Experimental identification of transfer functions for diffusive and/or advective heat transfer for linear time invariant dynamical systems

Denis Maillet

University of Lorraine & CNRS, Nancy, France

Laboratoire d’Energétique et de Mécanique Théorique et Appliquée (LEMTA)

New Trends in Parameter Identification for Mathematical Models
IMPA, Rio de Janeiro, Brazil, October 30 – November 3, 2017

Contribution: Waseem Al Hadad
Experimental inverse problems in heat transfer and engineering
METTI Group, SFT (French Heat Transfer Society)

Recently: interest in **convolutive models** and associated **inverse problems**

* Pollutant source identification in a ventilated domain (turbulence, transient concentration measurements)

* Transient thermal behaviour of heat exchanger (PhD W. Hadad, Fives Cryo postDoc)

* Virtual sensor construction in a furnace under vacuum conditions (PhD T. Loussouar, Safran Group)
Scope

1. Forced thermal response of Linear advective/diffusive systems with Time Independent (LTI) coefficients

2. The calibration problem
 2.1 Case of a heat exchanger
 2.2 Experimental Impedance/transmittance estimation for a half heat exchanger

3. Analysis of deconvolution deadlocks
 3.1 Reference case: 1D transient conduction
 3.2 Noisy matrix and Total Least Squares
 3.3 Comparison of calibration methods

4. Rectangular deconvolution
 4.1 Point versus averaged values for input and unknown
 4.2 Rectangular deconvolution (using « stairs » parameterizing)
 4.3 Rectangular estimation with \(n < m \) non uniform (NU) time steps

5. Conclusions/perspectives
1. Forced thermal response of an advective/diffusive system with time constant coefficients

Material *multicomponent* system = K solid or fluid domains

Assumptions: *time constant* thermophysical properties and *velocity field*
Initial uniform state or steady state temperature field
+ one single separable thermal excitation

\[Q_{\text{in}}(t) = m_{\text{in}} c_{\text{in}} T_{b}^{\text{in}}(t) \]

\[Q_{S}(t) \text{ or } T_{S}(t) \neq T_{\text{init}} \]

\[T_{\infty}(t) \neq T_{\text{init}} \]

Time part of thermal excitation \(u(t) \) (starts at time \(t = 0 \)):

- volumetrical heat source \(Q_{V}(t) \)
- surface heat or temperature source \(Q_{S}(t) \) or \(T_{S}(t) \)
- change of external fluid temperature \(T_{\infty}(t) \neq T_{\text{init}} \)
- change of temperature at one fluid inlet \(T_{b}^{\text{in}}(t) \)

Fixed geometrical support:

- point
- line
- surface
- volume
Change of perspective: one single heterogeneous fluid in one single domain
(if solid part: zero velocity)

\[Q_{in}(t) = \dot{m}_{in} \dot{c}_{in} T_{in}^{b}(t) \]

\[Q_s(t) \text{ or } T_s(t) \neq T_{init} \]

\[T_{\infty}(t) \neq T_{init} \]

Transient separable thermal excitation:

Point response at any point \(P \):

\[y(t) \equiv T(P, t) \]
Recap:

Physical system:
Set of solids AND fluid(s):
3D forced convection with constant velocities (in time but not in space)
P = ANY point in the system

One single thermal excitation defined by its support

Assumptions: Transient heat equation + boundary conditions with time-invariant coefficients + uniform initial temperature or steady state (the system is Linear and also Time-Invariant LITI)

\[
\begin{align*}
\rho c(P) \frac{\partial T}{\partial t}(P,t) + \rho c(P) \bar{u}(P) \cdot \bar{V} T(P,t) &= \bar{V} \cdot \left(\lambda(P) \bar{V} T(P,t) \right) + \frac{Q_v(t)}{V_{source}} f(P) \\
\text{Transient} & \quad \text{Advection} & \quad \text{Conduction} & \quad \text{Internal source}
\end{align*}
\]
Temperature rise at any point P:

\[\theta(P, t) = T(P, t) - T_{\text{init}}(P) \]

Its Laplace transform:

\[\tilde{\theta}(P, p) = \int_0^\infty \exp(-pt) \theta(P, t) \, dt \]

