Fractional Diffusion Equations

IMPA November 12017

William Rundell
Texas A\&M University

Historical Classical Diffusion

Robert Brown (1828)
 Thomas Graham (1827) $\}$
 Experimental observation of diffusion

Adolf Fick (1855): Macro derivation of the heat equation

$$
J=-K \nabla u, \quad u_{t}=\operatorname{div} J, \Rightarrow u_{t}-K \operatorname{div} \nabla u=0
$$

Einstein (1905): Gave accepted notion of diffusion - particles pushed around by the thermal motion of atoms.

Brownian Random Walk and Classical Diffusion

 In one space dimension this can be modeled by the master equation$$
p_{j}(t+\Delta t)=\frac{1}{2} p_{j-1}(t)+\frac{1}{2} p_{j+1}(t),
$$

the index j denotes the position on the underlying 1 -dim lattice.
It defines the probability density function (PDF) $p(t)$ to be at position j at time $t+\Delta t$ and to depend on p at the two adjacent sites $j \pm 1$ at time t.
$\frac{1}{2} \Rightarrow$ directional isotropy; jumps to the left and right are equally likely. Δt is a fixed time step. $\quad \Delta x$ is a fixed jump distance.

Brownian Random Walk and Classical Diffusion

 In one space dimension this can be modeled by the master equation$$
p_{j}(t+\Delta t)=\frac{1}{2} p_{j-1}(t)+\frac{1}{2} p_{j+1}(t),
$$

the index j denotes the position on the underlying 1 -dim lattice.
It defines the probability density function (PDF) $p(t)$ to be at position j at time $t+\Delta t$ and to depend on p at the two adjacent sites $j \pm 1$ at time t.
$\frac{1}{2} \Rightarrow$ directional isotropy; jumps to the left and right are equally likely. Δt is a fixed time step. $\quad \Delta x$ is a fixed jump distance.

Rearranging: $\quad \frac{p_{j}(t+\Delta t)-p_{j}(t)}{\Delta t}=\frac{(\Delta x)^{2}}{2 \Delta t} \frac{p_{j-1}(t)-2 p_{j}(t)+p_{j+1}(t)}{(\Delta x)^{2}}$

Brownian Random Walk and Classical Diffusion

 In one space dimension this can be modeled by the master equation$$
p_{j}(t+\Delta t)=\frac{1}{2} p_{j-1}(t)+\frac{1}{2} p_{j+1}(t),
$$

the index j denotes the position on the underlying 1 -dim lattice.
It defines the probability density function (PDF) $p(t)$ to be at position j at time $t+\Delta t$ and to depend on p at the two adjacent sites $j \pm 1$ at time t.
$\frac{1}{2} \Rightarrow$ directional isotropy; jumps to the left and right are equally likely. Δt is a fixed time step. $\quad \Delta x$ is a fixed jump distance.

Rearranging: $\quad \frac{p_{j}(t+\Delta t)-p_{j}(t)}{\Delta t}=\frac{(\Delta x)^{2}}{2 \Delta t} \frac{p_{j-1}(t)-2 p_{j}(t)+p_{j+1}(t)}{(\Delta x)^{2}}$ leads to the diffusion equation $\frac{\partial}{\partial t} u(x, t)=K \frac{\partial^{2}}{\partial x^{2}} u(x, t)$,

Brownian Random Walk and Classical Diffusion

 In one space dimension this can be modeled by the master equation$$
p_{j}(t+\Delta t)=\frac{1}{2} p_{j-1}(t)+\frac{1}{2} p_{j+1}(t)
$$

the index j denotes the position on the underlying 1-dim lattice.
It defines the probability density function (PDF) $p(t)$ to be at position j at time $t+\Delta t$ and to depend on p at the two adjacent sites $j \pm 1$ at time t.
$\frac{1}{2} \Rightarrow$ directional isotropy; jumps to the left and right are equally likely. Δt is a fixed time step. Δx is a fixed jump distance.

Rearranging: $\quad \frac{p_{j}(t+\Delta t)-p_{j}(t)}{\Delta t}=\frac{(\Delta x)^{2}}{2 \Delta t} \frac{p_{j-1}(t)-2 p_{j}(t)+p_{j+1}(t)}{(\Delta x)^{2}}$ leads to the diffusion equation $\frac{\partial}{\partial t} u(x, t)=K \frac{\partial^{2}}{\partial x^{2}} u(x, t)$,

The continuum limit is taken such that $K=\lim _{\Delta x \rightarrow 0, \Delta t \rightarrow 0} \frac{(\Delta x)^{2}}{2 \Delta t}$ is a positive constant - the diffusion coefficient - it couples the spatial and time scales.

Suppose now the jump length Δx has a PDF given by $\lambda(x)$ so that

$$
P(a<\Delta x<b)=\int_{a}^{b} \lambda(x) d x .
$$

If $\lambda(x)$ decays sufficiently fast as $x \rightarrow \pm \infty$, the Fourier transform gives

$$
\begin{aligned}
\widetilde{\lambda}(\xi) & =\int_{-\infty}^{\infty} e^{-i \xi x} \lambda(x) d x=\int_{-\infty}^{\infty}\left(1-i \xi x-\frac{1}{2} \xi^{2} x^{2}+\ldots\right) \lambda(x) d x \\
& =1-i \xi \mu_{1}-\frac{1}{2} \xi^{2} \mu_{2}+\ldots
\end{aligned}
$$

where μ_{j} is the j th moment $\mu_{j}=\int_{-\infty}^{\infty} x^{j} \lambda(x) d x$ - provided these exist

Suppose now the jump length Δx has a PDF given by $\lambda(x)$ so that

$$
P(a<\Delta x<b)=\int_{a}^{b} \lambda(x) d x .
$$

If $\lambda(x)$ decays sufficiently fast as $x \rightarrow \pm \infty$, the Fourier transform gives

$$
\begin{aligned}
\widetilde{\lambda}(\xi) & =\int_{-\infty}^{\infty} e^{-i \xi x} \lambda(x) d x=\int_{-\infty}^{\infty}\left(1-i \xi x-\frac{1}{2} \xi^{2} x^{2}+\ldots\right) \lambda(x) d x \\
& =1-i \xi \mu_{1}-\frac{1}{2} \xi^{2} \mu_{2}+\ldots
\end{aligned}
$$

where μ_{j} is the j th moment $\mu_{j}=\int_{-\infty}^{\infty} x^{j} \lambda(x) d x$ - provided these exist Assume $\lambda(x)$ is normalized and even: $\mu_{1}=0, \mu_{2}=1$ and $\mu_{3}=0$. Then

$$
\widetilde{f}(\xi)=1-\frac{1}{2} \xi^{2}+O\left(\xi^{4}\right)
$$

Suppose now the jump length Δx has a PDF given by $\lambda(x)$ so that

$$
P(a<\Delta x<b)=\int_{a}^{b} \lambda(x) d x .
$$

If $\lambda(x)$ decays sufficiently fast as $x \rightarrow \pm \infty$, the Fourier transform gives

$$
\begin{aligned}
\widetilde{\lambda}(\xi) & =\int_{-\infty}^{\infty} e^{-i \xi x} \lambda(x) d x=\int_{-\infty}^{\infty}\left(1-i \xi x-\frac{1}{2} \xi^{2} x^{2}+\ldots\right) \lambda(x) d x \\
& =1-i \xi \mu_{1}-\frac{1}{2} \xi^{2} \mu_{2}+\ldots
\end{aligned}
$$

where μ_{j} is the j th moment $\mu_{j}=\int_{-\infty}^{\infty} x^{j} \lambda(x) d x$ - provided these exist Assume $\lambda(x)$ is normalized and even: $\mu_{1}=0, \mu_{2}=1$ and $\mu_{3}=0$. Then

$$
\widetilde{f}(\xi)=1-\frac{1}{2} \xi^{2}+O\left(\xi^{4}\right)
$$

Theorem. If X and Y are independent random variables with a PDF given by f and g, respectively, then the sum $Z=X+Y$ has the PDF $f * g$.

Suppose now the jump length Δx has a PDF given by $\lambda(x)$ so that

$$
P(a<\Delta x<b)=\int_{a}^{b} \lambda(x) d x
$$

If $\lambda(x)$ decays sufficiently fast as $x \rightarrow \pm \infty$, the Fourier transform gives

$$
\begin{aligned}
\widetilde{\lambda}(\xi) & =\int_{-\infty}^{\infty} e^{-i \xi x} \lambda(x) d x=\int_{-\infty}^{\infty}\left(1-i \xi x-\frac{1}{2} \xi^{2} x^{2}+\ldots\right) \lambda(x) d x \\
& =1-i \xi \mu_{1}-\frac{1}{2} \xi^{2} \mu_{2}+\ldots
\end{aligned}
$$

where μ_{j} is the j th moment $\mu_{j}=\int_{-\infty}^{\infty} x^{j} \lambda(x) d x$ - provided these exist Assume $\lambda(x)$ is normalized and even: $\mu_{1}=0, \mu_{2}=1$ and $\mu_{3}=0$. Then

$$
\widetilde{f}(\xi)=1-\frac{1}{2} \xi^{2}+O\left(\xi^{4}\right)
$$

Theorem. If X and Y are independent random variables with a PDF given by f and g, respectively, then the sum $Z=X+Y$ has the PDF $f * g$.

