

Monotonicity-based regularization of inverse coefficient problems

Bastian von Harrach

http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

New Trends in Parameter Identification for Mathematical Models IMPA, Rio de Janeiro, Brazil October 30–November 03, 2017

Calderón problem

Can we recover $\sigma \in L^{\infty}_{+}(\Omega)$ in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla u) = 0, \quad x \in \Omega$$
 (1)

from all possible Dirichlet and Neumann boundary values

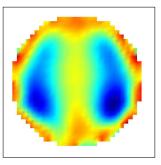
$$\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves (1)}\}?$$

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

$$\Lambda(\sigma): L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where u solves (1) with $\sigma \partial_{\nu} u|_{\partial \Omega} = g$.

Application: Electrical impedance tomography



- Apply electric currents on subject's boundary
- Measure necessary voltages
- Reconstruct conductivity inside subject.

Inversion of $\sigma \mapsto \Lambda(\sigma)$?

Generic solvers for non-linear inverse problems:

Linearize and regularize:

$$\Lambda_{\mathsf{meas}} pprox \Lambda(\sigma) pprox \Lambda(\sigma_0) + \Lambda'(\sigma_0)(\sigma - \sigma_0).$$

 σ_0 : Initial guess or reference state (e.g. exhaled state)

- \sim Linear inverse problem for σ (Solve using linear regularization method, repeat for Newton-type algorithm.)
- Regularize and linearize:
 E.g., minimize non-linear Tikhonov functional

$$\|\Lambda_{\text{meas}} - \Lambda(\sigma)\|^2 + \alpha \|\sigma - \sigma_0\|^2 \rightarrow \text{min!}$$

Advantages of generic optimization-based solvers:

- Very flexible, additional data/unknowns easily incorporated
- Problem-specific regularization can be applied (e.g., total variation penalization, stochastic priors, etc.)

Inversion of $\sigma \mapsto \Lambda(\sigma)$?

Problems with generic optimization-based solvers

- High computational cost
 - Evaluations of $\Lambda(\cdot)$ and $\Lambda'(\cdot)$ require PDE solutions.
 - PDE solutions too expensive for real-time imaging
- Convergence unclear

(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

- Convergence against true solution for exact meas. Λ_{meas} ? (in the limit of infinite computation time)
- Convergence against true solution for noisy meas. $\Lambda_{\text{meas}}^{\delta}$? (in the limit of $\delta \to 0$ and infinite computation time)
- Global convergence? Resolution estimates for realistic noise?

Is there any specific problem structure that we can use to derive convergent algorithms?

Monotonicity

For two conductivities $\sigma_0, \sigma_1 \in L^{\infty}(\Omega)$:

$$\sigma_0 \leq \sigma_1 \implies \Lambda(\sigma_0) \geq \Lambda(\sigma_1)$$

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)

$$\int_{\Omega} (\sigma_1 - \sigma_0) |\nabla u_0|^2 \ge \int_{\partial \Omega} g(\Lambda(\sigma_0) - \Lambda(\sigma_1)) g \ge \int_{\Omega} \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0) |\nabla u_0|^2$$

for all solutions u_0 of

$$\nabla \cdot (\boldsymbol{\sigma}_0 \nabla u_0) = 0, \quad \boldsymbol{\sigma}_0 \partial_V u_0|_{\partial \Omega} = g.$$

Converse monotonicity relation can be shown by controlling $|\nabla u_0|^2$. (Localized Potentials: **H.**, Inverse Probl. Imaging 2008)

Monotonicity method

Sample inclusion detection problem (for ease of presentation)

- $\sigma_0 = 1$
- ▶ D open, $\overline{D} \subseteq \Omega$, $\Omega \setminus \overline{D}$ connected

All of the following also holds for

- σ_0 pcw. analytic and known,
- $\sigma_1 = \sigma_0 + \kappa \chi_D$ with $\kappa \in L^{\infty}_+(D)$,
- in any dimension $n \ge 2$,
- for partial boundary data on open subset $\Gamma \subseteq \partial \Omega$.

Monotonicity method

H./Ullrich, SIAM J. Math. Anal. 2013:

$$B \subseteq D \iff \Lambda(1) + \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda(\sigma)$$

- Yields theoretical uniqueness result
- Simple to implement, no PDE solutions
- Similar comput. cost as single Newton (linearization) step
- Rigorously detects unknown shape for exact data
- Convergence for noisy data $\Lambda_{\text{meas}}^{\delta} \to \Lambda(\sigma) \Lambda(1)$:

$$R(\Lambda_{\mathsf{meas}}^{\delta}, \delta, B) \coloneqq \left\{ egin{array}{ll} 1 & \mathsf{if} \ rac{1}{2} \Lambda'(1) \chi_B \geq \Lambda_{\mathsf{meas}}^{\delta} - \delta I \\ 0 & \mathsf{else}. \end{array}
ight.$$

Then
$$R(\Lambda_{\text{meas}}^{\delta}, \delta, B) \to 1$$
 iff $B \subseteq D$.