Assumptions: Transient heat equation + boundary conditions with time-invariant coefficient + uniform initial temperature (the system is **Linear** and also **Time-Invariant** LITI)

\[
\rho c(P) \frac{\partial T}{\partial t}(P, t) + \rho c(P) \vec{u}(P) \cdot \nabla T(P, t) = \nabla \cdot \left(\lambda(P) \nabla T(P, t) \right) + \frac{Q_v}{V_{\text{source}}} f(P)
\]

Consequences: Laplace transformed heat equation (no time derivative)

\[
\rho c(P) p \tilde{\theta}(P, p) + \rho c(P) \vec{u}(P) \cdot \nabla \tilde{\theta}(P, p) = \nabla \cdot \left(\lambda(P) \nabla \tilde{\theta}(P, p) \right) + \frac{Q_v(p)}{V_{\text{source}}} f(P)
\]
Linear system with a single excitation

Temperature or flux

⇒ response at any point P in the system

= simple product (Laplace domain)

\[\bar{y}(P, p) = \bar{H}(P, p) \bar{u}(p) \]

or convolution product (time domain)

\[y(P, t) = H(P, t) * u(t) = \int_0^t H(P, t-t') u(t') \, dt' \]

Excitation u(t):

- \(u(t) = Q_v(t) - Q_v^{init} \) or \(Q_s(t) - Q_s^{init} \)
- or \(T_s(t) - T_{s}^{init}(P_s) \)
- or \(T_{\infty}(t) - T^{init}_{\infty} \)
- or \(T_{b}^{in}(t) - T_{b}^{in,init} \)

Response y(t) in any specific point P:

\(y(t) = \theta(P, t) = T(P, t) - T_{init}(P) \)

or local heat flux in any direction \(\phi_x(P, t) \)

Transfer function

\(H(P, t) \)

Response y

<table>
<thead>
<tr>
<th>Excitation u</th>
<th>Response y</th>
<th>Transfer function H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power source (Q) (watts)</td>
<td>Temperature difference (\theta) (kelvins)</td>
<td>Impedance (Z) (K.J^{-1})</td>
</tr>
<tr>
<td>Temperature difference (\theta) (kelvins)</td>
<td>Temperature difference (\theta) (kelvins)</td>
<td>Transmittance (W) (s^{-1})</td>
</tr>
<tr>
<td>Power source (Q) (watts)</td>
<td>Rate of heat flow (\Phi) (watts)</td>
<td>Transmittance (W) (s^{-1})</td>
</tr>
<tr>
<td>Temperature difference (\theta) (kelvins)</td>
<td>Rate of heat flow (\Phi) (watts)</td>
<td>Admittance (Y) (W.K^{-1}.s^{-1})</td>
</tr>
</tbody>
</table>
\[y(P,t) = H(P,t) \ast u(t) = \int_0^t H(P,t-t') u(t') \, dt' \]

Steady state (ss) version of a transfer function

\[H^{ss} = \frac{y^{ss}}{u^{ss}} = \int_0^\infty H(t) \, dt \]

asymptotic values

Time distribution

\[T_{in} - T_{out} = R \, \Phi \]

Thermal resistance, flux pipe between 2 isothermal surfaces

\[T^{ss} - T_{\infty} = Z^{ss} \, Q \]

Generalized resistance, no flux pipe

\[u \equiv Q \text{ or } Q - Q^{ss} \text{ (thermal power)} \]
\[y \equiv \theta = T - T_{init} \text{ (temperature variation)} \]
\[\Rightarrow H \equiv Z \text{ (thermal impedance)} \]

\[\text{Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil, oct.-nov. 2017} \]
2. The calibration problem

2.1 Case of a heat exchanger

Assumptions

- Constant thermo-physical properties (fluid and walls) and velocities (LTI heat equation):
 \[\frac{\partial \beta}{\partial t} = 0 \]
 \[\beta \equiv u_{\text{hot}}, u_{\text{cold}}, \lambda, \rho, \ldots \]

- Uniform initial conditions/initial steady state:
 \[T(P, t=0) = T_{\text{init}} \]
 \[T(P, t=0) = T_{\text{ss}}(P) \]