Assume the steps $\Delta X_{1}, \Delta X_{2}, \ldots$ are independent. Then $X_{n}=\Delta X_{1}+\ldots+\Delta X_{n}$ gives the position of the walker after n steps.

This is also a random variable, and has a Fourier transform $p_{n}(\xi)=(\widetilde{\lambda}(\xi))^{n}$, and the normalized sum X_{n} / \sqrt{n} has the Fourier transform

$$
\left(\widetilde{p}_{n}(\xi / \sqrt{n})\right)^{n}=\left(1-\frac{1}{2 n} \xi^{2}+O\left(n^{-2}\right)\right)^{n} .
$$

The limit $n \rightarrow \infty$ gives $\widetilde{p}(\xi)=e^{-\frac{\xi^{2}}{2}}$ and inverting the Fourier transform gives a Gaussian distribution $p(x)=\frac{1}{\sqrt{4 \pi}} e^{-\frac{x^{2}}{4}}$.

This is also a random variable, and has a Fourier transform $p_{n}(\xi)=(\widetilde{\lambda}(\xi))^{n}$, and the normalized sum X_{n} / \sqrt{n} has the Fourier transform

$$
\left(\widetilde{p}_{n}(\xi / \sqrt{n})\right)^{n}=\left(1-\frac{1}{2 n} \xi^{2}+O\left(n^{-2}\right)\right)^{n} .
$$

The limit $n \rightarrow \infty$ gives $\widetilde{p}(\xi)=e^{-\frac{\xi^{2}}{2}}$ and inverting the Fourier transform gives a Gaussian distribution $p(x)=\frac{1}{\sqrt{4 \pi}} e^{-\frac{x^{2}}{4}}$.

This is a statement of the central limit theorem that the long term averaged behavior of i.i.d. variables is a Gaussian density.

This is also a random variable, and has a Fourier transform $p_{n}(\xi)=(\widetilde{\lambda}(\xi))^{n}$, and the normalized sum X_{n} / \sqrt{n} has the Fourier transform

$$
\left(\widetilde{p}_{n}(\xi / \sqrt{n})\right)^{n}=\left(1-\frac{1}{2 n} \xi^{2}+O\left(n^{-2}\right)\right)^{n} .
$$

The limit $n \rightarrow \infty$ gives $\widetilde{p}(\xi)=e^{-\frac{\xi^{2}}{2}}$ and inverting the Fourier transform gives a Gaussian distribution $p(x)=\frac{1}{\sqrt{4 \pi}} e^{-\frac{x^{2}}{4}}$.

This is a statement of the central limit theorem that the long term averaged behavior of i.i.d. variables is a Gaussian density.

One requirement for the whole procedure to work is that the second moment μ_{2} of $\lambda(x)$ be finite.

Now we interpret X_{n} as the particle position after n steps at the time t. We correlate the time step size Δt with the variance of Δx, following the coupling ansatz and rescaling the variance of $\lambda(x)$ to $K t$.

Now we interpret X_{n} as the particle position after n steps at the time t. We correlate the time step size Δt with the variance of Δx, following the coupling ansatz and rescaling the variance of $\lambda(x)$ to $K t$.
By the scaling rule for the Fourier transform, the Fourier transform $\widetilde{p}_{n}(\xi)$ is

$$
p_{n}(\xi)=\left(1-n^{-1} K t \xi^{2}+O\left(n^{-2}\right)\right)^{n}
$$

Taking the limit of a large number of steps $n \rightarrow \infty$, we arrive at the Fourier transform $\widetilde{p}(\xi)=e^{-\xi^{2} K t}$.

Now we interpret X_{n} as the particle position after n steps at the time t. We correlate the time step size Δt with the variance of Δx, following the coupling ansatz and rescaling the variance of $\lambda(x)$ to $K t$.
By the scaling rule for the Fourier transform, the Fourier transform $\widetilde{p}_{n}(\xi)$ is

$$
p_{n}(\xi)=\left(1-n^{-1} K t \xi^{2}+O\left(n^{-2}\right)\right)^{n}
$$

Taking the limit of a large number of steps $n \rightarrow \infty$, we arrive at the Fourier transform $\widetilde{p}(\xi)=e^{-\xi^{2} K t}$.
Inverting this gives the PDF of being at a certain position x at time t, is governed by the diffusion equation and has the Gaussian PDF

$$
p(x, t)=\frac{1}{\sqrt{4 \pi K t}} e^{-x^{2} / 4 K t} .
$$

This is the fundamental solution of the heat/diffusion equation

Now we interpret X_{n} as the particle position after n steps at the time t. We correlate the time step size Δt with the variance of Δx, following the coupling ansatz and rescaling the variance of $\lambda(x)$ to $K t$.
By the scaling rule for the Fourier transform, the Fourier transform $\widetilde{p}_{n}(\xi)$ is

$$
p_{n}(\xi)=\left(1-n^{-1} K t \xi^{2}+O\left(n^{-2}\right)\right)^{n}
$$

Taking the limit of a large number of steps $n \rightarrow \infty$, we arrive at the Fourier transform $\widetilde{p}(\xi)=e^{-\xi^{2} K t}$.
Inverting this gives the PDF of being at a certain position x at time t, is governed by the diffusion equation and has the Gaussian PDF

$$
p(x, t)=\frac{1}{\sqrt{4 \pi K t}} e^{-x^{2} / 4 K t} .
$$

This is the fundamental solution of the heat/diffusion equation
For fixed time $t>0, p(x, t)$ is a Gaussian distribution in x with mean zero and variance $2 K t$. It scales linearly with the time $t . \quad\left\langle x^{2}\right\rangle \propto t$.

Now we interpret X_{n} as the particle position after n steps at the time t. We correlate the time step size Δt with the variance of Δx, following the coupling ansatz and rescaling the variance of $\lambda(x)$ to $K t$.
By the scaling rule for the Fourier transform, the Fourier transform $\widetilde{p}_{n}(\xi)$ is

$$
p_{n}(\xi)=\left(1-n^{-1} K t \xi^{2}+O\left(n^{-2}\right)\right)^{n}
$$

Taking the limit of a large number of steps $n \rightarrow \infty$, we arrive at the Fourier transform $\widetilde{p}(\xi)=e^{-\xi^{2} K t}$.
Inverting this gives the PDF of being at a certain position x at time t, is governed by the diffusion equation and has the Gaussian PDF

$$
p(x, t)=\frac{1}{\sqrt{4 \pi K t}} e^{-x^{2} / 4 K t} .
$$

This is the fundamental solution of the heat/diffusion equation
For fixed time $t>0, p(x, t)$ is a Gaussian distribution in x with mean zero and variance 2 Kt . It scales linearly with the time $t .\left\langle x^{2}\right\rangle \propto t$.
The linear scaling with t is one characteristic feature of classical diffusion.
This is the essential content of Einstein's 1905 paper.

A (slightly) more general case
A walker moves along the x-axis, starting at a position x_{0} at time $t_{0}=0$.
At time t_{1}, the walker jumps to x_{1}, then at time t_{2} jumps to x_{2}, \ldots.
Assume that the temporal and spatial increments

$$
\Delta t_{n}=t_{n}-t_{n-1} \quad \text { and } \quad \Delta x_{n}=x_{n}-x_{n-1}
$$

are iid random variables, with PDFs $\psi(t)$ and $\lambda(x)$, - the waiting time and jump length distribution, respectively..

A (slightly) more general case
A walker moves along the x-axis, starting at a position x_{0} at time $t_{0}=0$.
At time t_{1}, the walker jumps to x_{1}, then at time t_{2} jumps to x_{2}, \ldots.
Assume that the temporal and spatial increments

$$
\Delta t_{n}=t_{n}-t_{n-1} \quad \text { and } \quad \Delta x_{n}=x_{n}-x_{n-1}
$$

are iid random variables, with PDFS $\psi(t)$ and $\lambda(x),-$ the waiting time and jump length distribution, respectively..
The probability of Δt_{n} lying in any interval $[a, b] \subset(0, \infty)$ is

$$
P\left(a<\Delta t_{n}<b\right)=\int_{a}^{b} \psi(t) d t
$$

and the probability of Δx_{n} lying in any interval $[a, b] \subset \mathbb{R}$ is

$$
P\left(a<\Delta x_{n}<b\right)=\int_{a}^{b} \lambda(x) d x .
$$

Goal: determine P (the walker lies in a given spatial interval at time t).

For given ψ and λ, the position x can be regarded as a step function of t.

For given ψ and λ, the position x can be regarded as a step function of t.

Random walk with exponentially decaying $\psi(t)$ and Gaussian $\lambda(x)$.

For given ψ and λ, the position x can be regarded as a step function of t.