Quantitative, pixel-based variant of monotonicity method:

- Pixel partition $\Omega = \bigcup_{k=1}^{m} P_k$
- Quantitative monotonicity tests

$$eta_k \in [0,\infty]$$
 max. values s.t. $eta_k \Lambda'(1) \chi_{P_k} \ge \Lambda(\sigma) - \Lambda(1)$
 $eta_k^{\delta} \in [0,\infty]$ max. values s.t. $eta_k^{\delta} \Lambda'(1) \chi_{P_k} \ge \Lambda_{\mathsf{meas}}^{\delta} - \delta I$

"Raise conductivity in each pixel until monotonicity test fails."

By theory of monotonicity method:

$$\beta_k^{\delta} \to \beta_k$$
 and β_k fulfills $\left\{ \begin{array}{ll} \beta_k = 0 & \text{if } P_k \notin D \\ \beta_k \ge \frac{1}{2} & \text{if } P_k \subseteq D \end{array} \right.$

Plotting β_k^{δ} shows true inclusions up to pixel partition.

Realistic example (32 electrodes, 1% noise)

- Monotonicity method rigorously converges for $\delta \rightarrow 0 \dots$
- ... but the heuristic standard linearized method works much better for realistic scenarios.

Can we improve the monotonicity method without loosing convergence?

GOETHE UNIVERSITÄT

Monotonicity-based regularization

Standard linearized methods for EIT: Minimize

$$\|\Lambda'(1)\kappa - (\Lambda(\sigma) - \Lambda(1))\|^2 + \alpha \|\kappa\|^2 \rightarrow \min!$$

Choice of norms heuristic. No convergence theory!

Monotonicity-based regularization: Minimize

$$\|\Lambda'(1)\kappa - (\Lambda(\sigma) - \Lambda(1))\|_{\mathsf{F}} \to \mathsf{min}!$$

under the constraint $\kappa|_{P_k} = \text{const.}, \ 0 \le \kappa|_{P_k} \le \min\{\frac{1}{2}, \beta_k\}.$ ($\|\cdot\|_F$: Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)

• There exists unique minimizer \hat{k} and

$$P_k \subseteq \operatorname{supp} \hat{\kappa} \iff P_k \subseteq \operatorname{supp}(\sigma - 1).$$

• Minimizer fulfills $\hat{\kappa} = \sum_{k=1}^{m} \min\{1/2, \beta_k\} \chi_{P_k}$

Monotonicity-based regularization

For noisy measurements $\Lambda_{\text{meas}}^{\delta} \approx \Lambda(\sigma) - \Lambda(1)$:

Use regularized monotonicity tests

$$\beta_k^{\,\delta} \in \left[0,\infty\right] \text{ max. values s.t. } \beta_k^{\,\delta} \Lambda'(1) \chi_{P_k} \geq \Lambda_{\mathsf{meas}}^{\,\delta} - \delta I$$
 $(\delta > 0: \mathsf{noise level in } \mathcal{L}(L_\diamond^2(\partial\Omega)) \cdot \mathsf{norm})$

Minimize

$$\|\Lambda'(1)\kappa^{\delta} - \Lambda_{\text{meas}}^{\delta}\|_{\mathsf{F}} \to \mathsf{min}!$$

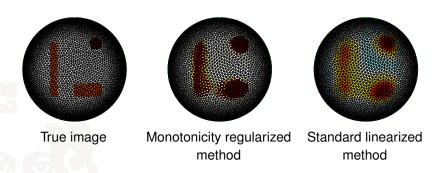
under the constraint $\kappa^{\delta}|_{P_k} = \text{const.}, \ 0 \le \kappa^{\delta}|_{P_k} \le \min\{\frac{1}{2}, \beta_k^{\delta}\}.$

Theorem (H./Mach, Inverse Problems 2016)

There exist minimizers κ^{δ} and $\kappa^{\delta} \to \hat{\kappa}$ for $\delta \to 0$.

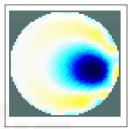
Monotonicity-regularized solutions converge against correct shape.

Realistic example (32 electrodes, 1% noise)

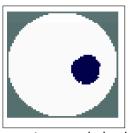


Monotonicity regularized method rigorously converges and is up to par with (outperforms?) heuristic standard linearized method.

Phantom data example



monoton.-regularized (Matlab quadprog)



monoton.-regularized (cvx package)

Monotonicity-regularization vs. community standard

(H./Mach, Trends Math., to appear)

- ► EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
- ► EIDORS standard solver: linearized method with Tikhonov regularization
- ▶ Dataset: iirc_data_2006 (Woo et al.): 2cm insulated inclusion in 20cm tank
 - using interpolated data on active electrodes (H., Inverse Problems 2015)

Stochastic Calderón problem

Deterministic Calderón Problem: Can we recover σ from NtD

$$\Lambda(\sigma): L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where u solves $\nabla \cdot (\sigma \nabla u) = 0$ in Ω with $\sigma \partial_{\nu} u|_{\partial \Omega} = g$?

