lambda}(\sigma \xi)},$$

Several algebraic manipulations later \dots compute the Fourier-Laplace transform $\widehat{\widetilde{p}}(\xi,z)$ by sending $\frac{\sigma\to 0}{\tau\to 0}$, keeping $\frac{\sigma^2}{2B_\alpha\tau^\alpha}=K_\alpha$ fixed

$$\widehat{\widetilde{p}}(\xi, z) = \lim \widehat{\widetilde{p}}(\xi, z; \sigma, \tau) = \frac{z^{\alpha - 1}}{z^{\alpha} + K_{\alpha} \xi^{2}}.$$

Invert the Fourier-Laplace transform $\widehat{\widetilde{p}}(\xi,z)$ back into space-time using the Laplace transform formula of the Mittag-Leffler function $E_{\alpha}(z)$,

$$\widetilde{p}(\xi, t) = E_{\alpha}(-K_{\alpha}t^{\alpha}\xi^{2})$$

and next applying the Fourier transform of the M-Wright function we get p(x,t) in the physical domain

$$p(x,t) = \frac{1}{2\sqrt{K_{\alpha}t^{\alpha}}} M_{\alpha/2} \left(\frac{|x|}{\sqrt{K_{\alpha}t^{\alpha}}} \right).$$

Thus the fractional time derivative of order α corresponds to a particular decay choice of the time PDF $\psi(t)$.

Thus the fractional time derivative of order α corresponds to a particular decay choice of the time PDF $\psi(t)$.

Now compute the mean square displacement $\mu_2(t)=\int_{-\infty}^{\infty}x^2p(x,t)\,dx$. by taking the Laplace transform

$$\widehat{\mu}_{2}(z) = \int_{-\infty}^{\infty} x^{2} \widehat{p}(x, z) dx = -\frac{d^{2}}{d\xi^{2}} \widehat{\widetilde{p}}(\xi, z)|_{\xi=0}$$

$$= -\frac{d^{2}}{d\xi^{2}} (z + K_{\alpha} z^{1-\alpha} \xi^{2})^{-1}|_{\xi=0} = 2K_{\alpha} z^{-1-\alpha},$$

and taking the inverse Laplace transform yields

$$\langle x^2 \rangle := \mu_2(t) = \frac{2K_\alpha}{\Gamma(1+\alpha)} t^\alpha \propto t^\alpha$$

Thus the fractional time derivative of order α corresponds to a particular decay choice of the time PDF $\psi(t)$.

Now compute the mean square displacement $\mu_2(t)=\int_{-\infty}^{\infty}x^2p(x,t)\,dx$ by taking the Laplace transform

$$\widehat{\mu}_{2}(z) = \int_{-\infty}^{\infty} x^{2} \widehat{p}(x, z) dx = -\frac{d^{2}}{d\xi^{2}} \widehat{\widetilde{p}}(\xi, z)|_{\xi=0}$$

$$= -\frac{d^{2}}{d\xi^{2}} (z + K_{\alpha} z^{1-\alpha} \xi^{2})^{-1}|_{\xi=0} = 2K_{\alpha} z^{-1-\alpha},$$

and taking the inverse Laplace transform yields

$$\langle x^2 \rangle := \mu_2(t) = \frac{2K_{\alpha}}{\Gamma(1+\alpha)} t^{\alpha} \propto t^{\alpha}$$

Thus the mean square displacement grows only sublinearly with the time t. Such a diffusion process is often called *subdiffusive*.

If we retain the finite mean assumption on $\psi(t)$ but similarily relax the finite variance condition on $\lambda(x)$,

$$\lambda(x) \sim \frac{B}{x^{2+\beta}}$$
 as $x \to \infty$

we obtain a space fractional derivative of order β .

If we retain the finite mean assumption on $\psi(t)$ but similarily relax the finite variance condition on $\lambda(x)$,

$$\lambda(x) \sim \frac{B}{x^{2+\beta}}$$
 as $x \to \infty$

we obtain a space fractional derivative of order β .

Naturally, we can do those in both space and time.