Random walk with exponentially decaying $\psi(t)$ and Gaussian $\lambda(x)$.

Different CTRW processes can be categorized by the characteristic waiting time T and the jump length variance Σ^{2} being finite or diverging.

$$
T=: E\left[\Delta t_{n}\right]=\int_{0}^{\infty} t \psi(t) d t \quad \Sigma^{2}=: E\left[\left(\Delta x_{n}\right)^{2}\right]=\int_{-\infty}^{\infty} x^{2} \lambda(x) d x
$$

For given ψ and λ, the position x can be regarded as a step function of t.

Random walk with exponentially decaying $\psi(t)$ and Gaussian $\lambda(x)$.

Different CTRW processes can be categorized by the characteristic waiting time T and the jump length variance Σ^{2} being finite or diverging.

$$
T=: E\left[\Delta t_{n}\right]=\int_{0}^{\infty} t \psi(t) d t \quad \Sigma^{2}=: E\left[\left(\Delta x_{n}\right)^{2}\right]=\int_{-\infty}^{\infty} x^{2} \lambda(x) d x
$$

If both T and Σ are finite, the long-time limit corresponds to Brownian motion, and thus the CTRW does not lead to anything new.

Fractional Calculus

Fractional Calculus

History of generalizing from the integers $\mathbb{N} \rightarrow \mathbb{R}, \mathbb{C}$ Bernoulli, Euler, (1730s): $\quad n!\rightarrow \Gamma(z+1)$

Fractional Calculus

History of generalizing from the integers $\mathbb{N} \rightarrow \mathbb{R}, \mathbb{C}$
Bernoulli, Euler, (1730s): $\quad n!\rightarrow \Gamma(z+1)$

Attempts to do the same for differentiation formulae; (1740-today)
To compute the fractional derivative of order α use the $n^{\text {th }}$ formulae and replace $n \rightarrow \alpha$.
Examples:

$$
\begin{aligned}
D^{(n)} x^{m} & =\frac{m!}{(m-n)!} x^{m-n} \rightarrow D^{\alpha} x^{m}=\frac{m!}{\Gamma(m-\alpha+1)!} x^{m-\alpha} \\
D^{(n)} e^{\lambda x} & =\lambda^{n} e^{\lambda x} \rightarrow D^{\alpha} e^{\lambda x}=\lambda^{\alpha} e^{\lambda x} \\
D^{(n)} \sin (x) & =\sin \left(x+n \frac{\pi}{2}\right) \rightarrow D^{\alpha} \sin (x)=\sin \left(x+\alpha \frac{\pi}{2}\right)
\end{aligned}
$$

The Abel integral operator

The integral operator $A^{\alpha} f=\frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(\tau) d \tau}{(t-\tau)^{1-\alpha}} \quad \alpha>0$ arose in Abel's 1823 solution of the more general tautochrone and brachistochrone problems which were originally posed and solved in a simpler form by Huygens in 1659 and Bernoulli in 1695 respectively.

The Abel integral operator

The integral operator $A^{\alpha} f=\frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(\tau) d \tau}{(t-\tau)^{1-\alpha}} \quad \alpha>0$ arose in Abel's 1823 solution of the more general tautochrone and brachistochrone problems which were originally posed and solved in a simpler form by Huygens in 1659 and Bernoulli in 1695 respectively.
In these particular applications $\alpha=1 / 2$ and the solution to $A^{1 / 2} y=f$ is given by the well-known formula

$$
f(x)=\frac{1}{\pi} \frac{d}{d x} \int_{a}^{x} \frac{f(s) d s}{(x-s)^{1 / 2}}
$$

As was shown by Abel, for general $\alpha, 0<\alpha<1$ this becomes

$$
f(x)=\frac{\sin (\pi(1-\alpha))}{\pi} \frac{d}{d x} \int_{a}^{x} \frac{f(s) d s}{(x-s)^{\alpha}}
$$

The Abel integral operator

The integral operator $A^{\alpha} f=\frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(\tau) d \tau}{(t-\tau)^{1-\alpha}} \quad \alpha>0$ arose in Abel's 1823 solution of the more general tautochrone and brachistochrone problems which were originally posed and solved in a simpler form by Huygens in 1659 and Bernoulli in 1695 respectively.
In these particular applications $\alpha=1 / 2$ and the solution to $A^{1 / 2} y=f$ is given by the well-known formula

$$
f(x)=\frac{1}{\pi} \frac{d}{d x} \int_{a}^{x} \frac{f(s) d s}{(x-s)^{1 / 2}}
$$

As was shown by Abel, for general $\alpha, 0<\alpha<1$ this becomes

$$
f(x)=\frac{\sin (\pi(1-\alpha))}{\pi} \frac{d}{d x} \int_{a}^{x} \frac{f(s) d s}{(x-s)^{\alpha}}
$$

The important point here is that in his solution of the integral equation Abel had shown the way to rigorously define a fractional integral and, by his inversion of this, how to define a fractional derivative.

The Abel integral operator

The integral operator $A^{\alpha} f=\frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(\tau) d \tau}{(t-\tau)^{1-\alpha}} \quad \alpha>0$ arose in Abel's 1823 solution of the more general tautochrone and brachistochrone problems which were originally posed and solved in a simpler form by Huygens in 1659 and Bernoulli in 1695 respectively.
In these particular applications $\alpha=1 / 2$ and the solution to $A^{1 / 2} y=f$ is given by the well-known formula

$$
f(x)=\frac{1}{\pi} \frac{d}{d x} \int_{a}^{x} \frac{f(s) d s}{(x-s)^{1 / 2}}
$$

As was shown by Abel, for general $\alpha, 0<\alpha<1$ this becomes

$$
f(x)=\frac{\sin (\pi(1-\alpha))}{\pi} \frac{d}{d x} \int_{a}^{x} \frac{f(s) d s}{(x-s)^{\alpha}}
$$

In this sense Abel is the true mathematical founder of the concept although later work by Liouville and by Riemann have dominated the nomenclature.

Definition. The Riemann-Liouville fractional derivative ${ }^{R} D_{x}^{\alpha} u(x)$ is defined for $a \in \mathbb{R}$ by $\quad{ }_{a}^{R} D_{x}^{\alpha} u(x)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d x^{n}} \int_{a}^{x}(x-s)^{n-1-\alpha} u(s) d s$.
This is clearly based on Abel's integral and suggests that the fractional derivative of f is the $n^{t h}$ integer derivative of the fractional integral $I_{x}^{\alpha} f(x)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{x}(x-s)^{-\alpha} f(s) d s$ of f where $n-1<\alpha \leq n$.

Definition. The Riemann-Liouville fractional derivative ${ }^{R} D_{x}^{\alpha} u(x)$ is defined for $a \in \mathbb{R}$ by $\quad{ }_{a}^{R} D_{x}^{\alpha} u(x)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d x^{n}} \int_{a}^{x}(x-s)^{n-1-\alpha} u(s) d s$.
This is clearly based on Abel's integral and suggests that the fractional derivative of f is the $n^{\text {th }}$ integer derivative of the fractional integral $I_{x}^{\alpha} f(x)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{x}(x-s)^{-\alpha} f(s) d s$ of f where $n-1<\alpha \leq n$.

There is another version that reverses the above order; the Djrbashyan-Caputo derivative:- ${ }_{a}^{C} D_{x}^{\alpha} u(x)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{x}(x-s)^{n-1-\alpha} u^{(n)}(s) d s$

Definition. The Riemann-Liouville fractional derivative ${ }^{R} D_{x}^{\alpha} u(x)$ is defined for $a \in \mathbb{R}$ by $\quad{ }_{a}^{R} D_{x}^{\alpha} u(x)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d x^{n}} \int_{a}^{x}(x-s)^{n-1-\alpha} u(s) d s$.
This is clearly based on Abel's integral and suggests that the fractional derivative of f is the $n^{\text {th }}$ integer derivative of the fractional integral $I_{x}^{\alpha} f(x)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{x}(x-s)^{-\alpha} f(s) d s$ of f where $n-1<\alpha \leq n$.

There is another version that reverses the above order; the Djrbashyan-Caputo derivative:- ${ }_{a}^{C} D_{x}^{\alpha} u(x)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{x}(x-s)^{n-1-\alpha} u^{(n)}(s) d s$
This version was studied extensively by the Armenian mathematician M. M. Djrbashyan, in his 1966 book. However, there was a considerable amount of earlier work on this version of the integral, but only available in the Russian literature.

Definition. The Riemann-Liouville fractional derivative ${ }^{R} D_{x}^{\alpha} u(x)$ is defined for $a \in \mathbb{R}$ by $\quad{ }_{a}^{R} D_{x}^{\alpha} u(x)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d x^{n}} \int_{a}^{x}(x-s)^{n-1-\alpha} u(s) d s$.
This is clearly based on Abel's integral and suggests that the fractional derivative of f is the $n^{\text {th }}$ integer derivative of the fractional integral $I_{x}^{\alpha} f(x)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{x}(x-s)^{-\alpha} f(s) d s$ of f where $n-1<\alpha \leq n$.