- Heat losses through convection/(linearized) radiation with environment through a uniform heat transfer coefficient \(h \) at temperature \(T_\infty = T_{\text{init}} \)

- One single heat source (inlet temperature increase) that starts at \(t = 0^+ \):
 \[\theta_1(t) = T_1(t) - T_{\text{init}} \neq 0 \]

 Cause
 \[\theta_4(t) = T_4(t) - T_{\text{init}} = 0 \]

 \[\frac{\theta_4(t)}{\theta_4(t < 0)} \neq 0 \]

- Transient/unsteady thermal regime with observed responses at any point \(q \):
 \[\theta_q(t) = T_q(t) - T_{\text{init}} \]
 \[\theta_q(t \leq 0) = 0 \] and \(\theta_q(t > 0) \neq 0 \)

Consequences
Calculation of convolution products (transmittance case)
Parameterizing with piecewise constant functions, square case

$$\theta (P, t) = W (P, t) \ast \theta_1 (t)$$

$$= \int_0^t W (P, t-t') \theta_1 (t') \, dt'$$

$$= \int_0^t \theta_1 (P, t-t') W (P, t') \, dt'$$

$$\theta (P, t_i) \approx \Delta t \sum_{j=1}^m \theta_{j,i-j+1} W_j (P)$$

t_0 = 0 ; t_i = i \Delta t \text{ for } i = 1 \text{ to } m ; \Delta t = t_{\text{final}} / m$

$$z_i = \frac{1}{\Delta t} \int_{t_{i-1}}^{t_i} z (t) \, dt \approx \frac{1}{2} \left(z(t_{i-1}) + z(t_i) \right) \text{ for } z(t) = \theta_1 \text{ or } W (P)$$

Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil, oct.-nov.2017
First experiment:
- Calibration (inverse) problem

Next experiments:
- virtual sensor inverse problem (same as source estimation problem)
Model for W identification calibration problem:

$$\theta_q = M(\theta_1) W^q$$

$\theta_q^{\exp} = \theta_q + \varepsilon_q$ and $\theta_1^{\exp} = \theta_1 + \varepsilon_1$

Ordinary (linear) least squares:

$$\hat{W}^q = \left(M(\theta_1^{\exp})\right)^{-1} \theta_q^{\exp}$$

Ill-posed problem: Inversion needs **regularization**

Here: Truncated SVD or 0 order Tikhonov

with discrepancy principle (Morozov)
Practical way of making the inlet temperature vary

\[T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_4 \]

\[Q(t) \rightarrow Z_1 \rightarrow \theta_1(t) \rightarrow W_1^q \rightarrow \theta_2(t) \rightarrow \theta_3(t) \]

\[\theta_1 = M(Q) \cdot Z_1 \]

\[\theta_q = M(\theta_1) \cdot W_1^q \]

2.2 – Experimental Impedance/transmittance estimation for a half heat exchanger

Identification of transmittance using experimental transient measurements (calibration)

<table>
<thead>
<tr>
<th>e_1</th>
<th>e_2</th>
<th>e_f</th>
<th>$2l$</th>
<th>$2l_c$</th>
<th>w</th>
<th>l_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>65</td>
<td>120</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Response: thermocouples

$d = 50.8 \, \mu m$
Identification of transfer function using **experimental** temperature recording:

Comparison of identified Z: step or periodical heating

Step heating

$T_{in}(t)$

$T_{out}(t)$

Upper and lower tranquilization chambers

identified impedances

Z_{in} Step - Tikhonov

Z_{out} Step - Tikhonov

Z_{in} Periodical – Tikhonov

Z_{out} Periodical – Tikhonov

$Z_{in\ or\ out} = (\mathbf{M}(Q))^{-1} \theta_{in\ or\ out}$

Square periodical heating

Z (K J$^{-1}$)

Time (s)
Comparison of identified transmittance W (outlet/inlet): step or periodical heating

Step heating

$T_\infty = 20.3^\circ C$

Square periodical heating

$T_\infty = 21.5^\circ C$, period = 129 s

Oscillations past first peak and for long times, zero initial level hard to recover:

Estimation of transmittance W (noisy output and input) more difficult than Z (noisy output only)

Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil, oct.-nov. 2017
3. Analysis of deconvolution deadlocks