Subdiffusion Model

A is a strongly elliptic partial differential operator in Ω . $\partial_t^\alpha u$ is the Djrbashian-Caputo derivative of u of order $\alpha \in (0,1)$.

$$\partial_t^{\alpha} u(x,t) = Au(x,t) + f(x,t) \quad (x,t) \in \Omega \times (0,T],$$

$$u(x,t) = 0 \quad (x,t) \in \partial\Omega \times (0,T],$$

$$u(x,0) = u_0(x) \quad x \in \Omega$$

$$(**)$$

Subdiffusion Model

A is a strongly elliptic partial differential operator in Ω . $\partial_t^\alpha u$ is the Djrbashian-Caputo derivative of u of order $\alpha \in (0,1)$.

$$\partial_t^{\alpha} u(x,t) = Au(x,t) + f(x,t) \quad (x,t) \in \Omega \times (0,T],$$

$$u(x,t) = 0 \quad (x,t) \in \partial\Omega \times (0,T],$$

$$u(x,0) = u_0(x) \quad x \in \Omega$$

$$(**)$$

Is the single fractional exponent the only possibility?

Subdiffusion Model

A is a strongly elliptic partial differential operator in Ω . $\partial_t^\alpha u$ is the Djrbashian-Caputo derivative of u of order $\alpha\!\in\!(0,1)$.

$$\partial_t^{\alpha} u(x,t) = Au(x,t) + f(x,t) \quad (x,t) \in \Omega \times (0,T],$$

$$u(x,t) = 0 \quad (x,t) \in \partial\Omega \times (0,T],$$

$$u(x,0) = u_0(x) \quad x \in \Omega$$

$$(**)$$

Is the single fractional exponent the only possibility?

• The "multi-term model": $\partial_t^{\alpha} = \sum_{j=1}^m q_j \partial_t^{\alpha_j}$ where $\alpha_j \in (0,1]$.

This arises from assuming the relevant probability density function has m terms of the form $q_j/t^{1+\alpha_j}$, $1 \le j \le m$.

Subdiffusion Model

A is a strongly elliptic partial differential operator in Ω . $\partial_t^\alpha u$ is the Djrbashian-Caputo derivative of u of order $\alpha\!\in\!(0,1)$.

$$\partial_t^{\alpha} u(x,t) = Au(x,t) + f(x,t) \quad (x,t) \in \Omega \times (0,T],$$

$$u(x,t) = 0 \quad (x,t) \in \partial\Omega \times (0,T],$$

$$u(x,0) = u_0(x) \quad x \in \Omega$$

$$(**)$$

Is the single fractional exponent the only possibility?

- The "multi-term model": $\partial_t^\alpha = \sum_{j=1}^m q_j \partial_t^{\alpha_j}$ where $\alpha_j \in (0,1]$. This arises from assuming the relevant probability density function has m terms of the form $q_j/t^{1+\alpha_j}$, $1 \leq j \leq m$.
- The fully distributed model: $\partial^i(\mu)u(t) = \int_0^1 \mu(\alpha)\partial_t^\alpha d\alpha$

Everything is dominated by the weakly singular non-local operator.

- "Local arguments" don't work (think strong Maximum Principle, pointwise estimates).
- The fractional pde has limited smoothing properties; lack of regularity affects typical "pde results".
- There is no sequel to Crank-Nicolson from the parabolic case and the storage apart, the typical time-stepping methods are first order, or at best $1+\alpha$ order, accurate.
- The entire history of the spatial solution must be maintained at each time step this can be computationally significant in \mathbb{R}^3 situations

Subdiffusion is no longer a Markov process.

Time evolution of $u_t - u_{xx} = 0$ at $x = \frac{1}{2}$, $u(x,0) = \sin(\pi x)$

Time evolution of $\ \partial_t^\alpha - u_{xx} = 0$, at $x = \frac{1}{2}$, $\ u(x,0) = \sin(\pi x)$

Inverse Problems

An unlimited number of questions; we will merely (and very briefly look at)

Inverse Problems

An unlimited number of questions; we will merely (and very briefly look at)

- How do we determine the fractional exponent?
- The backwards diffusion problem
- An unknown source of the form $F = \chi(D)$ and overposed flux data

As a teaser to many in the audience:

♦ Regularization methods based on fractional operators.