There is another version that reverses the above order; the Djrbashyan-Caputo derivative:- $\quad{ }_{a}^{C} D_{x}^{\alpha} u(x)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{x}(x-s)^{n-1-\alpha} u^{(n)}(s) d s$
This version was studied extensively by the Armenian mathematician M . M. Djrbashyan, in his 1966 book. However, there was a considerable amount of earlier work on this version of the integral, but only available in the Russian literature.
The geophysicist Michele Caputo rediscovered this version in 1967 as a tool for understanding seismological phenomenon, and later with Francesco Mainardi in viscoelasticity where the memory effect of the fractional derivative were crucial.

THE POWER FUNCTION: Differentiating the fractional integral and using $\Gamma(z+1)=z \Gamma(z)$ gives

$$
{ }_{0}^{R} D_{x}^{\alpha}(x-a)^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)}(x-a)^{\gamma-\alpha} \quad x>a, \quad \gamma>-1
$$

THE POWER FUNCTION: Differentiating the fractional integral and using $\Gamma(z+1)=z \Gamma(z)$ gives

$$
{ }_{0}^{R} D_{x}^{\alpha}(x-a)^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)}(x-a)^{\gamma-\alpha} \quad x>a, \quad \gamma>-1
$$

This implies ${ }_{0}^{R} D_{x}^{\alpha} 1=\frac{1}{\Gamma(1-\alpha)}(x-a)^{-\alpha}$. This is particularly inconvenient for practical applications involving initial/boundary conditions

The power function: Differentiating the fractional integral and using $\Gamma(z+1)=z \Gamma(z)$ gives

$$
{ }_{0}^{R} D_{x}^{\alpha}(x-a)^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)}(x-a)^{\gamma-\alpha} \quad x>a, \quad \gamma>-1
$$

This implies ${ }_{0}^{R} D_{x}^{\alpha} 1=\frac{1}{\Gamma(1-\alpha)}(x-a)^{-\alpha}$. This is particularly inconvenient for practical applications involving initial/boundary conditions
We compute ${ }_{0}^{R} D_{x}^{\alpha} e^{\lambda x}$ by fractionally differentiating the series term-by-term:

$$
\begin{aligned}
{ }_{0}^{R} D_{x}^{\alpha} e^{\lambda x} & ={ }_{0}^{R} D_{x}^{\alpha} \sum_{k=0}^{\infty} \frac{(\lambda x)^{k}}{\Gamma(k+1)}=\sum_{k=0}^{\infty} \lambda^{k} \frac{{ }_{0}^{R} D_{x}^{\alpha} x^{k}}{\Gamma(k+1)}=\sum_{k=0}^{\infty} \frac{\lambda^{k} x^{k-\alpha}}{\Gamma(k+1-\alpha)} \\
& =x^{-\alpha} \sum_{k=0}^{\infty} \frac{(\lambda x)^{k}}{\Gamma(k+1-\alpha)}=x^{-\alpha} E_{1,1-\alpha}(\lambda x)
\end{aligned}
$$

where $E_{\alpha, \beta}(z)$ will be defined shortly.

These examples show:
The product rule ${ }_{0}^{R} D_{x}^{\alpha}(f g) \neq\left({ }_{0}^{R} D_{x}^{\alpha} f\right) g+f{ }_{0}^{R} D_{x}^{\alpha} g$, fails!
Thus in addition, no integration by parts, ... Green's Theorem ...] - major PDE tool gone!.

Djrbashian-Caputo fractional derivative

For $f \in L^{1}(D)$, the left-sided Djrbashian-Caputo fractional derivative of order α, denoted by ${ }_{0}^{C} D_{x}^{\alpha} f$, is defined by

$$
{ }_{0}^{C} D_{x}^{\alpha} f(x):=\left({ }_{a} I_{x}^{n-\alpha} f^{(n)}\right)(x)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{x}(x-s)^{n-\alpha-1} f^{(n)}(s) d s,
$$

if the integral on the right hand side exists
The Djrbashian-Caputo derivative is more restrictive than the Riemann-Liouville since it requires the nth order classical derivative to be absolutely integrable.

Note that in general

$$
\left({ }_{0}^{R} D_{x}^{\alpha} f\right)(x) \neq\left({ }_{0}^{C} D_{x}^{\alpha} f\right)(x),
$$

even when both derivatives are defined.
[But they do agree if $f^{(k)}(0)=0$ for $\left.k=\lfloor\alpha\rfloor\right]$.

$$
{ }_{0}^{C} D_{x}^{\alpha} f(x)={ }_{0}^{R} D_{x}^{\alpha}\left(f(x)-\sum_{k=0}^{n-1} \frac{(x-a)^{k}}{k!} f^{(k)}\left(a^{+}\right)\right)
$$

Djrbashian-Caputo fractional derivative

For $f \in L^{1}(D)$, the left-sided Djrbashian-Caputo fractional derivative of order α, denoted by ${ }_{0}^{C} D_{x}^{\alpha} f$, is defined by

$$
{ }_{0}^{C} D_{x}^{\alpha} f(x):=\left({ }_{a} I_{x}^{n-\alpha} f^{(n)}\right)(x)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{x}(x-s)^{n-\alpha-1} f^{(n)}(s) d s,
$$

if the integral on the right hand side exists
The Djrbashian-Caputo derivative is more restrictive than the Riemann-Liouville since it requires the nth order classical derivative to be absolutely integrable.

Just as in the Riemann-Liouville case, neither the composition rule nor the product rule hold for the Djrbashian-Caputo fractional derivative.

Djrbashian-Caputo fractional derivative

For $f \in L^{1}(D)$, the left-sided Djrbashian-Caputo fractional derivative of order α, denoted by ${ }_{0}^{C} D_{x}^{\alpha} f$, is defined by

$$
{ }_{0}^{C} D_{x}^{\alpha} f(x):=\left({ }_{a} I_{x}^{n-\alpha} f^{(n)}\right)(x)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{x}(x-s)^{n-\alpha-1} f^{(n)}(s) d s,
$$

if the integral on the right hand side exists
The Djrbashian-Caputo derivative is more restrictive than the Riemann-Liouville since it requires the nth order classical derivative to be absolutely integrable.

Laplace transforms:

$$
\begin{gathered}
\mathcal{L}\left[{ }_{0}^{R} D_{x}^{\alpha} f\right](z)=z^{\alpha} \mathcal{L}[f](z)-\sum_{k=0}^{n-1} z^{n-k-1}\left(\begin{array}{l}
R \\
0
\end{array} D_{x}^{\alpha+k-n} f\right)\left(0^{+}\right) . \\
\mathcal{L}\left[{ }_{0}^{C} D_{x}^{\alpha} f\right](z)=z^{\alpha} \mathcal{L}[f](z)-\sum_{k=0}^{n-1} z^{\alpha-k-1} \mathcal{L}[f]^{(k)}(0) .
\end{gathered}
$$

More members of the fractional derivative zoo

A combination of left and right Riemann-Liouville derivatives

$$
D_{x}^{\beta}=(\theta)_{a^{+}}^{R} D_{x}^{\alpha}+(1-\theta)_{b^{-}}^{R} D_{x}^{\alpha}
$$

is called the Riesz fractional derivative.
The case $\beta=\frac{1}{2}$ is the symmetric Riesz derivative.
The case $a=-\infty, b=\infty$ is the symmetric Weyl derivative.
The fractional power of $(-\triangle)$ can be defined as the pseudodifferential operator with symbol $\xi^{2 \alpha}$.
These are most commonly used for space fractional derivatives.

Important message

- There are many different definitions of "fractional derivative"; we have looked at only two, but will briefly mention one or two others. One must specify which derivative is being used!!
- All of these derivatives are nonlocal - they have a history mechanism. This will cause considerable anxiety with the analysis (and outcomes).
- Different derivatives and different "fractional orders" α will lead to quite different domains of definition and mapping properties.
- All these derivatives have a starting point. This must be included or one gets different answers!

The Mittag-Leffler and Wright functions

The two-parameter Mittag-Leffler function $E_{\alpha, \beta}(z)$ is defined by

$$
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)} \quad z \in \mathbb{C}
$$

for $\alpha>0$, and $\beta \in \mathbb{R}$. The function $E_{\alpha, 1}(z)$, is often denoted by $E_{\alpha}(z)$.

The two-parameter Mittag-Leffler function $E_{\alpha, \beta}(z)$ is defined by

$$
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)} \quad z \in \mathbb{C}
$$

for $\alpha>0$, and $\beta \in \mathbb{R}$. The function $E_{\alpha, 1}(z)$, is often denoted by $E_{\alpha}(z)$.

$$
E_{1,1}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(k+1)}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}=e^{z}
$$

Theorem.
For $\alpha>0$ and $\beta \in \mathbb{R}, E_{\alpha, \beta}(z)$ is an entire function of order $\frac{1}{\alpha}$ type 1. $E_{\alpha, \beta}(-x)$ is completely monotone on \mathbb{R}^{+}for $\alpha \in(0,1)$ and $\beta \geq \alpha$.