3.1 Reference case: 1D transient conduction

Heat eq. \[
\frac{\partial^2 \theta}{\partial x^2} = \frac{1}{a} \frac{\partial \theta}{\partial t}
\]
boundary \[
\varphi = -\lambda \frac{\partial \theta}{\partial t} = q(t) \quad \text{at} \quad x = 0 \quad \text{for} \quad t > 0; \\
\varphi = -\lambda \frac{\partial \theta}{\partial t} = h \theta \quad \text{at} \quad x = \ell \quad \text{for} \quad t > 0
\]
initial \[
\theta = 0 \quad \text{at} \quad t = 0 \quad \text{for} \quad 0 \leq x \leq \ell
\]
Laplace transform \[
\bar{\psi} (x, p) = \int_0^t \psi(x, t) \exp(-pt) \, dt \quad \text{for} \quad \psi = \theta \quad \text{or} \quad \varphi
\]
Transmittance \[
W(t) = \mathcal{L}^{-1} \left[\frac{1}{\cosh(\beta \ell) + h \sinh(\beta \ell) / (\lambda \beta)} \right]
\]
with \(\beta^2 = p/a \)

\[\theta(t) = T(t) - T_\infty \]

change of variables

\[H \equiv W, \quad u \equiv \theta_1, \quad y \equiv \theta_2\]
Comparison: analytical W and identified W from synthetic profiles (COMSOL)

Analytical Laplace W + numerical inversion of Laplace

\[W(t) = L^{-1} \left[\frac{1}{\cosh (\beta \ell) + h \sinh (\beta \ell) / (\lambda \beta)} \right] \]

Identified W by OLS and TLS

\[W \text{ from } \theta_1 \text{ and } \theta_2 \]

Numerical Inversion of Laplace Transforms by Hoog’s algorithm

Input: \[\theta_1(t) = \left(1 - e^{-\frac{t}{\tau}} \right) \theta_1^{ss} \text{ with } \tau = 30 \text{ s} \quad ; \quad \theta_1^{ss} = 30 \, ^\circ\text{C} \quad \text{and} \quad \Delta t = 0.5 \text{ s} \]

<table>
<thead>
<tr>
<th>t_f (s)</th>
<th>ℓ (mm)</th>
<th>h (W.m$^{-2}$.K$^{-1}$)</th>
<th>λ (W.m$^{-1}$.K$^{-1}$)</th>
<th>ρc (kJ.m$^{-3}$.K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>50</td>
<td>10</td>
<td>43</td>
<td>3666</td>
</tr>
</tbody>
</table>
Comparison: analytical W and identified W from synthetic profiles (COMSOL)

Comparison without noise:

Temperature profiles (COMSOL)

Validation without committing an INVERSE CRIME

Analytical and identified W (without regularization)
3.2 Noisy matrix and Total Least Squares

Calibration problem: how to get the best transfer function $H(t)$ at a point P?

Model

$$y(P, t) = u(t) * H(P, t) = \int_{0}^{t} u(t-t') H(t-t') \, dt'$$

$$y = M(u) \, H$$

or

$$y = A \, H$$

with

$$A = M(u)$$

Measurements

Available information: discrete noisy values of $y(P, t)$ and $u(t)$

$$y^{exp}(t_i) = y(t_i) + \varepsilon_i$$

$$u^{exp}(t_i) = u(t_i) + \tau_i$$

$$\Rightarrow \quad A^{exp} = A + \varepsilon_u$$

with

$$\varepsilon_u = M(\tau)$$

Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil, oct.-nov. 2017
Identification from \(u \) and \(y \) measurements:

\[y = M(u)H \]

Total Least Squares (TLS) solution:

Augmented matrix \(G = [M(u) | y] \)

\(\hat{H} \) such as minimum residuals \(r_y \) and \(r_u \)

Frobenius norm:

\[J_{TLS}(H) = \| r_G(H) \|_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m+1} g_{i,j}^2 \]

with \(r_G(H) = G^{exp} - G \)

SVD Form of \(G \) → ill-posed → Regularized form: Truncated TLS
3.3 Comparison of calibration methods

Comparison: analytical W and identified W from synthetic profiles (COMSOL)