For the single exponent α it is usually straightforward to determine this - usually in addition to the main purpose of computing a coefficient.

The main idea is based on the solution being analytic in α . From, say, a flux measurement g(t) on $\partial\Omega$, the limiting behaviour as $t\to 0$ reveals α . Alternatively, one can take the Laplace transform.

For the single exponent α it is usually straightforward to determine this - usually in addition to the main purpose of computing a coefficient.

The main idea is based on the solution being analytic in α . From, say, a flux measurement g(t) on $\partial\Omega$, the limiting behaviour as $t\to 0$ reveals α . Alternatively, one can take the Laplace transform.

For the multi- α situation analyticity again plays the crucial role.

Taking the Laplace transform $t \to s$, we obtain a rational function in s with coefficients depending on q_j and α_j . These may be backed out in sequence using analytic continuation in s. Extremely ill-posed. [Li, Yamamoto: 2014]

For the single exponent α it is usually straightforward to determine this - usually in addition to the main purpose of computing a coefficient.

The main idea is based on the solution being analytic in α . From, say, a flux measurement g(t) on $\partial\Omega$, the limiting behaviour as $t\to 0$ reveals α . Alternatively, one can take the Laplace transform.

For the multi- α situation analyticity again plays the crucial role.

Taking the Laplace transform $t \to s$, we obtain a rational function in s with coefficients depending on q_j and α_j . These may be backed out in sequence using analytic continuation in s. Extremely ill-posed. [Li, Yamamoto: 2014]

The distributed situation is more complex as the function $\mu(\alpha)$ need not only be continuous. A representation theorem involving $\mu(\alpha)$ and kernel M is obtained and showing that M can be expanded in powers of α and that these are sufficiently dense so that the Müntz-Szász Theorem applies. [R, Zhang].

The Backwards Diffusion Problem

Given

$$u_t = u_{xx}$$
 $0 < x < 1, 0 < t < T$
 $u(0,t) = u(1,t) = 0$ $u(x,0) = u_0(x)$

We measure u(x,T) and wish to recover the initial value $u_0(x)$.

Given

$$u_t = u_{xx}$$
 $0 < x < 1, 0 < t < T$
 $u(0,t) = u(1,t) = 0$ $u(x,0) = u_0(x)$

We measure u(x,T) and wish to recover the initial value $u_0(x)$.

$$\phi_n(x) = \sqrt{2}\sin n\pi x \text{ , } c_n = \langle u_0, \phi_n \rangle \text{ , } d_n = \langle u(\cdot, T), \phi_n \rangle \text{ , } \lambda_n = n^2\pi^2 \text{ .}$$

Given

$$u_t = u_{xx}$$
 $0 < x < 1, 0 < t < T$
 $u(0,t) = u(1,t) = 0$ $u(x,0) = u_0(x)$

We measure u(x,T) and wish to recover the initial value $u_0(x)$.

$$\phi_n(x) = \sqrt{2}\sin n\pi x \text{ , } c_n = \langle u_0, \phi_n \rangle \text{ , } d_n = \langle u(\cdot, T), \phi_n \rangle \text{ , } \lambda_n = n^2\pi^2 \text{ .}$$

$$u_t = u_{xx}$$

$$u(x,t) = \sum_n c_n e^{-\lambda_n t} \phi_n(x)$$

$$u_0(x) = \sum_n d_n e^{\lambda_n T} \phi_n(x)$$

$$\text{Recover } \{c_n\} \colon c_n = e^{n^2 \pi^2 T} d_n$$

Amazingly ill-posed

Given

$$u_t = u_{xx}$$
 $0 < x < 1, 0 < t < T$
 $u(0,t) = u(1,t) = 0$ $u(x,0) = u_0(x)$

We measure u(x,T) and wish to recover the initial value $u_0(x)$.