Recursion, differentiation/integral representation formulae ... and

$$
\mathcal{L} E_{\alpha}\left(-\lambda t^{\alpha}\right)=\frac{z^{\alpha-1}}{\lambda+z^{\alpha}}
$$

For our purposes, the most interesting and important properties of the function $E_{\alpha, \beta}(z)$ are associated with its asymptotic behavior as $z \rightarrow \infty$ in various sectors of the complex plane \mathbb{C}. This result is due to Djrbashian

Theorem. Let $\alpha \in(0,2), \beta \in \mathbb{R}$, and $\mu \in(\alpha \pi / 2, \min (\pi, \alpha \pi))$, and $N \in \mathbb{N}$. Then for $|\arg (z)| \leq \mu$ with $|z| \rightarrow \infty$,

$$
E_{\alpha, \beta}(z) \sim \frac{1}{\alpha} z^{\frac{1-\beta}{\alpha}} e^{z^{\frac{1}{\alpha}}}
$$

and for $\mu \leq|\arg (z)| \leq \pi$ with $|z| \rightarrow \infty$

$$
E_{\alpha, \beta}(z)=-\sum_{k=1}^{N} \frac{1}{\Gamma(\beta-\alpha k)} \frac{1}{z^{k}}+O\left(\frac{1}{z^{N+1}}\right) .
$$

- On the positive real axis it grows exponentially, and the growth rate increases with decreasing α.
- The important message is: $E_{\alpha, \beta}(z)$, with $\alpha \in(0,2)$ and $\beta-\alpha \notin-\mathbb{N}$ decays only linearly on the negative real axis.

The initial value problem for the fractional ordinary differential equation

$$
{ }_{0} D_{t}^{\alpha} u(t)+\lambda u(t)=0 \quad x>0, \quad u(0)=1 \quad 0<\alpha<1
$$

has solution $u(t)$ given by $u(t)=E_{\alpha}\left(-\lambda t^{\alpha}\right)=\sum_{k=0}^{\infty} \frac{\left(-\lambda t^{\alpha}\right)^{k}}{\Gamma(k \alpha+1)}$

The initial value problem for the fractional ordinary differential equation

$$
{ }_{0} D_{t}^{\alpha} u(t)+\lambda u(t)=0 \quad x>0, \quad u(0)=1 \quad 0<\alpha<1
$$

has solution $u(t)$ given by $u(t)=E_{\alpha}\left(-\lambda t^{\alpha}\right)=\sum_{k=0}^{\infty} \frac{\left(-\lambda t^{\alpha}\right)^{k}}{\Gamma(k \alpha+1)}$
We want the fundamental solution for

$$
{ }_{0}^{C} D_{t}^{\alpha} p(x, t)-u_{x x} \quad \text { on } \mathbb{R} \times \mathbb{R}^{+}
$$

First take a Fourier transform in space,

$$
{ }_{0}^{C} D_{t}^{\alpha} \tilde{p}(\xi, t)+\xi^{2} \tilde{p}(\xi, t) \quad \Rightarrow \quad p(\xi, t)=E_{\alpha}\left(-\xi^{2} t^{\alpha}\right)
$$

[To invert we need the inverse Laplace transform of the Mittag Leffler function]

For $\mu, \rho \in \mathbb{R}$ with $\rho>-1$, the Wright function $W_{\rho, \mu}(z)$ is defined by

$$
W_{\rho, \mu}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!\Gamma(\rho k+\mu)} \quad z \in \mathbb{C} .
$$

For $\mu, \rho \in \mathbb{R}$ with $\rho>-1$, the Wright function $W_{\rho, \mu}(z)$ is defined by

$$
W_{\rho, \mu}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!\Gamma(\rho k+\mu)} \quad z \in \mathbb{C} .
$$

There is a particular version we need $M_{\mu}(z)=W_{-\mu, 1-\mu}(-z)$.

For $\mu, \rho \in \mathbb{R}$ with $\rho>-1$, the Wright function $W_{\rho, \mu}(z)$ is defined by

$$
W_{\rho, \mu}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!\Gamma(\rho k+\mu)} \quad z \in \mathbb{C} .
$$

There is a particular version we need $M_{\mu}(z)=W_{-\mu, 1-\mu}(-z)$. The Laplace transform of a Wright function is a Mittag-Leffler function

$$
\mathcal{L}\left[W_{\rho, \mu}(x)\right](z)=\frac{1}{z} E_{\rho, \mu}\left(z^{-1}\right)
$$

For $\mu, \rho \in \mathbb{R}$ with $\rho>-1$, the Wright function $W_{\rho, \mu}(z)$ is defined by

$$
W_{\rho, \mu}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!\Gamma(\rho k+\mu)} \quad z \in \mathbb{C} .
$$

There is a particular version we need $M_{\mu}(z)=W_{-\mu, 1-\mu}(-z)$. The Laplace transform of a Wright function is a Mittag-Leffler function

$$
\mathcal{L}\left[W_{\rho, \mu}(x)\right](z)=\frac{1}{z} E_{\rho, \mu}\left(z^{-1}\right)
$$

Theorem. $\quad \mathcal{L}\left[M_{\mu}(x)\right](z)=E_{\mu}(-z), \quad \mathcal{F}\left[M_{\mu}(|x|)\right](\xi)=2 E_{2 \mu}\left(-\xi^{2}\right)$

For $\mu, \rho \in \mathbb{R}$ with $\rho>-1$, the Wright function $W_{\rho, \mu}(z)$ is defined by

$$
W_{\rho, \mu}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!\Gamma(\rho k+\mu)} \quad z \in \mathbb{C}
$$

There is a particular version we need $M_{\mu}(z)=W_{-\mu, 1-\mu}(-z)$.
The Laplace transform of a Wright function is a Mittag-Leffler function

$$
\mathcal{L}\left[W_{\rho, \mu}(x)\right](z)=\frac{1}{z} E_{\rho, \mu}\left(z^{-1}\right)
$$

Theorem. $\quad \mathcal{L}\left[M_{\mu}(x)\right](z)=E_{\mu}(-z), \quad \mathcal{F}\left[M_{\mu}(|x|)\right](\xi)=2 E_{2 \mu}\left(-\xi^{2}\right)$
Combining all of this, the Fundamental Solution is

$$
p(x, t)=\frac{1}{\sqrt{4 K t^{\alpha}}} M_{\frac{\alpha}{2}}\left(\frac{|x|}{\sqrt{K t^{\alpha}}}\right)
$$

The Fundamental Solution of $\partial_{t}^{\alpha}-u_{x x}=0$

Random Walks leading to Anomolous Diffusion

Now we consider the situation where the characteristic waiting time T diverges, but the jump length variance Σ^{2} is still kept finite.

Random Walks leading to Anomolous Diffusion

Now we consider the situation where the characteristic waiting time T diverges, but the jump length variance Σ^{2} is still kept finite.

To model such phenomena, we employ a heavy-tailed waiting time PDF with the asymptotic behaviour $\psi(t) \sim \frac{A}{t^{1+\alpha}}$ as $t \rightarrow \infty, \alpha \in(0,1), A>0$.
The specific form of $\psi(t)$ is irrelevant; large time decay matters.
The parameter α determines the asymptotic decay of the PDF; the closer is α to zero, the slower the decay and the more likely a long waiting time.

Random Walks leading to Anomolous Diffusion

Now we consider the situation where the characteristic waiting time T diverges, but the jump length variance Σ^{2} is still kept finite.

To model such phenomena, we employ a heavy-tailed waiting time PDF with the asymptotic behaviour $\psi(t) \sim \frac{A}{t^{1+\alpha}}$ as $t \rightarrow \infty, \alpha \in(0,1), A>0$.
The specific form of $\psi(t)$ is irrelevant; large time decay matters.
The parameter α determines the asymptotic decay of the PDF; the closer is α to zero, the slower the decay and the more likely a long waiting time.

For this power law decay the mean waiting time is divergent: $\int_{0}^{\infty} t \psi(t) d t=$ $+\infty$ and the preceding analysis breaks down. But, the assumption on $\lambda(x)$ remains unchanged, i.e., $\int_{-\infty}^{\infty} x \lambda(x) d x=0$ and $\int_{-\infty}^{\infty} x^{2} \lambda(x) d x=1$.

Random Walks leading to Anomolous Diffusion

Now we consider the situation where the characteristic waiting time T diverges, but the jump length variance Σ^{2} is still kept finite.

To model such phenomena, we employ a heavy-tailed waiting time PDF with the asymptotic behaviour $\psi(t) \sim \frac{A}{t^{1+\alpha}}$ as $t \rightarrow \infty, \alpha \in(0,1), A>0$.
The specific form of $\psi(t)$ is irrelevant; large time decay matters.
The parameter α determines the asymptotic decay of the PDF; the closer is α to zero, the slower the decay and the more likely a long waiting time.