Comparison with noise: θ_1 noised

$\sigma_1 = 1K$, $\sigma_2 = 0K$

Temperature profiles (COMSOL)

Analytical and identified W (with regularization)

Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil, oct.-nov.2017
Comparison: analytical W and identified W from synthetic profiles (COMSOL)

Comparison with noise: θ_2 noised

Temperature profiles (COMSOL)

Analytical and identified W (with regularization)

Noise over signal ratio: $\frac{\|\theta_2^{\text{noised}} - \theta_2^{\text{exact}}\|}{\|\theta_2^{\text{noised}}\|} = 3.90\%$
Comparison: analytical W and identified W from synthetic profiles (COMSOL)

Comparison with noise: θ_1, θ_2 noised

$\sigma_1 = \sigma_2 = 1K$

Temperature profiles (COMSOL)

Analytical and identified W (with regularization)
Conclusion of this comparison of deconvolution techniques

- Noise on the response θ_2 more penalizing than noise on the source θ_1.

- The truncated total least squares do not take into account the convolutive structure of the matrix $M(\theta_1)$
 \Rightarrow no improvement of the estimate

- Important to improve short times values of the identified TF in a calibration experiment:
 \Rightarrow largest impact on posterior inverse input estimation experiments.

![Graphs showing comparison of deconvolution techniques](image)
4. Rectangular deconvolution

Calibration problem:

\[\theta_2 = A \mathbf{W} \quad \text{with} \quad A = M(\theta_1) \]

Can the ill-posed problem be more parsimonious?

\[\rightarrow \] Less many unknowns \(n \) than output data: \(n \ll m \)

Idea: tailoring the definition of the estimate

Calibration = model identification for a given structure

2 paths deserve to be investigated **BEFORE** regularization:

- Rectangular parametrization using piecewise constant parametrization for \(W \)
- ARX model construction (perspective)
4.1. Point versus averaged values for input and unknown

Singular values of $\mathbf{M}(\theta_1)$ depending on type of parameterization of θ_1 and on its noise

$$\mathbf{M}(\theta_1) = \mathbf{U} \mathbf{S} \mathbf{V}^T$$

$$s_1 \left(\mathbf{M}(\theta_{1, \alpha, \sigma_1}) \right) \approx s_1 \left(\mathbf{M}(\theta_{1, \alpha, \sigma_1}) \right) \quad \text{cond} \left(\mathbf{M}(\theta_{1, \alpha}) \right) = s_1 / s_{\alpha} \quad \text{for} \quad 1 \leq \alpha \leq m$$

α: truncation order - σ_1 = noise level

$$\text{cond} \left(\mathbf{M}(\theta_{1, \sigma_1}) \right) \geq \text{cond} \left(\mathbf{M}(\theta_{1, \alpha, \sigma_1}) \right)$$
Effect of the type of parameterization: noise on \(\theta_2 \) only

Sampled = parameters = instantaneous value (parameterization over a basis of « hat » functions): \(z_i = z(t_i) \)

Parameterized = averaged value (parameterization over a base of « doors » functions): \(z_i = 0.5 \left(z(t_i) + z(t_{i-1}) \right) \)

for \(z = \theta_1 \) or \(W \)

\[
\text{Estimated transmittance } W \ (1/s)
\]

Exact \(W \): sampled (continuous) and parameterized (stairs)

Estimated \(W \): sampled (continuous) and parameterized (stairs)

i.i.d. noise on the output: \(\sigma_2 = 1 \) K; \(\varepsilon_1 = 0 \)

Truncated SVD: \(\alpha = 19 \) for \(m = 1400 \) times

no noise: \(\varepsilon_1 = \varepsilon_2 = 0 \)

\[
\text{bias} (\beta) = E \left(\hat{\beta} \right) - \beta^{\text{exact}}
\]

\[
\left\| \text{bias} \left(\hat{W}_{\alpha_{\text{opt}}, \sigma_2}^{\text{stairs}} \right) \right\| \leq \left\| \text{bias} \left(\hat{W}_{\alpha_{\text{opt}}, \sigma_2}^{\text{sampled}} \right) \right\|
\]
4.2 Rectangular deconvolution (using « stairs » parameterizing)

\[z = W \quad \text{or} \quad \theta_1 \]

\[c = 3 \]