$$\phi_n(x) = \sqrt{2}\sin n\pi x$$
 , $c_n = \langle u_0, \phi_n \rangle$, $d_n = \langle u(\cdot, T), \phi_n \rangle$, $\lambda_n = n^2\pi^2$.

$$u_t = u_{xx}$$

$$u(x,t) = \sum_{n=0}^{\infty} c_n e^{-\lambda_n t} \phi_n(x)$$

$$u_0(x) = \sum_{n=0}^{\infty} d_n e^{\lambda_n T} \phi_n(x)$$
Recover $\{c_n\}$: $c_n = e^{n^2 \pi^2 T} d_n$

Amazingly ill-posed

$$D_t^{\alpha}u = u_{xx}$$

$$u(x,t) = \sum c_n E_{\alpha,1}(-\lambda_n t^{\alpha})\phi_n(x)$$

$$u_0(x) = \sum d_n [E_{\alpha,1}(-\lambda_n T^{\alpha})]^{-1}\phi_n(x)$$
 Recover $\{c_n\}$: $c_n = \frac{1}{E_{\alpha,1}(-\lambda_n T^{\alpha})}d_n$ How ill-posed?

The n^{th} Fourier mode of u_0 equals that of g multiplied by $\lambda_n \approx n^2 \pi^2$

- a two derivative loss in Fourier space
- control of u(:,T) in $\dot{H}^2(\Omega)$ controls u_0 in L^2 .

The n^{th} Fourier mode of u_0 equals that of g multiplied by $\lambda_n \approx n^2 \pi^2$

- a two derivative loss in Fourier space
- control of u(:,T) in $\dot{H}^2(\Omega)$ controls u_0 in L^2 .

Stability estimate $c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq \|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$

[Liu, Yamamoto: 2010]

The n^{th} Fourier mode of u_0 equals that of g multiplied by $\lambda_n \approx n^2 \pi^2$

- a two derivative loss in Fourier space
- control of u(:,T) in $\dot{H}^2(\Omega)$ controls u_0 in L^2 .

Stability estimate
$$c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq \|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$$

[Liu, Yamamoto: 2010]

The backwards fractional derivative problem is only mildly ill-conditioned

The n^{th} Fourier mode of u_0 equals that of g multiplied by $\lambda_n \approx n^2 \pi^2$

- a two derivative loss in Fourier space
- control of u(:,T) in $\dot{H}^2(\Omega)$ controls u_0 in L^2 .

Stability estimate
$$c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq \|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$$

[Liu, Yamamoto: 2010]

The backwards fractional derivative problem is only mildly ill-conditioned

Fractional diffusion completely changes the paradigm here

The n^{th} Fourier mode of u_0 equals that of g multiplied by $\lambda_n \approx n^2 \pi^2$

- a two derivative loss in Fourier space
- control of u(:,T) in $\dot{H}^2(\Omega)$ controls u_0 in L^2 .

Stability estimate
$$c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq \|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$$

[Liu, Yamamoto: 2010]

The backwards fractional derivative problem is only mildly ill-conditioned

Fractional diffusion completely changes the paradigm here

But do we have the complete story?

The n^{th} Fourier mode of u_0 equals that of g multiplied by $\lambda_n \approx n^2 \pi^2$

- a two derivative loss in Fourier space
- control of u(:,T) in $\dot{H}^2(\Omega)$ controls u_0 in L^2 .

Stability estimate
$$c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq \|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$$

[Liu, Yamamoto: 2010]

The backwards fractional derivative problem is only mildly ill-conditioned

Fractional diffusion completely changes the paradigm here

But do we have the complete story?

Conjecture:

Reconstructing u_0 from u(x,T) is always easier in the fractional case

The n^{th} Fourier mode of u_0 equals that of g multiplied by $\lambda_n \approx n^2 \pi^2$

- a two derivative loss in Fourier space
- control of u(:,T) in $\dot{H}^2(\Omega)$ controls u_0 in L^2 .