For this power law decay the mean waiting time is divergent: $\int_{0}^{\infty} t \psi(t) d t=$ $+\infty$ and the preceding analysis breaks down. But, the assumption on $\lambda(x)$ remains unchanged, i.e., $\int_{-\infty}^{\infty} x \lambda(x) d x=0$ and $\int_{-\infty}^{\infty} x^{2} \lambda(x) d x=1$.

Take the rescaled PDFs for the waiting time Δt_{n} and jump length Δx_{n} :

$$
\psi_{\tau}(t)=\frac{1}{\tau} \psi\left(\frac{t}{\tau}\right) \quad \text { and } \quad \lambda_{\sigma}(x)=\frac{1}{\sigma} \lambda\left(\frac{x}{\sigma}\right) .
$$

The Laplace-Fourier transform $\widehat{\widetilde{p}}(\xi, z ; \sigma, \tau)$ is

$$
\widehat{\widetilde{p}}(\xi, z ; \sigma, \tau)=\frac{1-\widehat{\psi}(\tau z)}{z} \frac{1}{1-\widehat{\psi}(\tau z) \widetilde{\lambda}(\sigma \xi)}
$$

The Laplace-Fourier transform $\widehat{\widetilde{p}}(\xi, z ; \sigma, \tau)$ is

$$
\widehat{\widetilde{p}}(\xi, z ; \sigma, \tau)=\frac{1-\widehat{\psi}(\tau z)}{z} \frac{1}{1-\widehat{\psi}(\tau z) \widetilde{\lambda}(\sigma \xi)}
$$

Several algebraic manipulations later ... compute the Fourier-Laplace transform $\widehat{\widetilde{p}}(\xi, z)$ by sending $\underset{\tau \rightarrow 0}{\sigma \rightarrow 0}$, keeping $\frac{\sigma^{2}}{2 B_{\alpha} \tau^{\alpha}}=K_{\alpha}$ fixed

$$
\widehat{\widetilde{p}}(\xi, z)=\lim \widehat{\widetilde{p}}(\xi, z ; \sigma, \tau)=\frac{z^{\alpha-1}}{z^{\alpha}+K_{\alpha} \xi^{2}}
$$

The Laplace-Fourier transform $\widehat{\widetilde{p}}(\xi, z ; \sigma, \tau)$ is

$$
\widehat{\widetilde{p}}(\xi, z ; \sigma, \tau)=\frac{1-\widehat{\psi}(\tau z)}{z} \frac{1}{1-\widehat{\psi}(\tau z) \widetilde{\lambda}(\sigma \xi)},
$$

Several algebraic manipulations later ... compute the Fourier-Laplace transform $\widehat{\widetilde{p}}(\xi, z)$ by sending $\underset{\tau \rightarrow 0}{\sigma \rightarrow 0}$, keeping $\frac{\sigma^{2}}{2 B_{\alpha} \tau^{\alpha}}=K_{\alpha}$ fixed

$$
\widehat{\tilde{p}}(\xi, z)=\lim \widehat{\widetilde{p}}(\xi, z ; \sigma, \tau)=\frac{z^{\alpha-1}}{z^{\alpha}+K_{\alpha} \xi^{2}}
$$

Invert the Fourier-Laplace transform $\widehat{\widetilde{p}}(\xi, z)$ back into space-time using the Laplace transform formula of the Mittag-Leffler function $E_{\alpha}(z)$,

$$
\widetilde{p}(\xi, t)=E_{\alpha}\left(-K_{\alpha} t^{\alpha} \xi^{2}\right)
$$

and next applying the Fourier transform of the M-Wright function we get $p(x, t)$ in the physical domain

$$
p(x, t)=\frac{1}{2 \sqrt{K_{\alpha} t^{\alpha}}} M_{\alpha / 2}\left(\frac{|x|}{\sqrt{K_{\alpha} t^{\alpha}}}\right) .
$$

Thus the fractional time derivative of order α corresponds to a particular decay choice of the time PDF $\psi(t)$.

Thus the fractional time derivative of order α corresponds to a particular decay choice of the time PDF $\psi(t)$.

Now compute the mean square displacement $\mu_{2}(t)=\int_{-\infty}^{\infty} x^{2} p(x, t) d x$. by taking the Laplace transform

$$
\begin{aligned}
\widehat{\mu}_{2}(z) & =\int_{-\infty}^{\infty} x^{2} \widehat{p}(x, z) d x=-\left.\frac{d^{2}}{d \xi^{2}} \widehat{\tilde{p}}(\xi, z)\right|_{\xi=0} \\
& =-\left.\frac{d^{2}}{d \xi^{2}}\left(z+K_{\alpha} z^{1-\alpha} \xi^{2}\right)^{-1}\right|_{\xi=0}=2 K_{\alpha} z^{-1-\alpha}
\end{aligned}
$$

and taking the inverse Laplace transform yields

$$
\left\langle x^{2}\right\rangle:=\mu_{2}(t)=\frac{2 K_{\alpha}}{\Gamma(1+\alpha)} t^{\alpha} \propto t^{\alpha}
$$

Thus the fractional time derivative of order α corresponds to a particular decay choice of the time PDF $\psi(t)$.

Now compute the mean square displacement $\mu_{2}(t)=\int_{-\infty}^{\infty} x^{2} p(x, t) d x$. by taking the Laplace transform

$$
\begin{aligned}
\widehat{\mu}_{2}(z) & =\int_{-\infty}^{\infty} x^{2} \widehat{p}(x, z) d x=-\left.\frac{d^{2}}{d \xi^{2}} \widehat{\tilde{p}}(\xi, z)\right|_{\xi=0} \\
& =-\left.\frac{d^{2}}{d \xi^{2}}\left(z+K_{\alpha} z^{1-\alpha} \xi^{2}\right)^{-1}\right|_{\xi=0}=2 K_{\alpha} z^{-1-\alpha}
\end{aligned}
$$

and taking the inverse Laplace transform yields

$$
\left\langle x^{2}\right\rangle:=\mu_{2}(t)=\frac{2 K_{\alpha}}{\Gamma(1+\alpha)} t^{\alpha} \propto t^{\alpha}
$$

Thus the mean square displacement grows only sublinearly with the time t. Such a diffusion process is often called subdiffusive.

If we retain the finite mean assumption on $\psi(t)$ but similarily relax the finite variance condition on $\lambda(x)$,

$$
\lambda(x) \sim \frac{B}{x^{2+\beta}} \quad \text { as } x \rightarrow \infty
$$

we obtain a space fractional derivative of order β.

If we retain the finite mean assumption on $\psi(t)$ but similarily relax the finite variance condition on $\lambda(x)$,

$$
\lambda(x) \sim \frac{B}{x^{2+\beta}} \quad \text { as } x \rightarrow \infty
$$

we obtain a space fractional derivative of order β.

Naturally, we can do those in both space and time.

Infinite mean in $\psi(t)$

Infinite variance in $\lambda(x)$

Subdiffusion Model

A is a strongly elliptic partial differential operator in Ω. $\partial_{t}^{\alpha} u$ is the Djrbashian-Caputo derivative of u of order $\alpha \in(0,1)$.

$$
\begin{align*}
\partial_{t}^{\alpha} u(x, t) & =A u(x, t)+f(x, t) \quad(x, t) \in \Omega \times(0, T], \\
u(x, t) & =0 \quad(x, t) \in \partial \Omega \times(0, T], \tag{**}\\
u(x, 0) & =u_{0}(x) \quad x \in \Omega
\end{align*}
$$

Subdiffusion Model

A is a strongly elliptic partial differential operator in Ω. $\partial_{t}^{\alpha} u$ is the Djrbashian-Caputo derivative of u of order $\alpha \in(0,1)$.

$$
\begin{align*}
\partial_{t}^{\alpha} u(x, t) & =A u(x, t)+f(x, t) \quad(x, t) \in \Omega \times(0, T], \\
u(x, t) & =0 \quad(x, t) \in \partial \Omega \times(0, T], \tag{**}\\
u(x, 0) & =u_{0}(x) \quad x \in \Omega
\end{align*}
$$

Is the single fractional exponent the only possibility?

Subdiffusion Model

A is a strongly elliptic partial differential operator in Ω.
$\partial_{t}^{\alpha} u$ is the Djrbashian-Caputo derivative of u of order $\alpha \in(0,1)$.

$$
\begin{align*}
\partial_{t}^{\alpha} u(x, t) & =A u(x, t)+f(x, t) \quad(x, t) \in \Omega \times(0, T], \\
u(x, t) & =0 \quad(x, t) \in \partial \Omega \times(0, T], \tag{**}\\
u(x, 0) & =u_{0}(x) \quad x \in \Omega
\end{align*}
$$

Is the single fractional exponent the only possibility?

- The "multi-term model": $\partial_{t}^{\alpha}=\sum_{j=1}^{m} q_{j} \partial_{t}^{\alpha_{j}}$ where $\alpha_{j} \in(0,1]$.

This arises from assuming the relevant probability density function has m terms of the form $q_{j} / t^{1+\alpha_{j}}, 1 \leq j \leq m$.