- Less many parameters than measurement times: \(n \ll m \)
- Simplest method = use of a basis of \(n \) piecewise constant functions:
 \[m/n = c \text{ (integer)} \]

Denis Maillet, Waseem Al Hadad, New trends in parameter identification, IMPA, Rio de Janeiro, Brasil, oct.-nov.2017
Square model:
\[\theta_2^{\text{square}} = M (\theta_1) W^{\text{square}} = A W^{\text{square}} \]

Rectangular model:
\[\theta_2^{\text{rectangular}} = M (\theta_1) W^{\text{square}} = X W \]

The \(n \) rectangular sensitivity vectors are simply the averaged values of the \(m \) square ones.

The sensitivity matrix and sensitivity vectors are repeated for some lines.
Effect of rectangular inversion: 1 unknown every $c=16$ time steps

Square & rectangular estimation, no noise: $\varepsilon_1 = \varepsilon_2 = 0$

i.i.d. noise on the output: $\sigma_2 = 1\,K ; \varepsilon_1 = 0$

Square Truncated SVD: $\alpha = 19$ for $n = m = 1400$ times

Rectangular TSVD, for $n = 87$

Rectangular case with $n = 87$ unknowns $\quad \text{cond}(A) = 2530$

Same relative RMS residual

$$\left\| \theta_2^{\sigma_2} - \theta_2^{\text{square, recalculated}}(\hat{W}_{\alpha_{opt}}) \right\| / \left\| \theta_2^{\sigma_1} \right\| = 3.88\%$$

$$\left\| \theta_2^{\sigma_2} - \theta_2^{\text{rectangular, recalculated}}(\hat{W}_{OLS}) \right\| / \left\| \theta_2^{\sigma_1} \right\| = 3.88\%$$

No gain in term of estimation bias
Norm of each sensitivity vector ($1/s$)

Study of the norm (length) of the sensitivity vectors

(rectangular case, $n = 87$ sensitivity vectors)

s_{k}

(square case, $m = 1400$ sensitivity vectors)

A_{j}

low sensitivity to long times estimates

time relative to each sensitivity vector (s)
4.3 Rectangular estimation with \(n < m \) non uniform (NU) time steps

\[
X^\text{NU}_k = \frac{1}{c_k} \sum_{j = a_k-1+1}^{a_k} A_j \quad \text{where} \quad a_k = \sum_{k' = 1}^{k-1} c_{k'}
\]

Each of the \(n \) rectangular sensitivity vectors are simply the averaged values of \(c_k \) square ones

\[
\theta_{\text{rectangular, NU}}^2 = X^\text{NU} W \quad \text{where} \quad X^\text{NU} \equiv [X_1 \ X_2 \ \cdots \ X_n]
\]

with \(X^\text{NU} = G^\text{NU} A = G^\text{NU} \ M (\theta_1) \)

Question: how to chose the \(n \) limits of the \(n \) different time steps?
First try: constant level past time $t = 400$ s (steady state reached)

Study of the norm (length) of the sensitivity vectors

- Norms of the sensitivity vectors (1/s)
 - $\| X_{k}^{NU} \|$ (NU rectangular case, $n = 87$ sensitivity vectors)
 - $\| X_{k} \|$ (rectangular case, $n = 51$ sensitivity vectors)
 - $\| A_{j} \|$ (square case, $m = 1400$ sensitivity vectors)

Time interval relative to each sensitivity vector (s)
Rectangular TSVD, NU case, \(n = 51, \) 18 singular values kept

Exact \(W, m = n = 1400 \)

Rectangular TSVD, for \(n = 87, \) 19 singular values kept

Improvement of zero level and of the transmittance for short times
5. Conclusions/perspectives

- Importance and applicability of **transfer functions** (impedances, transmittances, ...) in (exact) **reduced** convolutive model structures for **Linear Time Invariant** physical systems (detailed model = PDE, integro-differential equations, ...)