Stability estimate
$$c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq \|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$$

[Liu, Yamamoto: 2010]

The backwards fractional derivative problem is only mildly ill-conditioned

Fractional diffusion completely changes the paradigm here

But do we have the complete story?

Conjecture:

Reconstructing u_0 from u(x,T) is always easier in the fractional case

The answer is no, and the difference can be substantial.

$$\partial_t^{\alpha} u(x,t) - Au(x,t) = f(x) = \chi(D) \quad (x,t) \in \Omega \times (0,T],$$

$$u(x,t) = 0 \quad (x,t) \in \partial\Omega \times (0,T],$$

$$u(x,0) = u_0(x) = 0 \quad x \in \Omega$$

We wish to recover the (starlike) subdomain $D \subset \Omega$ from data

$$g_i(t) := \frac{\partial u}{\partial \nu}\Big|_P, \quad P = \{x_i\} \in \partial \Omega$$

where P is a (small) number of discrete points on the boundary $\partial\Omega$.

Let $F = F_i = F(D)$ be the map from D to $\{g_i\}$.

$$\partial_t^{\alpha} u(x,t) - Au(x,t) = f(x) = \chi(D) \quad (x,t) \in \Omega \times (0,T],$$

$$u(x,t) = 0 \quad (x,t) \in \partial\Omega \times (0,T],$$

$$u(x,0) = u_0(x) = 0 \quad x \in \Omega$$

We wish to recover the (starlike) subdomain $D \subset \Omega$ from data

$$g_i(t) := \frac{\partial u}{\partial \nu}\Big|_P, \quad P = \{x_i\} \in \partial \Omega$$

where P is a (small) number of discrete points on the boundary $\partial\Omega$.

Let $F = F_i = F(D)$ be the map from D to $\{g_i\}$.

Theorem. $\exists P = \{x_1, x_2\}$ such that the linearized map F' is injective.

Case $\alpha = 1$, [Hettlich, R]. Case $\alpha < 1$, [R, Zhang].

$$\partial_t^{\alpha} u(x,t) - Au(x,t) = f(x) = \chi(D) \quad (x,t) \in \Omega \times (0,T],$$

$$u(x,t) = 0 \quad (x,t) \in \partial\Omega \times (0,T],$$

$$u(x,0) = u_0(x) = 0 \quad x \in \Omega$$

We wish to recover the (starlike) subdomain $D \subset \Omega$ from data

$$g_i(t) := \frac{\partial u}{\partial \nu}\Big|_P, \quad P = \{x_i\} \in \partial \Omega$$

where P is a (small) number of discrete points on the boundary $\partial\Omega$.

Let $F = F_i = F(D)$ be the map from D to $\{g_i\}$.

Theorem. $\exists P = \{x_1, x_2\}$ such that the linearized map F' is injective.

Case $\alpha = 1$, [Hettlich, R]. Case $\alpha < 1$, [R, Zhang].

Very ill-conditioned! How does this depend on α ?

$$\partial_t^{\alpha} u(x,t) - Au(x,t) = f(x) = \chi(D) \quad (x,t) \in \Omega \times (0,T],$$

$$u(x,t) = 0 \quad (x,t) \in \partial\Omega \times (0,T],$$

$$u(x,0) = u_0(x) = 0 \quad x \in \Omega$$

We wish to recover the (starlike) subdomain $D \subset \Omega$ from data

$$g_i(t) := \frac{\partial u}{\partial \nu}\Big|_P, \quad P = \{x_i\} \in \partial \Omega$$

where P is a (small) number of discrete points on the boundary $\partial\Omega$.

Let $F = F_i = F(D)$ be the map from D to $\{g_i\}$.

Theorem. $\exists P = \{x_1, x_2\}$ such that the linearized map F' is injective.

Case $\alpha = 1$, [Hettlich, R]. Case $\alpha < 1$, [R, Zhang].

Very ill-conditioned! How does this depend on α ?

Depends on the selected **time** points, $\{t_k\}$, in measuring $g_i(t_k)$!

Profile of g(t) for $\alpha = \frac{1}{2}$ and $\alpha = 1$ from a circle centre origin.

Obrigado