Subdiffusion Model

A is a strongly elliptic partial differential operator in Ω.
$\partial_{t}^{\alpha} u$ is the Djrbashian-Caputo derivative of u of order $\alpha \in(0,1)$.

$$
\begin{align*}
\partial_{t}^{\alpha} u(x, t) & =A u(x, t)+f(x, t) \quad(x, t) \in \Omega \times(0, T], \\
u(x, t) & =0 \quad(x, t) \in \partial \Omega \times(0, T], \tag{**}\\
u(x, 0) & =u_{0}(x) \quad x \in \Omega
\end{align*}
$$

Is the single fractional exponent the only possibility?

- The "multi-term model": $\partial_{t}^{\alpha}=\sum_{j=1}^{m} q_{j} \partial_{t}^{\alpha_{j}}$ where $\alpha_{j} \in(0,1]$.

This arises from assuming the relevant probability density function has m terms of the form $q_{j} / t^{1+\alpha_{j}}, 1 \leq j \leq m$.

- The fully distributed model: $\partial^{i}(\mu) u(t)=\int_{0}^{1} \mu(\alpha) \partial_{t}^{\alpha} d \alpha$

Everything is dominated by the weakly singular non-local operator.

- "Local arguments" don’t work (think strong Maximum Principle, pointwise estimates).
- The fractional pde has limited smoothing properties; lack of regularity affects typical "pde results".
- There is no sequel to Crank-Nicolson from the parabolic case and the storage apart, the typical time-stepping methods are first order, or at best $1+\alpha$ order, accurate.
- The entire history of the spatial solution must be maintained at each time step - this can be computationally significant in \mathbb{R}^{3} situations

Subdiffusion is no longer a Markov process.

Time evolution of $u_{t}-u_{x x}=0$ at $x=\frac{1}{2}, u(x, 0)=\sin (\pi x)$

Time evolution of $\partial_{t}^{\alpha}-u_{x x}=0$, at $x=\frac{1}{2}, u(x, 0)=\sin (\pi x)$

Inverse Problems

An unlimited number of questions; we will merely (and very briefly look at)

Inverse Problems
An unlimited number of questions; we will merely (and very briefly look at)

- How do we determine the fractional exponent?
- The backwards diffusion problem
- An unknown source of the form $F=\chi(D)$ and overposed flux data

As a teaser to many in the audience:
\diamond Regularization methods based on fractional operators.

For the single exponent α it is usually straightforward to determine this - usually in addition to the main purpose of computing a coefficient.

The main idea is based on the solution being analytic in α. From, say, a flux measurement $g(t)$ on $\partial \Omega$, the limiting behaviour as $t \rightarrow 0$ reveals α. Alternatively, one can take the Laplace transform.

For the single exponent α it is usually straightforward to determine this - usually in addition to the main purpose of computing a coefficient.
The main idea is based on the solution being analytic in α. From, say, a flux measurement $g(t)$ on $\partial \Omega$, the limiting behaviour as $t \rightarrow 0$ reveals α. Alternatively, one can take the Laplace transform.

For the multi- α situation analyticity again plays the crucial role.
Taking the Laplace transform $t \rightarrow s$, we obtain a rational function in s with coefficients depending on q_{j} and α_{j}. These may be backed out in sequence using analytic continuation in s. Extremely ill-posed. [Li, Yamamoto: 2014]

For the single exponent α it is usually straightforward to determine this - usually in addition to the main purpose of computing a coefficient.

The main idea is based on the solution being analytic in α. From, say, a flux measurement $g(t)$ on $\partial \Omega$, the limiting behaviour as $t \rightarrow 0$ reveals α. Alternatively, one can take the Laplace transform.

For the multi- α situation analyticity again plays the crucial role.
Taking the Laplace transform $t \rightarrow s$, we obtain a rational function in s with coefficients depending on q_{j} and α_{j}. These may be backed out in sequence using analytic continuation in s. Extremely ill-posed. [Li, Yamamoto: 2014]

The distributed situation is more complex as the function $\mu(\alpha)$ need not only be continuous. A representation theorem involving $\mu(\alpha)$ and kernel M is obtained and showing that M can be expanded in powers of α and that these are sufficiently dense so that the Müntz-Szász Theorem applies. [R, Zhang].

The Backwards Diffusion Problem

Given

$$
\begin{aligned}
& u_{t}=u_{x x} \quad 0<x<1, \quad 0<t<T \\
& u(0, t)=u(1, t)=0 \quad u(x, 0)=u_{0}(x)
\end{aligned}
$$

We measure $u(x, T)$ and wish to recover the initial value $u_{0}(x)$.

Given

$$
\begin{aligned}
& u_{t}=u_{x x} \quad 0<x<1, \quad 0<t<T \\
& u(0, t)=u(1, t)=0 \quad u(x, 0)=u_{0}(x)
\end{aligned}
$$

We measure $u(x, T)$ and wish to recover the initial value $u_{0}(x)$.
$\phi_{n}(x)=\sqrt{2} \sin n \pi x, c_{n}=\left\langle u_{0}, \phi_{n}\right\rangle, d_{n}=\left\langle u(\cdot, T), \phi_{n}\right\rangle, \lambda_{n}=n^{2} \pi^{2}$.

Given

$$
\begin{aligned}
& u_{t}=u_{x x} \quad 0<x<1, \quad 0<t<T \\
& u(0, t)=u(1, t)=0 \quad u(x, 0)=u_{0}(x)
\end{aligned}
$$

We measure $u(x, T)$ and wish to recover the initial value $u_{0}(x)$.
$\phi_{n}(x)=\sqrt{2} \sin n \pi x, c_{n}=\left\langle u_{0}, \phi_{n}\right\rangle, d_{n}=\left\langle u(\cdot, T), \phi_{n}\right\rangle, \lambda_{n}=n^{2} \pi^{2}$.

$$
\begin{aligned}
& \quad u_{t}=u_{x x} \\
& u(x, t)=\sum c_{n} e^{-\lambda_{n} t} \phi_{n}(x) \\
& u_{0}(x)=\sum d_{n} e^{\lambda_{n} T} \phi_{n}(x) \\
& \text { Recover }\left\{c_{n}\right\}: c_{n}=e^{n^{2} \pi^{2} T} d_{n} \\
& \text { Amazingly ill-posed }
\end{aligned}
$$

Given

$$
\begin{aligned}
& u_{t}=u_{x x} \quad 0<x<1, \quad 0<t<T \\
& u(0, t)=u(1, t)=0 \quad u(x, 0)=u_{0}(x)
\end{aligned}
$$

We measure $u(x, T)$ and wish to recover the initial value $u_{0}(x)$.
$\phi_{n}(x)=\sqrt{2} \sin n \pi x, c_{n}=\left\langle u_{0}, \phi_{n}\right\rangle, d_{n}=\left\langle u(\cdot, T), \phi_{n}\right\rangle, \lambda_{n}=n^{2} \pi^{2}$.

$$
\begin{aligned}
& \quad u_{t}=u_{x x} \\
& u(x, t)=\sum c_{n} e^{-\lambda_{n} t} \phi_{n}(x) \\
& u_{0}(x)=\sum d_{n} e^{\lambda_{n} T} \phi_{n}(x) \\
& \text { Recover }\left\{c_{n}\right\}: c_{n}=e^{n^{2} \pi^{2} T} d_{n} \\
& \text { Amazingly ill-posed }
\end{aligned}
$$

$$
\begin{aligned}
& D_{t}^{\alpha} u=u_{x x} \\
& u(x, t)=\sum c_{n} E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right) \phi_{n}(x) \\
& u_{0}(x)=\sum d_{n}\left[E_{\alpha, 1}\left(-\lambda_{n} T^{\alpha}\right)\right]^{-1} \phi_{n}(x) \\
& \text { Recover }\left\{c_{n}\right\}: c_{n}=\frac{1}{E_{\alpha, 1}\left(-\lambda_{n} T^{\alpha}\right)} d_{n}
\end{aligned}
$$

How ill-posed?

Look at the asymptotic: if $\lambda_{n} T \gg 1, E_{\alpha, 1}\left(-\lambda_{n} T^{\alpha}\right) \approx C \lambda_{n} T^{\alpha}$. The $n^{\text {th }}$ Fourier mode of u_{0} equals that of g multiplied by $\lambda_{n} \approx n^{2} \pi^{2}$ - a two derivative loss in Fourier space

- control of $u(:, T)$ in $\dot{H}^{2}(\Omega)$ controls u_{0} in L^{2}.

Look at the asymptotic: if $\lambda_{n} T \gg 1, E_{\alpha, 1}\left(-\lambda_{n} T^{\alpha}\right) \approx C \lambda_{n} T^{\alpha}$. The $n^{\text {th }}$ Fourier mode of u_{0} equals that of g multiplied by $\lambda_{n} \approx n^{2} \pi^{2}$ - a two derivative loss in Fourier space

- control of $u(:, T)$ in $\dot{H}^{2}(\Omega)$ controls u_{0} in L^{2}.