- Convolution products can be given a **commutative** vector/matrix form in discrete time

 ⇒ ill-posed inverse problems: identification problem (**calibration** first, inverse input problem (**source estimation**) or inverse (or direct) **virtual sensor**, or use in a Non Destructive Testing procedure **next**

- Path to improve the quality of estimation of transmittance: **rectangular deconvolution** and pertinent way of **tayloring** its unknown parameters

- Perspective: use of **ARX structures** (AutoRegressive models with eXternal inputs) for better estimation of transfer functions
Muito obrigado!
Model for W identification
calibration problem:

\[\theta_q = M(\theta_1) W^q \]

\[\theta_{q\exp} = \theta_q + \varepsilon_q \text{ and } \theta_{1\exp} = \theta_1 + \varepsilon_1 \]

- Ordinary least squares:
 \[\hat{W}^q = (M(\theta_{1\exp})^{-1}{\theta}_{q\exp} \]

- SVD decomposition of square sensitivity matrix:
 \[M(\theta_{1\exp}) = U S V^T \text{ with } S = \text{diag}(s_1, s_2, \ldots, s_m) \]

- TSVD:
 \[\hat{W}_{\alpha}^q = V S_{\alpha}^{-1} U^T \theta_{q\exp} \text{ with } S_{\alpha}^{-1} = \text{diag}(1/s_1, 1/s_2, \ldots, 1/s_\alpha, 0, \ldots, 0) \]

- Zero order Tikhonov:
 \[\hat{W}_{\mu}^q = \text{Arg}(\min_{W} \left(\| r(W) \|_2^2 + \mu \| W \|_2^2 \right)) \text{ where } r(W) = \theta_{q\exp} - M(\theta_{1\exp}) W \]

or:
 \[\hat{W}_{\mu}^q = V S_{\mu}^{-1} U^T \theta_{q\exp} \text{ with } S_{\mu}^{-1} = F_{\mu} S \text{ where } F_{\mu} = \text{diag}\left(\frac{s_1^2}{\mu^2 + s_1^2}, \frac{s_2^2}{\mu^2 + s_2^2}, \ldots, \frac{s_m^2}{\mu^2 + s_m^2} \right) \]

- Choice of the hyperparameters $\gamma = \alpha$ or μ by discrepancy principle (Morozov):
 \[\| r(\hat{W}_{\gamma}) \|_2^2 \approx m \sigma^2 \]

Ill-posed problem:
Inversion needs **regularization**
Here: Truncated SVD or 0 order Tikhonov
Total Least Squares (TLS) solution: augmented matrix $G = \begin{bmatrix} M(u) \mid y \end{bmatrix}$

\hat{H} such as minimum residuals r_y and r_u

$$J_{TLS}(H) = \left\| r_G(H) \right\|_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{m+1} g_{ij}^2$$

with $r_G(H) = G^{exp} - G$

$$\hat{H}_{TLS} = -V_{12}v_{22}^{-1}$$

with $G^{exp} = U \sum V^T$

and $V = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}$

Regularized form: T-TSVD

$$\hat{H}_{T-TLS} = -V_{12}^{\alpha_2} \left(V_{22}^{\alpha_2} \right)^T / \left\| V_{22}^{\alpha_2} \right\|^2$$

with $V = \begin{bmatrix} V_{11}^{\alpha_2} & V_{12}^{\alpha_2} \\ V_{21}^{\alpha_2} & V_{22}^{\alpha_2} \end{bmatrix}$
4.1. Point versus averaged values for input and unknown

Back to the parameterization problem

\[\theta_2 = \mathbf{M} (\theta_1) \mathbf{W} \]

- \(z(t) = W(t) \) or \(\theta_1(t) \): defined on a basis of \(m \) piecewise constant functions

- \(\theta_2 \): vector of \(m \) sampled values

\[z_i = \frac{1}{\Delta t} \int_{t_{i-1}}^{t_i} z(t) \, dt \approx \frac{1}{2} \left(z(t_{i-1}) + z(t_i) \right) \Rightarrow \text{cond} \left(\mathbf{M}(\theta_i^{\text{stairs}}) \right) = 3.64 \times 10^8 \]

for \(z = \theta_1 \) or \(W \)

Other choice (sampled values)

\[z_i = z(t_i) \quad \text{for} \quad z = \theta_1 \) or \(W \] \Rightarrow \text{cond} \left(\mathbf{M}(\theta_i^{\text{sampled}}) \right) = 2.05 \times 10^5