Stochastic Calderón problem:

Can we recover
$$\mathbb{E}(\sigma)$$
 from $\mathbb{E}(\Lambda(\sigma))$?

- Stochastic inclusion detection in hom. background ($\sigma_0 = 1$):

 Can we recover $\operatorname{supp}(\mathbb{E}(\sigma) 1)$ from $\mathbb{E}(\Lambda(\sigma))$?
- (Possible) Application: Biomedical anomaly detection from temporally averaged measurements.

NtD-operator is of finite expectation

Theorem (Barth/H./Hyvönen/Mustonen, Inverse Problems 2017)

If $\sigma, \sigma^{-1} \in L^1(W, L^{\infty}_+(\Omega))$, W probability space, then

- $\Lambda(\sigma) \in L^1(W, L^{\infty}_+(\Omega)),$
- $\mathbb{E}(\Lambda(\sigma))$ is well-defined,
- ▶ $\mathbb{E}(\Lambda(\sigma)): L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega)$ is compact and self-adjoint.

Proof.

- $\Lambda(\sigma): W \to \mathcal{L}(L^2_{\diamond}(\partial\Omega))$ is concatenation of strongly meas. function and continuous function and thus strongly measurable.
- Integrability bound on $\Lambda(\sigma)$ follows from monotonicity inequality.

Detecting stochastic inclusions

Theorem (Barth/H./Hyvönen/Mustonen, Inverse Problems 2017)

lf

$$\sigma = \begin{cases} 1 & \text{in } \Omega \setminus D, \\ \sigma_D(x, \omega) & \text{in } D, \end{cases}$$

• $\sigma_D: \Omega \to L^{\infty}_+(D)$, *W* probability space,

•
$$\sigma_D, \sigma_D^{-1} \in L^1(W, L_+^{\infty}(D)),$$

$$\blacksquare \exists \alpha > 0$$
: $\mathbb{E}(\sigma_D) > 1 + \alpha$, and $\mathbb{E}(\sigma_D^{-1})^{-1} > 1 + \alpha$,

Then D is uniqu. determined by Monoton. Meth. applied to $\mathbb{E}(\Lambda(\sigma))$ (and also by the similar Factorization Method).

Stochastic uncertainty in σ behaves like deterministic uncertainty in $[\mathbb{E}(\sigma^{-1})^{-1}, \mathbb{E}(\sigma)]$.

Monotonicity for stochastic inclusions

Main idea of the proof. Monotonicity for stochastic inclusions:

For deterministic σ_0 and stochastic σ :

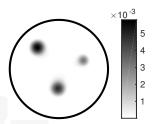
$$\int_{\Omega} (\mathbb{E}(\sigma) - \sigma_0) |\nabla u_0|^2 dx \ge \int_{\partial \Omega} g(\Lambda(\sigma_0) - \mathbb{E}(\Lambda(\sigma))) g ds$$

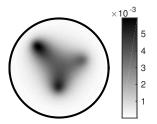
$$\ge \int_{\Omega} \sigma_0^2 (\sigma_0^{-1} - \mathbb{E}(\sigma^{-1})) |\nabla u_0|^2 dx.$$

In particular,

$$\sigma_0 \leq \mathbb{E}(\sigma)$$
 and $\sigma_0 \leq \mathbb{E}(\sigma^{-1})^{-1} \implies \Lambda(\sigma_0) \geq \mathbb{E}(\Lambda(\sigma))$

Example





- Background conductivity σ₀ = 1
- Inclusions conductivity uniformly distributed in [0.5,3.5]

$$\mathbb{E}(\sigma_D) \geq \mathbb{E}(\sigma_D^{-1})^{-1} \approx 1.54 > 1 = \sigma_0$$

Images show result of Factorization Method applied to $\mathbb{E}(\sigma)$ (Left Image: no noise, Right Image: 0.1% noise)

Conclusions

Inverse coeff. problems such as EIT are highly ill-posed & non-linear.

- Convergence of generic solvers unclear.
- Often heuristic regularization without theor. justification is used.

Monotonicity and localized potentials yield

- theoretical uniqueness results,
- convergent inclusion detection methods,
- rigorous regularizers for residuum-based methods.

Approach can be extended

- to partial boundary data, independently of dimension $n \ge 2$,
- to stochastic settings,
- to other linear elliptic problems (diffuse optical tomography, magnetostatics)
- at least partially to closely related problems
 (eddy-current equations, p-Laplacian, inverse scattering, fractional diffusion)