Stability estimate $\quad c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq\|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$
[Liu, Yamamoto: 2010]

Look at the asymptotic: if $\lambda_{n} T \gg 1, E_{\alpha, 1}\left(-\lambda_{n} T^{\alpha}\right) \approx C \lambda_{n} T^{\alpha}$. The $n^{\text {th }}$ Fourier mode of u_{0} equals that of g multiplied by $\lambda_{n} \approx n^{2} \pi^{2}$ - a two derivative loss in Fourier space

- control of $u(:, T)$ in $\dot{H}^{2}(\Omega)$ controls u_{0} in L^{2}.

Stability estimate $\quad c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq\|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$
[Liu, Yamamoto: 2010]
The backwards fractional derivative problem is only mildly ill-conditioned

Look at the asymptotic: if $\lambda_{n} T \gg 1, E_{\alpha, 1}\left(-\lambda_{n} T^{\alpha}\right) \approx C \lambda_{n} T^{\alpha}$.
The $n^{\text {th }}$ Fourier mode of u_{0} equals that of g multiplied by $\lambda_{n} \approx n^{2} \pi^{2}$

- a two derivative loss in Fourier space
- control of $u(:, T)$ in $\dot{H}^{2}(\Omega)$ controls u_{0} in L^{2}.

Stability estimate $\quad c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq\|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$
[Liu, Yamamoto: 2010]
The backwards fractional derivative problem is only mildly ill-conditioned
Fractional diffusion completely changes the paradigm here

Look at the asymptotic: if $\lambda_{n} T \gg 1, E_{\alpha, 1}\left(-\lambda_{n} T^{\alpha}\right) \approx C \lambda_{n} T^{\alpha}$.
The $n^{\text {th }}$ Fourier mode of u_{0} equals that of g multiplied by $\lambda_{n} \approx n^{2} \pi^{2}$

- a two derivative loss in Fourier space
- control of $u(:, T)$ in $\dot{H}^{2}(\Omega)$ controls u_{0} in L^{2}.

Stability estimate $\quad c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq\|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$
[Liu, Yamamoto: 2010]
The backwards fractional derivative problem is only mildly ill-conditioned
Fractional diffusion completely changes the paradigm here
But do we have the complete story?

Look at the asymptotic: if $\lambda_{n} T \gg 1, E_{\alpha, 1}\left(-\lambda_{n} T^{\alpha}\right) \approx C \lambda_{n} T^{\alpha}$.
The $n^{\text {th }}$ Fourier mode of u_{0} equals that of g multiplied by $\lambda_{n} \approx n^{2} \pi^{2}$

- a two derivative loss in Fourier space
- control of $u(:, T)$ in $\dot{H}^{2}(\Omega)$ controls u_{0} in L^{2}.

Stability estimate $\quad c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq\|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$
[Liu, Yamamoto: 2010]
The backwards fractional derivative problem is only mildly ill-conditioned
Fractional diffusion completely changes the paradigm here

But do we have the complete story?

Conjecture:
Reconstructing u_{0} from $u(x, T)$ is always easier in the fractional case

Look at the asymptotic: if $\lambda_{n} T \gg 1, E_{\alpha, 1}\left(-\lambda_{n} T^{\alpha}\right) \approx C \lambda_{n} T^{\alpha}$.
The $n^{\text {th }}$ Fourier mode of u_{0} equals that of g multiplied by $\lambda_{n} \approx n^{2} \pi^{2}$

- a two derivative loss in Fourier space
- control of $u(:, T)$ in $\dot{H}^{2}(\Omega)$ controls u_{0} in L^{2}.

Stability estimate $\quad c\|u(T)\|_{\dot{H}^{2}(\Omega)} \leq\|u(0)\|_{L^{2}} \leq C\|u(T)\|_{\dot{H}^{2}(\Omega)}$ [Liu, Yamamoto: 2010]
The backwards fractional derivative problem is only mildly ill-conditioned
Fractional diffusion completely changes the paradigm here

> But do we have the complete story?

Conjecture:
Reconstructing u_{0} from $u(x, T)$ is always easier in the fractional case
The answer is no, and the difference can be substantial.
A is a strongly elliptic pdo in Ω with eigenfunction/eigenvalues $\left\{\phi_{n}(x), \lambda_{n}\right\}$.

$$
\begin{aligned}
\partial_{t}^{\alpha} u(x, t) & -A u(x, t)=f(x)=\chi(D) \quad(x, t) \in \Omega \times(0, T], \\
u(x, t) & =0 \quad(x, t) \in \partial \Omega \times(0, T], \\
u(x, 0) & =u_{0}(x)=0 \quad x \in \Omega
\end{aligned}
$$

We wish to recover the (starlike) subdomain $D \subset \Omega$ from data

$$
g_{i}(t):=\left.\frac{\partial u}{\partial \nu}\right|_{P}, \quad P=\left\{x_{i}\right\} \in \partial \Omega
$$

where P is a (small) number of discrete points on the boundary $\partial \Omega$.
Let $F=F_{i}=F(D)$ be the map from D to $\left\{g_{i}\right\}$.
A is a strongly elliptic pdo in Ω with eigenfunction/eigenvalues $\left\{\phi_{n}(x), \lambda_{n}\right\}$.

$$
\begin{aligned}
\partial_{t}^{\alpha} u(x, t) & -A u(x, t)=f(x)=\chi(D) \quad(x, t) \in \Omega \times(0, T], \\
u(x, t) & =0 \quad(x, t) \in \partial \Omega \times(0, T], \\
u(x, 0) & =u_{0}(x)=0 \quad x \in \Omega
\end{aligned}
$$

We wish to recover the (starlike) subdomain $D \subset \Omega$ from data

$$
g_{i}(t):=\left.\frac{\partial u}{\partial \nu}\right|_{P}, \quad P=\left\{x_{i}\right\} \in \partial \Omega
$$

where P is a (small) number of discrete points on the boundary $\partial \Omega$.
Let $F=F_{i}=F(D)$ be the map from D to $\left\{g_{i}\right\}$.
Theorem. $\exists P=\left\{x_{1}, x_{2}\right\}$ such that the linearized map F^{\prime} is injective.
Case $\alpha=1$, [Hettlich, R]. \quad Case $\alpha<1$, [R, Zhang].
A is a strongly elliptic pdo in Ω with eigenfunction/eigenvalues $\left\{\phi_{n}(x), \lambda_{n}\right\}$.

$$
\begin{aligned}
\partial_{t}^{\alpha} u(x, t) & -A u(x, t)=f(x)=\chi(D) \quad(x, t) \in \Omega \times(0, T], \\
u(x, t) & =0 \quad(x, t) \in \partial \Omega \times(0, T], \\
u(x, 0) & =u_{0}(x)=0 \quad x \in \Omega
\end{aligned}
$$

We wish to recover the (starlike) subdomain $D \subset \Omega$ from data

$$
g_{i}(t):=\left.\frac{\partial u}{\partial \nu}\right|_{P}, \quad P=\left\{x_{i}\right\} \in \partial \Omega
$$

where P is a (small) number of discrete points on the boundary $\partial \Omega$.
Let $F=F_{i}=F(D)$ be the map from D to $\left\{g_{i}\right\}$.
Theorem. $\exists P=\left\{x_{1}, x_{2}\right\}$ such that the linearized map F^{\prime} is injective.
Case $\alpha=1$, [Hettlich, R]. \quad Case $\alpha<1$, [R, Zhang].
Very ill-conditioned! How does this depend on α ?
A is a strongly elliptic pdo in Ω with eigenfunction/eigenvalues $\left\{\phi_{n}(x), \lambda_{n}\right\}$.

$$
\begin{aligned}
\partial_{t}^{\alpha} u(x, t) & -A u(x, t)=f(x)=\chi(D) \quad(x, t) \in \Omega \times(0, T], \\
u(x, t) & =0 \quad(x, t) \in \partial \Omega \times(0, T], \\
u(x, 0) & =u_{0}(x)=0 \quad x \in \Omega
\end{aligned}
$$

We wish to recover the (starlike) subdomain $D \subset \Omega$ from data

$$
g_{i}(t):=\left.\frac{\partial u}{\partial \nu}\right|_{P}, \quad P=\left\{x_{i}\right\} \in \partial \Omega
$$

where P is a (small) number of discrete points on the boundary $\partial \Omega$.
Let $F=F_{i}=F(D)$ be the map from D to $\left\{g_{i}\right\}$.
Theorem. $\exists P=\left\{x_{1}, x_{2}\right\}$ such that the linearized map F^{\prime} is injective.
Case $\alpha=1$, [Hettlich, R]. \quad Case $\alpha<1$, [R, Zhang].
Very ill-conditioned! How does this depend on α ?
Depends on the selected time points, $\left\{t_{k}\right\}$, in measuring $g_{i}\left(t_{k}\right)$!

Profile of $g(t)$ for $\alpha=\frac{1}{2}$ and $\alpha=1$ from a circle centre origin.

Obrigado

